SOFT PIONS, CURRENT ALGEBRAS, AND SUM RULES

Stephen L. Adler
Institute for Advanced Study
Princeton, NJ 08540

- Preliminaries
- Soft Pions
- Current Algebras
- Sum Rules
- Further Soft Pion Applications
- Deep Inelastic Scattering Sum Rules
- Anomalies and PCAC
- Historical Significance
- Updates and Revivals

Preliminaries

Noether's Theorem

\[L(x) = L \left[\Phi_j, \lambda, \Phi_\lambda \right] \]

\[\Phi_{j,\lambda} \rightarrow \Phi_j(x) + \lambda(x) \, G_j [\Phi_\lambda] \]

\[S_L = \frac{\int_\Lambda L \, d\lambda}{S_\lambda} + \frac{\int_\Lambda \lambda \, d\lambda}{S_\lambda} \]

Current

\[j^\alpha = -\frac{\delta L}{\delta (\partial_\alpha \lambda)} = -\frac{\delta L}{\delta (\partial_\alpha \Phi_\lambda)} \, G_j \]

Obeys

\[\partial_\lambda j^\alpha = -\frac{\delta L}{\delta \lambda} \]

If \(L \) is invariant for constant \(\lambda \), then \(\delta x / \delta \lambda = 0 \) and the current is conserved.

If \(\delta x / \delta \lambda \) is small, the current is partially conserved.
APPLICATION TO THE DIRAC LAGRANGIAN

\[\mathcal{L} = \overline{\psi} \gamma^\mu \partial_\mu \psi + i m \overline{\psi} \gamma^0 \psi \]

\[\overline{\psi} = \psi^\dagger \gamma^0 \]

1. \[\psi \rightarrow e^{i \theta \gamma^5} \psi \]

\[\psi \text{ is invariant } \Rightarrow \text{ conserved vector current } \quad v^\mu = \overline{\psi} \gamma^\mu \psi \]

\[\partial_\mu v^\mu = 0 \]

2. \[\psi \rightarrow e^{i \theta \gamma_5} \psi \]

\[[\gamma_5, \gamma_\mu \gamma^\mu] = 0, \quad [\gamma_5, \gamma^\nu] \neq 0 \]

\[\psi \text{ is invariant only when } m = 0 \]

\[\Rightarrow \text{ partially conserved axial-vector current } \quad a^\mu = \overline{\psi} \gamma^\mu \gamma_5 \psi \]

\[\partial_\mu a^\mu = i m \overline{\psi} \gamma_5 \psi \]
Decay of the Pi Meson

M. L. Goldberger and S. R. Treiman
Princeton Physical Laboratory, Princeton University, Princeton, New Jersey
(Received February 10, 1958)

Goldberger-Treiman Relation

\[f_\pi = \text{charged pion decay constant} \]
\[g_A = \text{nucleon axial-vector coupling constant} \]
\[g_\pi = \text{pion-nucleon coupling constant} \]
\[M_N = \text{nucleon mass} \]

\[f_\pi = \sqrt{2} \frac{M_N g_A}{g_\pi} \quad \text{(This is PDG} \ f_\pi = \text{Adler-Bashen} \ f_\pi/M_\pi^2) \]

Amazing - Good to around 6% (now 2.3%)
REINTERPRETATION AS (PARTIALLY CONSERVED) AXIAL-VECTOR CURRENT

\[\phi_{\pi^+} = C \phi_{\pi^-} = C \phi_0 \]

\[M_{\pi^0} \approx 2 M_{\pi^0} = C \frac{g_n}{g_\pi} \]

(NAMBU, BEANSTEIN, FUBINI, CELL-MANN + THIRRING; CELL-MANN + LÉVY; BERNSTEIN, CELL-MANN + MICHEL; CHOU; ALL 1960)

EARLY APPLICATIONS

\[\chi = \text{NUCLEON + PION} \]

AXIAL CHARGE

\[= -i \int J_\mu \, d^3x \]

\[\langle \alpha^{(m)} | \chi | \alpha^{(m)} \rangle = \langle \alpha^{(m)} | \chi | \alpha^{(m)} \rangle \]

PHYSICAL REVIEW

VOLUME 133, NUMBER 4
FEBRUARY 15, 1962

Chirality Conservation and Soft Pion Production*

Y. NAMBU and D. LURIÉ
The Enrico Fermi Institute for Nuclear Studies and the Department of Physics, University of Chicago, Chicago, Illinois
(Received September 25, 1961)

PHYSICAL REVIEW

VOLUME 133, NUMBER 48
24 AUGUST 1964

Tests of the Conserved Vector Current and Partially Conserved Axial-Vector Current Hypotheses in High-Energy Neutrino Reactions*

STEPHEN L. ADLER
Princeton University, Princeton, New Jersey
(Received 8 April 1964)
SOFT PION THEOREMS AS A PRECISION TOOL

Consistency Conditions on the Strong Interactions Implied by a Partially Conserved Axial-Vector Current

Stephen L. Adler
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey and Bell Telephone Laboratories, Murray Hill, New Jersey
(Received 13 September 1964)

$$A^{\text{TNN}} = \text{SYMMETRIC ISOSPIN PION-NUCLEON SCATTERING AMPLITUDE}$$

$$\Lambda^{\text{TNN}}(V = V_A = 0) \approx \frac{g^2}{M_N} \quad \text{GOOD TO } \sim 10\%$$

$$A^{\text{TNN}}(S = t = u = -M_N^2, \not{p} = 0) = 0 \quad \text{"ADLER ZERO"}$$

3 PIONS IN-SHELL 4TH PION OFF-SHELL

Consistency Conditions on the Strong Interactions Implied by a Partially Conserved Axial-Vector Current. II

Stephen L. Adler
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts
(Received 26 March 1965)

GENERAL EXTERNAL LINE INSERTION RULES

NUCLEON LINE: NONZERO INSERTION

PION LINE: ZERO INSERTION
THE SYMMETRY GROUP OF VECTOR AND AXIAL VECTOR CURRENTS*

MURRAY GELL-MANN
California Institute of Technology, Pasadena, California

(Received 25 May 1964)

\[F_i(t) = -i \int \mathcal{F}_{14} \, d^3x, \]

\[F_i^s(t) = -i \int \mathcal{F}_{14}^s \, d^3x, \]

\[[F_i(t), F_j(t)] = i \epsilon_{ijk} F_k(t), \]

\[[F_i^s(t), F_j^s(t)] = i \epsilon_{ijk} F_k^s(t). \]

(c) The commutation rules of the operators \(F_i^s(t) \) close the algebraic system by giving

\[[F_i^s(t), F_j^s(t)] = i \epsilon_{ijk} F_k^s(t). \]

RENORMALIZATION EFFECTS FOR PARTIALLY CONSERVED CURRENTS*

S. PUBINI
Istituto de Fisica dell'Università-Torino and CERN, Geneva

G. PURLAN**
CERN, Geneva

(Received 23 December 1964)
SUM RULES

CALCULATION OF THE AXIAL-VECTOR COUPLING CONSTANT RENORMALIZATION IN β DECAY

Stephen L. Adler

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts
(Received 17 May 1965)

RENORMALIZATION OF THE WEAK AXIAL-VECTOR COUPLING CONSTANT

William I. Weisberger

Stanford Linear Accelerator Center, Stanford University, Stanford, California
(Received 26 May 1965)

\[g_A^2 = 1 + \frac{f^2}{\pi} \frac{2}{\pi} \int_{M^2_{\pi N} + M^2_{\pi \pi}}^{\infty} \frac{WdW}{W^2 - M^2_{\pi \pi}} \left[\sigma_{T^+}^+(W) - \sigma_{T^+}^-(W) \right] \]

\text{given } g_A = 1.24 \quad \text{exp. } g_A = 1.272

SUM RULES for the Axial-Vector Coupling-Constant Renormalization in γ Decay

Stephen L. Adler

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts
(Received 7 June 1965)

- **πππ Sum Rule**
 \[l = \frac{f^2}{\pi} \frac{1}{\pi} \int_{2M_{\pi \pi}}^{\infty} \frac{WdW}{W^2 - M^2_{\pi \pi}} \left[\sigma_{T^+}^+(W) - \sigma_{T^+}^-(W) \right] \]

- **Sum Rule for forward lepton \(k^2 \approx 0 \) inclusive \(\pi N \) scattering**

Need large \(I=0 \)

5-wave \(\pi \pi \) cross section at low energy to saturate sum rule
Further soft pion applications (many!)

- Callan & Treiman \(K \to \pi \ell^+ \nu \) related to \(K \to \pi \nu \)
- Weinberg \(K \to 2\pi \ell^+ \nu \) importance of \(\pi \) pole terms
- Weinberg \(\pi \pi^* \) scattering length, multiple \(\pi \) production

→ These are reprinted in Adler & Dashen, "Current Algebras and Applications to Particle Physics," W. A. Benjamin (1969)

→ See also Coleman, "Aspects of Symmetry," Cambridge (1985), Chapter 2 on "Soft Pions"

- Chiral Lagrangians as generating functions for soft pion theorems were systematized by Weinberg; and by Callan, Coleman, Wess & Zumino

- Chiral \(SU(2) \times SU(3) \) as a strong interaction symmetry was developed by Dashen; Goldstone bosons
DEEP INELASTIC SCATTERING SUM RULES

Sum Rules Giving Tests of Local Current Commutation Relations in High-Energy Neutrino Reactions

Stephen L. Adler
CERN, Geneva, Switzerland and Lyman Laboratory, Harvard University, Cambridge, Massachusetts
(Received 6 October 1965)

\[2 = \int_0^\infty dv \left[W_2^{\nu\nu}(q^2, \nu) - W_2^{\nu\nu}(q^2, \nu) \right] \]

\[\frac{Q^2}{2} = k_v - k_\ell \]

\[\nu = \nu_v - \nu_\ell \]

INEQUALITY FOR ELECTRON AND MUON SCATTERING FROM NUCLEONS

J. D. Bjorken
Stanford Linear Accelerator Center, Stanford University, Stanford, California
(Received 7 February 1966)

\[\lim_{E_\nu \rightarrow \infty} \frac{d (E_\nu + E_\nu)}{d \phi^2} \geq \frac{2\pi d^2}{q^2} \]

Asymptotic Sum Rules at Infinite Momentum

J. D. Bjorken
Stanford Linear Accelerator Center, Stanford University, Stanford, California
(Received 30 September 1966)

\[\text{Scaling: } u W_2(q^2, \nu) \Rightarrow F_2(x) \quad x = \frac{q^2}{2M_\nu \nu} \]
ANOMALIES AND PCAC

Axial-Vector Vertex in Spinor Electrodynamics

STEPHENV L. ADLER
Institute for Advanced Study, Princeton, New Jersey 08540
(Received 24 September 1968)

IL NUOVO CIMENTO
Vol. LXI, N. 1
16 Marzo 1960

A PCAC Puzzle: $\pi^0 \rightarrow \gamma\gamma$ in the σ-Model.

J. S. BELL
CERN - Geneva
R. JACKIW (*)
CERN - Geneva

Jefferson Laboratory of Physics, Harvard University - Cambridge, Mass.

(ricevuto 11 Settembre 1968)

$$\gamma^\mu F_{3\mu} = \frac{2\pi}{\sqrt{2}} \phi_{\pi^0} + \frac{\sqrt{5}}{\sqrt{10}} F_{\gamma\gamma} F_{\gamma\gamma} \varepsilon_{\gamma\gamma} \varepsilon_{\gamma\gamma} \quad S = \sum_q g_q Q_q^2$$

$\pi^0 \gamma\gamma$ matrix element for charge $2/3$, $-1/3$ quarks. Factor of 3 too small.

Absence of Higher-Order Corrections in the Anomalous Axial-Vector Divergence Equation

STEPHENV L. ADLER and WILLIAM A. BARDEEN
Institute for Advanced Study, Princeton, New Jersey 08540
(Received 24 February 1969)

S has no higher loop corrections - does count quarks.
HISTORICAL SIGNIFICANCE

- QUANTUM FIELD THEORY, NOT RECIPROCAL BOOTSTRAP!

- PCAL ➔ APPROXIMATE CHIRAL INVARIANCE OF STRONG INTERACTIONS

- CURRENT ALGEBRA ➔ NON-ABELIAN (YANG-MILLS) GAUGE STRUCTURE OF ELECTROWEAK SECTOR

- DEEP INELASTIC SUM RULES, SCALING ➔ REALITY OF QUARKS

- ANOMALY CALCULATION OF π^0 ➔ 2γ ➔ COLOR TRIPLET OF QUARKS

FOR AN EXCELLENT BOOK-LENGTH DISCUSSION, SEE:

TIAN YU CAO "FROM CURRENT ALGEBRA TO QUANTUM CHROMODYNAMICS: A CASE FOR STRUCTURAL REALISM"
Cambridge University Press (2010)
Evaluation of the axial-vector commutator sum rule for pion-pion scattering

Stephen L. Adler
Institute for Advanced Study, Einstein Drive Princeton, New Jersey 08540, USA

F.J. Ynduráin
Departamento de Física Teórica, C-XI, Universidad Autónoma de Madrid, Canto Blanco, E-28049, Madrid, Spain
(Received 10 April 2007; published 4 June 2007)

Updated evaluation of A-W and TH sum rules and GT relation satisfied to better than 6%.

Adler sum rule - Scholarpedia

Updated derivation using the full 3 family CKM matrix for weak mixing

The Axion - Very light pseudo-Nambu-Goldstone boson
Neutral pseudoscalar pion analog
Arises (Weinberg; Wilczek) from spontaneous breaking of Peccei-Quinn symmetry introduced to solve strong CP problem
Possible light dark matter candidate