Field Theory With a Vector Global Symmetry

Nathan Seiberg

IAS

arXiv:1909.1054

arXiv:191?..????
Introduction

• Motivated by recent advances with fractons, but not sure this talk is relevant to fractons.
• Study global symmetries, whose conserved charge is a vector.
• One example is the momentum $P^i = \int_{space} T^i_0$. Its conserved Noether current $T^{\mu\nu}$ is symmetric.
• Oneform symmetry is common in relativistic field theories.
• We’ll present a hierarchical set of three symmetries, starting with the most special one and generalizing it.
• For each symmetry (for simplicity $U(1)$) we will present:
 – the conserved currents
 – a class of field theories with the symmetry
 – a concrete example based on a scalar field theory
A lot of earlier work, here we follow [Gaiotto, Kapustin, NS, Willett]

\[\partial_\mu J^{\mu \nu} = 0 \]

Charges

\[Q(C) = \int_C J^{\mu \nu} n_{[\mu \nu]} \]

\(C \) a codimension 2 manifold in spacetime orthogonal to \(n_{[\mu \nu]} \). \(Q \) is topological – it does not change under small deformations of \(C \). Specifically, it does not change unless \(C \) crosses another operator.
Relativistic oneform global symmetry

In nonrelativistic terms

\[\partial_0 J^i_0 - \partial_i J^{[ij]} = 0 \]
\[G = \partial_i J^i_0 = 0 \]

Charges at fixed time

\[Q(\mathcal{C}) = \int_{\mathcal{C}} J^j_0 n_j \]

\(\mathcal{C} \) a codimension 1 manifold in space orthogonal to \(n_j \).

\(Q \) is topological – it does not change under small changes of \(\mathcal{C} \).
Relativistic oneform global symmetry

$$\partial_0 J^j_0 - \partial_i J^{[ij]} = 0$$
$$G = \partial_i J^i_0 = 0$$

Example:
Maxwell theory – $U(1)$ gauge theory
$$J^j_0 = F^j_0$$
$$J^{[ij]} = F^{[ij]}$$

$G = 0$ is Gauss law.
$Q(\mathcal{C})$ is the electric flux through \mathcal{C}.
The charged operators are Wilson lines.
There is also a magnetic symmetry, but we will not discuss it here.
Relativistic oneform global symmetry

Example: $U(1)$ lattice gauge theory

p, l, s are plaquettes, links, and sites

In $A_0 = 0$ the Hamiltonian is

$$\mathcal{H} = \sum_p (U_p + U_p^+) + \sum_l E_l^2$$

The variables are $U(1)$ elements U_l and their conjugate momenta E_l. $U_p = \prod_{l \subset p} U_l$ (oriented product)

Impose Gauss law

$$G = \sum_{l \supset s} E_l = 0 \text{ (oriented sum)}$$

$Q(\mathcal{C}) = \sum_{l \subset \mathcal{C}} E_l$ (oriented sum over the links pierced by \mathcal{C}) is the electric flux through \mathcal{C}. It is conserved and topological.
As before,

\[\partial_0 J^j_0 - \partial_i J^{[ij]} = 0 , \]

but now we do not impose

\[G = \partial_i J^i_0 = 0 . \]

The conservation leads to

\[\partial_0 G = \partial_i \partial_0 J^i_0 = 0 , \]

e.g. \(G \) is conserved at every point, but it is not zero.

As before, conserved charges at fixed time

\[Q(C) = \int_C J^j_0 n_j , \]

but now \(Q \) is not topological.

A cruder charge is

\[Q^j = \int_{space} J^j_0 . \]

Correspondingly, point operators can transform under \(Q(C), Q^j \).
Nonrelativistic oneform global symmetry

\[\partial_0 J_0^j - \partial_i J^{[ij]} = 0 \]

Therefore

\[\partial_0 G = \partial_i \partial_0 J_0^i = 0 \]

\[Q(\mathcal{C}) = \int_{\mathcal{C}} J_0^j n_j \]

If there is an \(\mathcal{M} \), such that \(\mathcal{C} = \partial \mathcal{M} \)

\[Q(\mathcal{C}) = \int_{\mathcal{M}} \partial_i J_0^i = \int_{\mathcal{M}} G \]

The conservation of \(Q(\mathcal{C}) \) implies the conservation of \(G \).

But the conservation of \(Q(\mathcal{C}) \) contains more information, because \(\mathcal{C} \) might not be a boundary.
Nonrelativistic oneform global symmetry

Lattice example:

$U(1)$ lattice gauge theory in $A_0 = 0$, but without imposing Gauss law $G = \sum_{l \supseteq s} E_l = 0$ [Kitaev]

$$\mathcal{H} = \sum_p \left(U_p + U_p^+ \right) + \sum_l E_l^2 + \sum_s \left(\sum_{l \supseteq s} E_l \right)^2$$

The last term imposes Gauss law energetically.

Interpret as $U(1)$ gauge theory with charged matter at the lattice scale.

$G = \sum_{l \supseteq s} E_l$, is conserved, but it is nonzero.

$Q(C) = \sum_{l \subseteq C} E_l$ are conserved, but they are not topological.

Related discussion in [Hermele, Fisher, Balents; Williamson, Bi, Cheng].
Nonrelativistic oneform global symmetry
A class of continuum examples

\[\partial_0 J_0^j - \partial_i J_{[ij]} = 0 \]

Couple the \(U(1) \) gauge theory to charged matter fields, such that we still have

\[
\begin{align*}
J_0^j &= F_0^j \\
J_{[ij]} &= F_{[ij]}
\end{align*}
\]

For that, the matter theory should have an operator \(\mathcal{O} \) satisfying \(\partial_0 \mathcal{O} = 0 \).

The \(U(1) \) gauge theory couples to \((J_0^{\text{matter}} = \mathcal{O}, J^i_{\text{matter}} = 0) \)

\[
\mathcal{L}_1 = \mathcal{L}_0 + (F_0^i)^2 - (F^{ij})^2 + A_0 \mathcal{O}
\]

with \(\mathcal{L}_0 \) the matter Lagrangian. This is \(U(1) \) gauge invariant and has the nonrelativistic oneform symmetry with \(G = \partial_i J_0^i = \mathcal{O} \).
Nonrelativistic oneform global symmetry

A class of continuum examples

\[\partial_0 \mathcal{O} = 0 \]

Such a matter theory has infinitely many conserved charges. \(C(x^i) \) is conserved for every \(C(x^i) \).

The charged matter is not mobile.

A concrete example:

A complex scalar field \(\Phi \) with

\[\mathcal{L}_0 = i\bar{\Phi} \partial_0 \Phi - \partial_i (\bar{\Phi} \Phi) \partial^i (\bar{\Phi} \Phi) - |\Phi|^4 + \ldots \]

No \(\partial_i \bar{\Phi} \partial^i \Phi \) term. Highly nonstandard. Similar to fractons.

Invariance under \(\Phi \rightarrow e^{iC(x^i)} \Phi \)

The charge density \(\mathcal{O} = |\Phi|^2 \) at a point is conserved.
A more general vector symmetry

Previous case \[\partial_0 J^j_0 - \partial_i J^{ij} = 0 \]
with antisymmetric \(J^{ij} \).

Generalize to \(J^{ij} \) with no restriction on the symmetry of \(ij \).

Now \[\partial_0 G = \partial_i \partial_0 J^i_0 = \partial_i \partial_j J^{ij} \neq 0 . \]

Therefore, the charge operators on codimension one manifold \(\mathcal{C} \)
\[Q(\mathcal{C}) = \int_{\mathcal{C}} J^j_0 n_j \] are no longer conserved, but the cruder charge
\[Q^j = \int_{space} J^j_0 \]
is conserved.
A more general vector symmetry

A class of continuum examples

\[\partial_0 J^0_j - \partial_i J^{ij} = 0 \]

For \(J^{(ij)} = 0 \), we coupled charged matter with \(\partial_0 \mathcal{O} = 0 \) to a \(U(1) \) gauge field.

Now, we take a matter theory with

\[\partial_0 \mathcal{O} - \partial_i \partial_j \mathcal{O}^{ij} = 0 \quad \text{(with } \mathcal{O}^{(ij)}) \]

Couple the \(U(1) \) gauge field to \((J_0^{\text{matter}} = \mathcal{O}, J^i_{\text{matter}} = \partial_j \mathcal{O}^{ij}) \)

\[\mathcal{L}_1 = \mathcal{L}_0 + (F^i_0)^2 - (F^{ij})^2 + A_0 \mathcal{O} - A_i \partial_j \mathcal{O}^{ij} \]

The conserved current of the global symmetry are

\[J^j_0 = F^j_0 \]

\[J^{ij} = F^{[ij]} - \mathcal{O}^{ij} \]
A more general vector symmetry

A class of continuum examples

\[\partial_0 \mathcal{O} - \partial_i \partial_j \mathcal{O}^{ij} = 0 \]

Such a matter theory (before coupling to the gauge field) has the conserved charges

\[Q = \int_{\text{space}} J_0^{\text{matter}} = \int_{\text{space}} \mathcal{O} \]

\[Q^j = \int_{\text{space}} x^j J_0^{\text{matter}} = \int_{\text{space}} x^j \mathcal{O} \]

They can be interpreted as:

• a global $U(1)$ symmetry (which we gauge)
• a vector symmetry, dipole symmetry, with charge Q^j

After the gauging we are left only with the vector symmetry.
A more general vector symmetry
A class of continuum examples

$$\partial_0 \mathcal{O} - \partial_i \partial_j \mathcal{O}^{ij} = 0$$

This defining equation is local and therefore, the discussion makes sense on every manifold.

This is not true for the charge, $Q^j = \int_{space} x^j \mathcal{O}$, which makes sense only on \mathbb{R}^D.

After coupling to the $U(1)$ gauge field the conserved current of the vector symmetry is

$$J_0^j = F_0^j$$
$$J[ij] = F[ij] - \mathcal{O}^{ij}$$

No explicit x^j dependence.
A more general vector symmetry

A concrete continuum example [Pretko]

\[\partial_0 \mathcal{O} - \partial_i \partial_j \mathcal{O}^{ij} = 0 \]

A complex scalar field \(\Phi \) with

\[\mathcal{L}_0 = i \Phi \partial_0 \Phi - \partial_i (\Phi \Phi) \partial^i (\Phi \Phi) - |\Phi|^4 \\
+ i(\Phi^2 \partial_i \Phi \partial^i \Phi - \Phi^2 \partial_i \Phi \partial^i \Phi) + \ldots \]

Again, no \(\partial_i \Phi \partial^i \Phi \) term.

The new term \(i(\Phi^2 \partial_i \Phi \partial^i \Phi - \Phi^2 \partial_i \Phi \partial^i \Phi) \) breaks the symmetry \(\Phi \to e^{iC(x^i)} \Phi \) to \(\Phi \to e^{i\alpha + ic_i x^i} \Phi \).

Here

\[\mathcal{O} = |\Phi|^2 \]
\[\mathcal{O}^{ij} = |\Phi|^4 \delta^{ij} + \ldots \]

Higher order terms can lead to a traceless symmetric tensor in \(\mathcal{O}^{ij} \).
Summary of the symmetries

$$\partial_0 J_0^j - \partial_i J_{ij}^i = 0$$

- A vector symmetry: J_{ij}^i not restricted

 The charge
 $$Q^j = \int_{\text{space}} J_0^j$$

- Nonrelativistic oneform symmetry: impose also
 $$j_{ij}^i = -J_{ji}^j$$

 $Q(C) = \int_C J_0^j n_j$ is associated with a nontopological manifold C

- As in the relativistic symmetry: impose also
 $$\partial_j J_0^j = 0$$

 $Q(C) = \int_C J_0^j n_j$ is associated with a topological manifold C
Gauging

Start with a theory with \(\partial_0 J^j_0 - \partial_i J^{ij} = 0 \).

We gauge by introducing sources \(B_0_j, A_{ij} = \frac{1}{2} (B_{[ij]} + S_{(ij)}) \).

(No need to introduce \(S_{(ij)} \) when \(J^{(ij)} = 0 \).

Add to the Lagrangian the minimal coupling terms \(B_0_j J^j_0 - A_{ij} J^{ij} \)

Invariance under the gauge symmetry
\[
B_0_i \rightarrow B_0_i + \partial_0 c_i \\
A_{ij} \rightarrow A_{ij} + \partial_i c_j
\]

• No \(c_0 \)
• \(A_{ij} \) has no symmetry in \(ij \) – peculiar gauge field
• \(c_i \) is not a \(U(1) \) gauge field
Gauging

\[B_{0i} \rightarrow B_{0i} + \partial_0 c_i \]
\[A_{ij} \rightarrow A_{ij} + \partial_i c_j \]

We can also add kinetic terms for these fields using the gauge invariant field strengths

\[\epsilon_{ij} = \partial_0 A_{ij} - \partial_i B_{0j} \]
\[\beta_{ijk} = \partial_i A_{jk} - \partial_j A_{ik} \]

The standard \(H_{\mu \nu \rho} \) are linear combinations of them

\[H_{0ij} = \epsilon_{ij} - \epsilon_{ji} \]
\[H_{ijk} = \beta_{ijk} - \beta_{ikj} + \beta_{jki} \]
Let us implement it explicitly in the $U(1)$ theory coupled to a matter system. We started with a matter theory with
\[\partial_0 \mathcal{O} - \partial_i \partial_j \mathcal{O}^{ij} = 0 \]
Above we gauged an ordinary $U(1)$ with
\[
J^0_{\text{matter}} = \mathcal{O}, \quad J^i_{\text{matter}} = \partial_j \mathcal{O}^{ij},
\]
i.e.
\[
\mathcal{L}_1 = \mathcal{L}_0 + (F_0^i)^2 - (F^{ij})^2 + A_0 \mathcal{O} - A_i \partial_j \mathcal{O}^{ij}
\]
The remaining global symmetry
\[
J_0^j = F_0^j
\]
\[
J^{[ij]} = F^{[ij]} - \mathcal{O}^{ij}
\]
Now, gauge this remaining vector global symmetry.
Gauging

\[J_0^j = F_0^j \]
\[J^{ij} = F^{[ij]} - \mathcal{O}^{(ij)} \]

Add new gauge fields \(B_{0j} \), \(A_{ij} = \frac{1}{2} (B_{[ij]} + S_{(ij)}) \) with minimal coupling

\[\mathcal{L}_2 = \mathcal{L}_0 + (F_0^i + B_0^i)^2 - (F^{ij} + B^{ij})^2 + A_0\mathcal{O} + A_{ij}\mathcal{O}^{ij} + \ldots \]

where \(A_{ij} = \frac{1}{2} (S_{ij} + \partial_i A_j + \partial_j A_i) \).

The \(U(1) \) gauge symmetry acts as

\[A_0 \rightarrow A_0 + \partial_0 \alpha \]
\[A_i \rightarrow A_i + \partial_i \alpha \]
\[A_{ij} \rightarrow A_{ij} + \partial_i \partial_j \alpha \]

In addition, we also have the gauge symmetry...
Gauging

Additional gauge symmetry

\[A_i \rightarrow A_i + c_i \]
\[B_{0i} \rightarrow B_{0i} + \partial_0 c_i \]
\[B_{ij} \rightarrow B_{ij} + \partial_i c_j - \partial_j c_i \]

Note, \(A_{ij} = \frac{1}{2} \left(S_{ij} + \partial_i A_j + \partial_j A_i \right) \) is invariant under \(c_i \)

Can add kinetic terms using

\[H_{0ij} = \partial_0 B_{ij} - \partial_i B_{0j} + \partial_j B_{0i} \]
\[H_{ijk} = \partial_i B_{jk} - \partial_j B_{ik} + \partial_k B_{ij} \]
\[\mathcal{E}_{ij} = \partial_0 A_{ij} - \partial_i \partial_j A_0 \]
\[\mathcal{B}_{ijk} = \partial_i A_{jk} - \partial_j A_{ik} \]

\(A_i \) is “Higgsed” and is lifted (becomes massive) with \(B_{i0} \) and \(B_{ij} \).

We are left with \(A_0 \) and \(A_{ij} \).
Gauging

We can do the gauging in one step. (Similar to discussions in [Rasmussen, You, Xu; Pretko; Slagle, Prem, Pretko; ...].)

We started with a matter theory with
\[\partial_0 \mathcal{O} - \partial_i \partial_j \mathcal{O}^{ij} = 0 \]

We couple these operators to sources
\[\mathcal{L}_0 + A_0 \mathcal{O} + A_{ij} \mathcal{O}^{ij} + \cdots \]

Hence, there is a $U(1)$ gauge symmetry
\[A_0 \rightarrow A_0 + \partial_0 \alpha \]
\[A_{ij} \rightarrow A_{ij} + \partial_i \partial_j \alpha \]

And we can add kinetic terms using
\[\mathcal{E}_{ij} = \partial_0 A_{ij} - \partial_i \partial_j A_0 \]
\[\mathcal{B}_{ijk} = \partial_i A_{jk} - \partial_j A_{ik} \]
Summary

• A hierarchy of global symmetries, whose charges Q^i carry a spatial vector index.
• For every one of these we presented a large class of theories exhibiting them.
 – All these examples are based on a $U(1)$ gauge theory coupled to a special matter theory
 – We showed concrete examples of these matter theories
• We can gauge these new symmetries. The needed gauge field is an antisymmetric tensor $B_{[\mu\nu]}$ and in the general symmetry we also need a symmetric tensor $S_{(ij)}$.