Population stratification is a problem encountered in several areas of natural science, engineering, and public health. We tackle this problem by mapping a population and its element attributes onto a hypergraph, a natural extension of the concept of graph or network to encode associations among any number of elements. On this hypergraph, we construct a statistical model reflecting our intuition about how the element attributes can emerge from a postulated population structure. Finally, we introduce the concept of stratification representativeness as a mean to identify the simplest stratification already containing most of the information about the population structure. We demonstrate the power of this framework stratifying an animal and a human population based on phenotypic and genotypic properties, respectively.

DOI: 10.1103/PhysRevE.77.066106

PACS number(s): 89.75.Hc, 89.75.Fb, 02.50.Tt

I. INTRODUCTION

A population stratification problem consists of uncovering the structure of a population of individuals, samples, or elements given a list of attributes characterizing them. For example, the design of a zoo requires us to understand what is the best way to allocate different animals in different zoo locations depending on their habitat, behavior, and other properties. The traditional approach to tackle this problem is based on a mapping onto a network problem [Refs. [1–5]], where nodes or vertices represent the population elements, the links or edges represent pairwise relations between the elements, and the edge weights account for the degree of similarity or dissimilarity between the corresponding elements.

In several population stratification problems it is clear, however, that the system under consideration is characterized by relationships involving more than two elements. For example, the property “mammal” divides the animal population into two groups: nonmammals and mammals, each containing several elements. Hypergraphs can be used to represent associations beyond pairwise relations. A hypergraph is an intuitive extension of the concept of graph or network where the edges are sets of any number of elements. For example, in an animal population, an edge can represent the association between all animals with a given attribute—and so on [Fig. 2(b)].

This mapping is applicable when the attributes are given by genetic information as well. For example, consider a human population for which we know which nucleotides (represented by the letters A, C, G, and T) are present at specific chromosomes and chromosome positions. Since humans have two copies of each gene, we have two letters for each position. A scenario could be the presence of one of the letters A or G at a given position, resulting in the combinations AA, AG, and GG. When these combinations appear in a significant frequency in the population they are referred as

II. HYPERGRAPH REPRESENTATION

A hypergraph is an intuitive extension of the concept of a graph or network where the nodes represent the systems elements and the edges (also called hyperedges) are sets of any number of elements [Fig. 1(a)]. This mathematical construction is very useful to represent a population of elements and their attributes. For example, consider the animal population in Fig. 2(a) together with their attributes: habitat, nutrition behavior, etc. In this case the hypergraph nodes represent animals. Furthermore, we can use an edge to represent the association between all animals with a given attribute: edge 1, all nonairborne animals; edge 2, all airborne animals; and so on [Fig. 2(b)].

FIG. 1. (Color online) Hypergraph: (a) A hypergraph with three edges. Each edge is represented by a circle and its composed by the nodes within the circle. (b) Bipartite graph representation of the hypergraph in (a), the squares representing the hypergraph edges. (c) and (d) Nearest-neighbor mapping of a graph onto a hypergraph. The graph in (c) is mapped onto the hypergraph in (d), where each hyperedge represents a set of nearest neighbors of a node in graph (c), as indicated by the enumeration.
a single nucleotide polymorphism (SNP). This genetic information can be mapped onto a hypergraph. The vertices in the hypergraph represent individuals, and the edges now represent groups of individuals with the same genetic information at a given position: edge 1, all individuals with call AA for SNP 1; edge 2, all individuals with call AG for SNP 1; and so on (Fig. 3).

As we mention above, hypergraphs are a generalization of graphs to allow for connections beyond two elements, graphs being the particular case where edges contain only two elements. Yet it is worth mentioning that we could imagine other mappings between a graph and a hypergraph. For example, let the vertices be the vertices of the hypergraph as well, but now let the hyperedges be the sets of nearest neighbors of the vertices [Figs. 1(c) and 1(d)]. As shown in the next section, this mapping allows us to make a connection with the clustering algorithm on graphs introduced in Ref. [4].

III. STATISTICAL MODEL

After identifying hypergraphs as a suitable mathematical structure to represent a population and their attributes we focus on determining how to use this information to solve the inverse problem, finding the population stratification given the population elements and their associations according to certain attributes. Our working hypothesis is that (i) the population is divided in groups and (ii) the elements of each group are characterized by a different combination of attributes. The latter do not exclude the possibility that two groups exhibit one same attribute, being different according to others. These hypotheses are the bases for the following statistical model on hypergraphs.

Data. Consider a population of n individuals and a hypergraph with m edges characterizing the relationships among them. The hypergraph can be specified, for example, using the adjacency matrix a, where $a_{ij}=1$ if element i belongs to edge j and it is zero otherwise.
In essence the likelihood the following we discuss how to determine the best choice of our intuition about the observation of the hypergraph the hypergraph edges represented by a bipartite graph, with one type of nodes corresponding to the contexts of finding communities on graphs. Despite the human population, referred to as single nucleotide polymorphisms chromosome copies.

Therefore, the likelihood in Eq. however, on clustering the original hypergraph nodes alone. In this work we focus, in form, the likelihood in Eq. modeled as hidden variables in a hypergraph. In contrast, a true statistical model on a hypergraph should attend to cluster both types of nodes—the original hypergraph nodes and the attribute vertices of the graph be the vertices of the hypergraph as well, but now let the hyperedges be the sets of nearest neighbors of the vertices [Figs. 1(c) and 1(d)]. For this particular hypergraph, the likelihood in Eq. coincides with that introduced in Ref. [4]. Yet the likelihood in Eq. can be applied to a larger spectrum of problems.

IV. MAXIMUM-LIKELIHOOD STRATIFICATION

The model defined above belongs to the class of finite mixture models [2]. In general a mixture model assumes that the observed variables come from a mixture of distributions. In our case the observed variables are the adjacency matrix elements \(a_{ij}\), representing the participation or not of vertex on the edge \(j\), and the mixture comes from the subdivision of vertices in groups. Because the adjacency matrix elements can take the values 0 and 1 only, we have a mixture model on Boolean variables [see Eq. (1)]. Thus, we can obtain the optimal stratification using techniques applicable to finite mixture models in general. In particular, we use the well-established expectation maximization (EM) algorithm [7] to determine the maximum-likelihood (ML) stratification given a fixed number of groups.

ML stratification. First, we compute the expectation of the log-likelihood \(L = \ln P(a|g, \theta)\) with respect to the probability \(q_{ir}\) that element \(i\) belongs to group \(r\), obtaining

\[
E[L] = \sum_{i=1}^{n} \sum_{r=1}^{n_{g}} q_{ir} \ln \theta_{ij} + (1 - q_{ir}) \ln (1 - \theta_{ij}).
\]

Second, we compute the parameters \(\theta\) that maximize (2), resulting in

\[
\theta_{ij} = \frac{\sum_{i=1}^{n} q_{ir} a_{ij}}{\sum_{r=1}^{n_{g}} q_{ir}}.
\]

Model. The population is divided into \(n_{g}\) groups and let \(g_{i}\), \(i = 1, \ldots, n\), denote the group to which node \(i\) belongs. With probability \(\theta_{ij}\) an element of group \(i\) belongs to edge \(j\).

Likelihood. The likelihood to observe the data given this model is

\[
P(a|g, \theta) = \prod_{i=1}^{n} \prod_{j=1}^{m} \theta_{ij}^{a_{ij}} (1 - \theta_{ij})^{1-a_{ij}}.
\]
These results are obtained computing the optimal stratification for $n_g=1, \ldots, 20$ using the EM algorithm with one initial condition. The optimal n_g was obtained using the AIC (solid circles), the representativeness criterion (open squares), and assuming it equal to 4 (solid triangles). In (a) and (b) the case study hypergraphs have $n=100$ nodes divided into four groups of equal size and $m=10$ edges, while in (c) and (d) the number of edges is doubled to $m=20$. In (e) and (f) the case study hypergraphs are similar to those in (a) and (b) except that the groups have different sizes: 40, 30, 20, and 10 nodes.

$$\theta_{ij} = \frac{\sum_{i=1}^{n} q_{ir} a_{ij}}{\sum_{i=1}^{n} q_{ir}}.$$ \hspace{1cm} (3)

Finally, q is estimated using

$$q_{ir} = \frac{P(a|g,s_1=r,\theta)}{\sum_{s=1}^{n_g} P(a|g,s_1=s,\theta)}.$$ \hspace{1cm} (4)

Starting from an initial condition, we iterate Eqs. (3) and (4) until the change of all q elements is smaller than a predefined precision. The EM algorithm always converges to a local maximum of the likelihood, which may or may not coincide with the global maximum. One approach to explore different local maxima, in case they exist, consists in generating different initial conditions [2]. Here we explore different initial conditions by assigning to the q elements the random initial values q_{ir} is a random number between 0 and 1. Putting all together, starting from each initial condition, we iterated Eqs. (3) and (4) until the change of all q elements is smaller than 10^{-6}.

V. BEST CHOICE OF n_g

A more subtle issue is to determine the optimal number of groups. The standard approach to solve this problem is based on the Occam’s razor principle: provided different models describing the reality with similar accuracies we should select the simplest. In other words, we accept an increase in model complexity only provided we obtain a significantly better description accuracy or predictive power. We use the Akaike information theoretical criterion (AIC) [8] to quantify the model complexity. According to this criterion, the complexity of a model is determined by the number of independent parameters and the best choice of n_g is the one minimizing

$$\chi_{\text{AIC}}(n_g) = -\max_{\{\mu, \theta\}} \mathcal{L} + (n + m)(n_g - 1),$$ \hspace{1cm} (6)

where $(n+m)(n_g-1)$ is the number of independent parameters in our statistical model. The first term on the right-hand side of Eq. (6) quantifies the goodness of the fit and it decreases with increasing n_g. On the other hand, the second term on the right-hand side quantifies the model complexity and increases with increasing n_g. The optimal choice of n_g results from the balance between these two opposite contributions.

It becomes clear below that the AIC criterion can result in too conservative estimates of n_g, forcing us to consider a different approach. Instead of focusing on model complexity, we ask the following question: given the ensemble of all models with different n_g, which is the most representative among them? To be more precise we need a measure to compare the degree of similarity between two different population stratifications S_i and S_j, corresponding to models with i and j groups, respectively. We consider the normalized mutual information [3]

$$I(S_i, S_j) = - \frac{2}{\sum_{k=1}^{n_g} \sum_{l=1}^{n_g} P_{kl}^{(i)} \ln \frac{\rho_{kl}^{(i)}}{\rho_{kl}^{(j)}} + \sum_{k=1}^{n_g} \sum_{l=1}^{n_g} P_{kl}^{(j)} \ln \frac{\rho_{kl}^{(j)}}{\rho_{kl}^{(i)}}},$$ \hspace{1cm} (7)

where

$$\rho_{kl}^{(i)} = \frac{1}{n_g} \sum_{k=1}^{n_g} q_{ik} q_{lj}^{(i)},$$ \hspace{1cm} (8)

$$\rho_{kl}^{(j)} = \frac{1}{n_g} \sum_{k=1}^{n_g} q_{ik} q_{lj}^{(j)}.$$ \hspace{1cm} (9)

The normalized mutual information equals 0 when the stratification S_i does not contain any information about the stratification S_j, becomes 1 when the two stratifications are iden-
POPULATION STRATIFICATION USING A STATISTICAL ... PHYSICAL REVIEW E 77, 066106 (2008)

FIG. 5. Representativeness plot: Representativeness as a function of the number of groups for the (a) zoo and (b) MDM4 problems. Different symbols indicate different numerical accuracies of the numerical algorithm to find the ML stratification. The arrow indicates the number of groups maximizing the representativeness. The different symbols indicate different numbers of initial conditions for the EM algorithm, from 100 (open symbols) to 10 000 (solid symbols).

tistical, and interpolates between 0 and 1 for intermediate scenarios.

For each stratification S_i, we define stratification representativeness

$$R(S_i) = \frac{\sum_j I(S_i, S_j)}{\sum_j 1},$$

the average of the normalized mutual information of all stratifications S_j with respect to a given stratification S_i. The larger $R(S_i)$ is, the more the stratification S_i represents the stratification ensemble. Furthermore, we define the most representative stratification among an ensemble of stratifications as the stratification maximizing R. In case there is more than one stratification satisfying this criteria we invoke the Occam’s razor principle and select the one with the lowest number of groups.

VI. TEST EXAMPLES

To test the population stratification framework introduced above we need hypergraph examples for which the stratification is already known. The statistical model defined by Eq. (1) provides a straightforward method to generate an ensemble of hypergraphs. Indeed, provided g and θ we can generate realizations of the hypergraph adjacency matrix using Eq. (1). We consider the following ensemble of hypergraphs with n nodes and m edges: (i) The population is divided into n_g groups of equal size. (ii) All nodes have the same degree K, where the degree is the number of edges to which a node belongs. (iii) The edges to which the elements of a given group belong are selected at random among the m edges, making it such that every pair of groups differs in at least one edge. Provided $m > n_g$, the latter is possible only for $1 \leq K \leq m - 1$, defining our working range for K.

Using this hypergraph ensemble, we generate hypergraphs with n nodes, m edges, and degree K. For each hypergraph we determine the best choice of n_g and the corresponding population stratification, using both the AIC and representativeness criteria. To compare the predicted optimal stratification and the original subdivision of the population we use the normalized mutual information (7) [3]. Finally, the results are averaged over 100 hypergraphs for each set of (n,m,m). Figure 4 shows the results for $n=100$, $m=10$, and $m=20$ as a function of degree K. When we fix, a priori, the number of groups to 4, the stratification method based on Eq. (1) almost finds the right subdivision. Indeed, the normalized mutual information between the predicted stratification in four groups and the original subdivision is very close to 1, indicating that most nodes have been allocated to their original groups [solid triangles in Figs. 4(b) and 4(d)]. While this observation does not exclude the existence of hypergraph instances where the method can fail, it supports its use in real cases.

Next we test the best choice of n_g when it is not known a priori. For $m=10$ edges the AIC underestimates n_g, particularly for small K [Fig. 4(a)]. Consequently, the normalized mutual information between the predicted and original subdivision of the population is quite small [Fig. 4(b)]. This disagreement persists for $m=20$ and small values of K, but gets significantly improved for K larger than 4 [Figs. 4(c) and 4(d)]. In contrast, the representativeness criterion performs quite well for all the tested parameter combinations. On average, it predicts the right number of groups, 4 [Fig. 4(a)] and the normalized mutual information is very close to 1 [Fig. 4(b)]. Taken together, these results indicate that the representativeness criterion performs as well if not better than the AIC. Hence, in the following we restrict ourselves to the former approach to select the best choice of n_g.

To test the performance of the clustering algorithm in the context of variable group sizes, we consider the case where the population is divided as before into n_g groups, but now each group contains a variable number of vertices. We obtain similar results as for the case of equal group sizes [Figs. 4(e) and 4(f)], indicating that the representativeness approach works when groups have variable sizes as well.

VII. REAL EXAMPLES

Now we proceed to apply the population stratification framework to real examples. The first example is the zoo problem [Fig. 2(a)], requiring us to group different animals according to their habitat, nutrition behavior, and other properties [Fig. 2(a)]. In this case the hypergraph nodes represent animals and each edge represents an association between animals exhibiting a given phenotypic attribute [e.g., edge 1, all nonairborne animals; edge 2, all airborne animals, Fig. 2(b)].

Figure 2(c) shows the animal stratification for the zoo problem for the case of eight groups. A quick inspection shows that elements within the same group have indeed the sense of a group. The first three groups contain all mammals subdivided by their habitat and feeding behavior. The remaining groups represent birds, fishes, amphibian-reptiles,
Table 1: Genotypic Attributes and their Corresponding SNPs

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP ID</th>
<th>Allele 1</th>
<th>Allele 2</th>
<th>Allele 3</th>
<th>Allele 4</th>
<th>Allele 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1380576</td>
<td></td>
<td>GG</td>
<td>GC</td>
<td>GC</td>
<td>GC</td>
<td>GC</td>
</tr>
<tr>
<td>rs4951393</td>
<td></td>
<td>AA</td>
<td>AC</td>
<td>AC</td>
<td>AC</td>
<td>AC</td>
</tr>
<tr>
<td>rs11586387</td>
<td></td>
<td>AG</td>
<td>AG</td>
<td>AG</td>
<td>AG</td>
<td>AG</td>
</tr>
<tr>
<td>rs12041243</td>
<td></td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
</tr>
<tr>
<td>rs3789052</td>
<td></td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
</tr>
<tr>
<td>rs3789051</td>
<td></td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
<td>GG</td>
</tr>
</tbody>
</table>

Figure 6: Stratification according to genotypic attributes: A population of 90 Caucasians is studied, focusing on SNPs within the MDM4 gene, as reported by the HapMap project [9]. SNPs with no variation within this particular subpopulation have been excluded. A, C, G, and T represent the different nucleotides, and N represents data that are not available. The specific SNPs under consideration are indicated by the bottom labels, using the standard SNP notation. The figure shows the ML stratification for the case of five (left) and eight (right) groups, the latter corresponding with the best choice of r, according to the representativeness criterion [Fig. 5(b)]. The vertical lines in between indicate the SNPs at which the adjacent groups differ significantly.

Discussion

The example concerns stratification according to genetic information. It consists of a population of 90 Caucasians and the genotype at different SNPs within the MDM4 gene, as reported by the HapMap project [9]. The MDM4 gene plays a key role in the p53 stress response pathway, and genetic variations within this gene could potentially result in different predispositions to cancer and/or response to cancer drug therapy [10]. Focusing on SNPs with variation among this particular subpopulation, we stratify its elements using the method described above. Figure 5(b) shows the representativeness of the ML stratification as a function of the number of groups. As for the zoo problem,

The inspection is sufficient to realize that, indeed, this represents a natural subdivision of the animal population.

The second real example concerns stratification according to genetic information. It consists of a population of 90 Caucasians and the genotype at different SNPs within the MDM4 gene, as reported by the HapMap project [9]. The MDM4 gene plays a key role in the p53 stress response pathway, and genetic variations within this gene could potentially result in different predispositions to cancer and/or response to cancer drug therapy [10]. Focusing on SNPs with variation among this particular subpopulation, we stratify its elements using the method described above. Figure 5(b) shows the representativeness of the ML stratification as a function of the number of groups. As for the zoo problem,
the representativeness increases monotonically for a small number of groups and saturates to a plateau with some variations determined by the numerical accuracy. At five groups we already observe a high degree of representation and eight groups represent the best choice of \(n_g \) according to the representativeness criterion.

The genetic information for all individuals is shown in Fig. 6 stratified into five and eight groups, the latter corresponding with the highest representativeness stratification. The top and bottom groups are almost entirely homozygous (same letter) at every position. In contrast, all the intermediate groups are heterozygous (different letter) at several positions, which do not overlap between them in at least one position. A visual inspection of both stratifications indicates that they are very similar, as anticipated by the close values of representativeness between five and eight groups [Fig. 5(b)].

VIII. DISCUSSION

The mapping of either phenotypic or genetic information onto a hypergraph offers significant advantages over the current reductionist mapping of the stratification problem onto a network problem. First, the hypergraph contains all the information provided by the original data. Second, it allows us to introduce an intuitive statistical model for the observed phenotypic and genotypic variations based on a postulated population stratification and the tendency of individuals within a group to exhibit certain phenotypic and genotypic features. Finally, the generalization to problems dealing with both phenotypic and genotypic variation is straightforward, after introducing a hypergraph with two edge types.

The representativeness measure introduced here can be used as an alternative to model complexity when selecting the optimal number of groups given the available information. It is based on the interpretation of statistical significance in terms of information content, a philosophy with increasing recognition among the statistical modeling community [3,11]. This measure allows us to focus our analysis on a stratification obtained for a characteristic number of groups, with a high information content about stratifications with a different number of groups. Indeed, we believe that the representativeness approach works because it chooses the clustering with best consensus agreement among an ensemble of clusterings with a variable number of groups.

Hypergraph partitioning has been already studied with applications to numerical linear algebra and logic circuit design [12]. The focus has been, however, on balance clustering, which imposes stratifications on groups of similar size. In contrast, the framework developed here is more suitable to determine a natural partition of the population (or the hypergraph representing it), potentially resulting in clusters of different sizes [see Fig. 1(c), for example]. It is worth noticing that our framework can be adapted to balance clustering as well, after adding the constraint that all groups have the same size to the starting statistical model.

Finally, it is worth mentioning that the present method is not the only approach one can follow to stratify the population. As is known from the data clustering literature, there is often more than one method to cluster some elements based on some attributes. Particularly, in the context of genotypic information one can also introduce a distance metric and then build a statistical model for this new variable [13].