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Von Neumann’s universal constructor 

Self-reproducing machine: constructor + tape  (1948/9).  

 

• Program on tape: 

(i) retrieve parts from “sea” of spares. 

(ii) assemble them into a duplicate ; 

(iii) copy tape.  

 

 

.  

(1966) 



Von Neumann’s design allows open-ended evolution 

Motivated by biological self-replication: 

• Construction universality. 

• Evolvability. 

 

Key insight (before DNA) separation of information and function. 

• Tape is read twice: for construction and when copied.  

 

How to design 

    fast/accurate/compact constructor? 
mutations 

Implementation by Nobili & Pesavento (1995) 



Dual spaces of DNA and proteins 

• Building blocks: 

 20 amino acids. 

 

 

 

 

 

 

 

 

• Polymer = protein. 

• Functional molecules (“constructor”) 

 

• Building blocks : 

        4 nucleic bases = {A, T, G, C}. 

 

 

 

 

 

 

 

 

• Polymer: DNA double-helix. 

• Inert information storage (“tape”) 

DNA 
        

protein 
        



The genetic code maps DNA to protein 

• Genetic code:  maps 3-letter words in 4-letter DNA language (43 = 64 codons)   

                        to protein language of 20 amino acids. 
 
 
 
 
 
 

• Genetic code embeds the codon-graph (Hamming graph) into space of amino-acids. 
 
 
 
 
 
 
 
 
 

• Translation machinery, whose main component is the ribosome, facilitates the map.  

 
 

1 2 3codon = ,  {A, T, G, C}.
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RNA intermediates can be both tapes and machines 

DNA 
        

protein 
        

• Primordial “RNA world” : 

 RNA molecules are both information carriers (DNA) and executers (proteins). 

RNA 
        



Ribosomes translate nucleic bases to amino acids   

Goodsell, The Machinery of Life  

• Ribosomes are large molecular machines that 

synthesize proteins with mRNA blueprint and 

tRNAs that carry the genetic code.  
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Ribosome needs to recognize the correct tRNA 

How to construct fast\accurate\small molecular decoder ? 
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• Accept tRNA 
 

• Reject tRNA 

 tRNAs 

 

(i) binding  wrong  tRNAs:      

(ii) unbinding correct tRNAs: 

amino-acid (codon)

amino-acid (codon)
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• Central problem in biology and chemistry: 

How to evolve molecules that recognize in a noisy environment? 

                                                 (crowded, thermally fluctuating, weak interactions). 

 

 

• How to estimate recognition performance (“fitness”)? 

• What are the relevant degrees-of-freedom?  Dimension?  Scaling? 

• What is the role of conformational changes? 

 

 

Decoding at the ribosome is a molecular recognition problem  

• Accept tRNA 
 

• Reject tRNA 

 tRNAs 
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Ribosome sets physical limit on self-reproduction rate 

Large fraction of cell mass is ribosomes.  

• For self-reproduction each ribosome should self-reproduce.  

• Sets lower bound on self-reproduction rate . 

 

 

 

• Fastest growing bacteria (Clostridium perfringens): T ~ 600 sec. 

 

 

Problem: how ribosome accuracy affects fitness depends on  

(i) Basic protein properties (mutations). 

(ii) Biological context (environment etc.). 
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Ribosomes are complicated machines with many d.o.f. 

Ribosomes are made of proteins and RNAs: 

• ~ 104
  nucleic bases in RNA.  

• ~ 104  amino-acids in proteins.  

• Total mass : ~ 3·106 a.u. 

 

• High-res structure is known  (Yonath et al.). 

 

 

 

Within this known complexity: 

 

• What are the relevant degrees-of-freedom? 

 

• How does this machine operate?  

 

(magenta – RNA, grey – protein,  

from Goodsell,  Nanotechnology ) 
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Decoding is determined by energy landscapes  
of correct and wrong tRNAs 

𝑅𝐶  ~ 
1

𝑒𝑏1 + 𝑒𝑏2 + 𝑒𝑏3
 

Steady-state decoding rates  

(Arrhenius law, 𝑘 ∝  𝑒−∆𝐺) 

 

𝑅𝑊 ~ 
1

𝑒𝑏1 + 𝑒𝑏2 + 𝑒𝜹+𝑏3
 

• Decoding is multi-stage process. 

• Kinetics involves large conformational changes.  



Ribosome kinetics exhibits large dimensionality reduction  

• Effective dimension decreases by at least 3 orders of magnitude:  

   ~ 104  structural parameters    → ~ 10  kinetic parameters (energy landscape). 

 

 

 

 

• Generic phenomenon in biomolecules: many catalytic molecules (enzymes) can be 

described by a few kinetic parameters (transition state landscape). 

 

What is the origin of dimensionality reduction? 

• Hints: 

- Protein function mainly involve the lowest modes of their vibrational spectra (hinges). 

- Sectors: “Normal modes” of sequence evolution (Leibler & Ranganthan). 



Transition states reduce 
the dimensionality of 

effective parameter space 



Theory can be tested with measured rates 

• The codon-specific stages are Codon recognition and GTP activation. 

 

 

 

 

 

 

 

 

 

             (Rodnina’s lab, Gottingen) 

 (UUU)                 (CUC) 

𝑅𝐶  ~ 
1

𝑒𝑏1 + 𝑒𝑏2 + 𝑒𝑏3
 

𝑅𝑊 ~ 
1

𝑒𝑏1 + 𝑒𝑏2 + 𝑒𝜹+𝑏3
 



 

 

  
How to estimate recognition performance (“fitness”) ? 

 

What is the actual dimension of the problem ? 

 



Recognition fitness has generic features  

• “Fitness” F is often obscure and context-dependent.: 

 

  look for generic properties of 𝐹 𝑅𝐶 , 𝑅𝑊 = 𝐹(𝐵, δ, 𝑏3). 

 

• Only requirement: “biologically reasonable”,    
𝜕𝐹

𝜕𝑅𝐶
≥ 0,

𝜕𝐹

𝜕𝑅𝑊
≤ 0. 

 

 

 

• Searching for optimum in (𝐵, δ, 𝑏3) space:  

 

 (i)  
𝜕𝐹

𝜕𝛿
≥ 0 : 𝜹 approaches biophysical limit.   

 

(ii)  
𝜕𝐹
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= 0 & 

𝜕𝐹

𝜕𝑏3
≥ 0  or 

𝜕𝐹

𝜕𝐵
≤ 0 &

𝜕𝐹

𝜕𝑏3
= 0  :  

       
       Optimization is essentially 1D (2 other parameters approach limit). 

 

 

 

 

 

 

 

 

 

      𝑅𝐶  ~ 
1

𝑒𝐵 + 𝑒𝑏3
 

𝑅𝑊 ~ 
1

𝑒𝐵 + 𝑒𝜹+𝑏3
 

     (𝑒𝐵 = 𝑒𝑏1 + 𝑒𝑏2) 
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What is the optimal energy landscape of the ribosome? 

• For example, distortion fitness from engineering (weight 𝑑 is context-dependent) : 

                             

                                𝐹 = 𝑅𝐶 − 𝑑 ∙ 𝑅𝑊 ∝
1

𝒆𝐵+𝑒𝑏3
−

𝑑

𝒆𝐵+𝑒𝑏3+𝛿 

 
• 1D problem: optimum is along 𝑏3. 

         

                                       (measured: ∆ = 𝑏3 − 𝑏2) 

 

 

 

• What is the optimal b3 (or ∆ )? 

 

• Is the ribosome optimal ? 

 

• Role of conformational changes ? 

 



Optimal design is a Max-Min strategy 

 
• Weight 𝑑 can vary.  

 

(i) For each 𝑑 normalize 𝐹. 

 

(ii)   “Worst case scenario”:  

                                   max min 𝐹 .   

 

 

• Max-Min solution is “symmetric”: 
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Ribosome shows an energy barrier which is nearly optimal 

 
• Measurements: 𝛥𝐶 ≈ −7 𝑘𝐵𝑇,  𝛿 ≈ 12𝑘𝐵𝑇 , 𝐵 = 𝐵 − 𝑏2 ≈ 1𝑘𝐵𝑇.  

 

• Prediction: the optimal regime is symmetric,                       

 

              𝛥𝐶 = −
1

2
𝛿 + 𝐵  

 

 

 

 

 

• The ribosome is  nearly optimal 

         (according to Max-Min prediction).  

 

𝛥𝐶 < 0,  𝛥𝑊 > 0. 



Decoding is optimal for all six measured tRNAs 

• Except for UUC which encodes the same amino-acid  

          

 

(UUC) = (UUU) phenylalanine.  



Optimality is valid for wide range of fitness functions 

• Ribosome optimal in wide region:  

 

 

 

• General feature: any fitness function   𝐹(𝑅𝐶 , 𝑅𝑊)                    

exhibits optimum as long as  both rates are “relevant”. 
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Theory predicts optimal regime of ribosomes for all organisms 

• Optimal region in the space of all possible landscapes, −𝛿 ≤ 𝛥𝐶 ≤ 0. 
 

• Mutations and antibiotics tend to push away of optimality. 

𝛥𝐶 = −
1

2
𝛿 + 𝐵  



What is the role of conformational changes? 

• Energy barrier results from binding energy and deformation energy penalty: 
 
 
 
 

• Therefore   
 
 
 
 

• For any 
 

non-zero deformation is optimal for tRNA recognition. 
  

 
Energy barrier that discerns the right target from competitors.  
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Recombination machinery recognizes homologous DNA 

• Exchange between two homologous DNAs. 

• Essential for: 

– Genome integrity (repair machinery). 

– Genetic diversity (crossover, sex). 

 

• Task: Detect correct, homologous DNA target 

among many incorrect lookalikes. 

 

• DNA stretches during recombination:  

                          large deformation energy barrier.   
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Energy barriers for optimal recognition may be a general  
design principle of recognition systems with competition 

Recombination optimizes 
extension energy of dsDNA. 

Relevant energy  

Fitness 
F 

Relevant energy  
Ribosome optimizes energy 
barriers of decoding  

• Applies to any enzymatic kinetics in the presence of competition... 

• Conformational proofreading:  Design principle follows 
from optimization of information transfer function. 
 

• May explain induced fit (Koshland 1958). 
       Why molecules deform upon binding to target.  
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Open questions, future directions… 

 

Understanding evolvable matter:  

  

• What are the degrees-of-freedom underlying dimensional reduction? 

       (Rubisco and other enzymes)  

 

• Basic logic of molecular information cahnnels 

             (e.g. utilizing conformational changes, worst case scenario). 

 

Translation machinery coevolved with proteins  

• Physics of the state of matter called “proteins”   

  (evolvable, mapped from DNA space, glassy dynamics) . 

 

 



THANKS 

more:  www.weizmann.ac.il\complex\tlusty 

Yonatan Savir 



Self-printing? 

Proposed demonstration of simple robot self-replication, 

from advanced automation for space missions, NASA conference 1980. 


