(4) THE GRAND-CANONICAL ENSEMBLE

We saw that softening the constraint of constant energy was very useful when we left the microcunonical ensemble and used instead the canonical ensemble.

* We can further remove the constraints from the calculation. One such important constraint is the number of particles N. We harcbly ever measure N directly in large systems, just as we hardly measure E drectly.
* In the μ-canonical ens. we replaced $E=$ canst. by $\langle E\rangle=$ canst, having in mind that in large systony, the fluctuations are relatively small. We will do the same with $N=$ cost.
"As usual", ene will use two procedures to derive the grand-canonical ensemble, where N and E are hath variables.
(i) The sub-system method - a small subsystem innmersel in a reservoir
(ii) Distritauting N between large number of ulentical systems.
(4.1) Equilibrium between a system and a partide-eneryy reservoir

Equilibrium:

$$
\begin{aligned}
& T=T^{\prime} \quad\left(\text { and } P=P^{\prime}\right) \\
& \mu=\mu^{\prime}
\end{aligned}
$$

For the combunal system:

$$
\begin{aligned}
& \text { conservation } \\
& \text { of } E \text { and } N
\end{aligned}\left\{\begin{array}{l}
N_{r}+N_{r}^{\prime}=N^{(0)}=\text { canst. } \\
E_{S}+E_{S}^{\prime}=E^{(0)}=\text { canst. }
\end{array}\right.
$$

66 * Since the subsystem is small we can assume

$$
\frac{N_{r}}{N^{(0)}} \ll 1 \quad \text { and } \quad \frac{E_{s}}{E^{(0)}} \ll 1
$$

since the other possibilities are extromely rare.

* The probability that the system is at a microstate $\left(N_{r}, E_{S}\right)$ is pruparticmal to the number of micostates of the reservoir

$$
P_{r, s} \propto \Omega^{\prime}(\underbrace{N^{(0)}-N_{r}}_{N_{r}^{\prime}}, \underbrace{E^{(0)}-E_{S}}_{E_{S}^{\prime}})
$$

(1) As usual we would like fo expand

$$
\begin{aligned}
& \operatorname{Ln} \Omega^{\prime}\left(N^{(0)}-N_{r}, E^{(0)}-E_{S}\right) \simeq \ln \Omega^{\prime}\left(N^{(0)}, E^{(0)}\right) \\
& +\underbrace{\left(\frac{\partial \ln \Omega^{\prime}}{\partial N^{\prime}}\right)_{N=N^{(0)}}\left(-N_{r}\right)}+\underbrace{\left(\frac{\partial \ln \Omega^{\prime}}{\partial E^{\prime}}\right)_{E=E^{(0)}}\left(-E_{S}\right)} \begin{aligned}
\left(\frac{\partial S}{\partial N}\right) & -\frac{\Gamma}{T} \\
\rightarrow & \left(\frac{\partial S}{\partial E}\right) \frac{1}{T^{\prime}}=\frac{1}{T} \\
& \ln \Omega^{\prime}\left(N^{(0)}, E^{(0)}\right)+\underbrace{\frac{\pi}{T}}_{T} N_{r}-\frac{1}{T} E_{S}
\end{aligned}, l
\end{aligned}
$$

Which implies

$$
P_{r, s} \propto e^{\frac{\mu}{T} N_{r}-\frac{1}{T} E_{s}}
$$

On normalization

$$
P_{r, \sigma}=\frac{e^{-\alpha N_{r}-\beta E_{s}}}{\sum_{r^{\prime}, s^{\prime}} e^{-\alpha N_{r^{\prime}}-\beta E_{s^{\prime}}}} \quad \begin{aligned}
& \alpha=-\frac{c}{T} \\
& \beta=\frac{1}{T}
\end{aligned}
$$

where the summation is over all accessible $N_{r^{\prime}}, E_{S}$,
(4.2) A system in the GC ensemble

* Consider an ensemble of \mathcal{N} ietentical systeny, which share a total number of particles MN and energy $\mathcal{N} \bar{E}$.
$n_{r, s}=\#$ system y that have $\left(N_{r}, E_{s}\right)$
Then conservation implies

$$
\left\{\begin{array}{l}
\sum_{r, s} n_{r, s}=\mathcal{M} \\
\sum_{r, s} n_{r, s} N_{r}=\mathcal{M} \bar{N} \\
\sum n_{r, s} E_{s}=\mathcal{M} \bar{E}
\end{array}\right\}
$$

* Any set of numbers $\left\{n_{r, s}\right\}$ represents one passible partition. Any such partition can be realized in $W\left\{n_{r, \sigma}\right\}$ ways:

$$
W\left\{n_{r, s}\right\}=\frac{M!}{\prod_{r, s}\left(n_{r, s}!\right)}
$$

* The mast probable distribution $\left\{n_{r, 5}^{*}\right\}$ can be fund by maximizing on W under the conservation conclitions

$$
\begin{aligned}
& \mathcal{L}=\ln W-\mu \sum_{r, s} n_{r, s}-\alpha \sum_{r, s} n_{r, s} N_{r}^{\prime}-\beta \sum_{s} n_{r, s} E_{s} \\
& \frac{\partial \mathscr{L}}{\partial n_{r, s}}=\frac{\partial}{\partial n_{r, s}}\left\{\ln N!-\sum_{r, s} \ln \left(n_{r, s}!\right)\right\}-\mu-\alpha N_{r}-\beta E_{s}
\end{aligned}
$$

68

$$
\begin{gathered}
=-\ln n_{r, s}^{*}-\mu-\alpha N_{r}-\beta E_{S}=0 \\
\ln n_{r, s}^{*}=-\mu-\alpha N_{r}-\beta E_{S} \\
n_{r, s}^{*} \propto e^{-\alpha N_{r}-\beta E_{S}}
\end{gathered}
$$

And the normalization gives

$$
p_{r, s}=\frac{n_{r, s}^{*}}{\mathcal{N}^{2}}=\frac{e^{-\alpha N_{r}-\beta E_{s}}}{\sum_{r_{i, \prime}^{\prime}} e^{-\alpha N_{r^{\prime}}-\beta E_{s}^{\prime}}}=\frac{\left\langle n_{r, 5}\right\rangle}{N}
$$

The parameters α and β are determined by the equations:

$$
\begin{aligned}
& \bar{N}=\frac{\sum_{r, s} N_{r} e^{-\alpha N_{r}-\beta E_{S}}}{\sum_{r, s} e^{-\alpha N_{r}-\beta E_{S}}}=-\frac{\partial}{\partial \alpha}\left\{\ln \sum_{r, s} e^{-\alpha N_{r}-\beta E_{S}}\right\} \\
& \bar{E}=\frac{\sum_{r, s} E_{S} e^{-\alpha N_{r}-\beta E_{S}}}{\sum_{r, S} e^{-\alpha N_{r}-\beta E_{s}}}=-\frac{\partial}{\partial \beta}\left\{\ln \sum_{r, S} e^{\left.-\alpha N_{r}-\beta E_{S}\right\}}\right.
\end{aligned}
$$

(4.3) Physical significame of the GC ensemble As nasal we stunt from the sum (actually its (or)

$$
q=\ln \left\{\sum_{r, 5} e^{-\alpha N_{r}-\beta E_{5}}\right\}
$$

q is a function of α, β and the energies E_{S}. I+5 differential is $\quad d q=-\bar{N} d \alpha-\bar{E} d \beta-\sum_{s} \sum_{r}^{d E_{s}} \cdot \beta \cdot \frac{\left\langle n_{r, s}\right\rangle}{\mathcal{N}}$

69 or

$$
\begin{aligned}
& \text { ar or } d q=-\bar{N} d \alpha-\bar{E} d \beta-\frac{\beta}{N} \sum_{r, s}\left\langle n_{r, s}\right\rangle d E_{s} \\
& \begin{aligned}
d x= & (\bar{q}+\alpha \bar{N}+\beta \bar{E})=d q+d(\alpha \bar{N})+d(\beta \bar{E}) \\
& =\alpha d \bar{N}+\beta d \bar{E}-\frac{\beta}{N} \sum\left\langle n_{r, s}\right\rangle d E_{s} \\
& =\beta\left[\frac{\alpha}{\beta} d \bar{N}+d \bar{E}-\frac{1}{N} \sum_{r, \sigma}\left\langle n_{r, s}\right\rangle d E_{s}\right]
\end{aligned}
\end{aligned}
$$

Remember the 1st I aw of TD

hent

We see the carresponelence $\quad d X=\beta d Q$ with $\frac{\alpha}{\beta}=-\mu$ and $d W=-\sum_{r, s} \frac{\left\langle\eta_{r, s}\right\rangle}{\mathcal{N}} d E_{s}$
Together with $\beta=\frac{1}{T}$ we fined

$$
\alpha=-\mu \beta=-\frac{\mu}{T}
$$

Fran all this we see $d X=\frac{d Q}{T}=d S$

$$
q+\alpha \bar{N}+\beta \bar{E}=X=S
$$

or

$$
q=5-\alpha \bar{N}-\beta \bar{E}=\frac{T S+\mu \bar{N}-\bar{E}}{T}
$$

But we also know that $G=\bar{E}-T S+P V=\mu \bar{N}$ is the Gibbs energy, such that

$$
\left[q=\frac{T \not f-\vec{E}+(\vec{E}-\tau 5+p V)}{T}=\frac{p V}{T}\right.
$$

to l
And finally

$$
q=\ln \left\{\sum_{r, 5} e^{\left.-\alpha N_{r}-\beta E_{5}\right\}}=\frac{P V}{T}\right.
$$

This is the central relation of the $G C$ ensemble (Just like $A=-T \ln Q$ in the C ensemble)
Another quantity of interest is the fugacity

$$
z=e^{+\pi / T}=e^{-\alpha}
$$

Also, we cull the sum $Q \equiv \sum_{r, 5} z^{N_{r}} e^{-\beta E_{S}}$ the Grand Partition Function

$$
Q(z, v, T)=\sum_{r, S} z^{N_{r}} e^{-\beta E_{S}}=\sum_{N_{r}=0}^{\infty} Z^{N_{r}} Q_{N_{r}}(v, T)
$$

Where by definition $Q_{0}(V, T) \equiv 1$
It may appear e that in archer to calculate the GPF me need to calculate the PF In practice, however this is not the case.
Often it is much easier to calculate the GPF Q than the PF Q (because we can invert the order) of sumacition

To clerine the TD of the GC ens.:

$$
P=\frac{T}{V} \ln Q(z, V, T)=\frac{T}{V} q
$$

71

$$
\begin{aligned}
& N(z, V, T)=z\left[\frac{\partial}{\partial z} \ln Q(z, V, T)\right]_{V, T}=T \frac{\partial}{\partial \mu}\left[\ln Q(\tau, V, T)_{V, T}\right. \\
& U(z, V, T)=-\frac{\partial}{\partial \beta}[\ln Q(z, V, T)]_{z, V}=T^{2} \frac{\partial}{\partial T}[\ln Q(z, V, T)]_{z, V}
\end{aligned}
$$

$\left\{\begin{array}{l}P(z, V, T) \\ N(z, V, T)\end{array}\right\} \xrightarrow{\text { eliminating } z}$ Equation of state P, V, T, N relationship

$$
\left\{\begin{array}{l}
U(z, v, T) \\
N(z, v, T)
\end{array}\right\} \xrightarrow{z} \quad \begin{array}{r}
V(N, V, T) \\
\text { from which }
\end{array}
$$

from which $C_{V}=\left(\frac{\partial U}{\partial T}\right)_{N, V}$
The Helmholtz free energy is

$$
\begin{gathered}
A=N / L-P V=N T \ln Z-T \ln Q(z, V, T) \\
A=e^{N / T} \\
A=-T \ln \frac{Q(z, V, T)}{z^{N}}
\end{gathered}
$$

Compare to $A=-T \ln Q$ for the canonical ensemble.
Finally

$$
S=\frac{U-A}{T}=T \frac{\partial}{\partial T} \ln Q-N \ln z+\ln Q
$$

(4.4) Sure examples:

The real power of the GC ensemble will be seen when we mill consider quantum systems and particle interactions. The following are just demonstrations.

Classical Ideal Gas
When me considered the Canonical ers. We 'sow

$$
Q_{N}(V, T)=\frac{1}{N!}\left[Q_{1}(V, T)\right]^{N}
$$

The tectur N! canes from indistingnishallity

* This is closely related to the nonlocalized nate of the gas purtides. They could be equally anywhere. Hence

$$
Q_{1}(V, T)=V f(T)
$$

Therefore the GPF is

$$
Q(z, V, T)=\sum_{N_{r}=0}^{\infty} z^{N}[V f(T)]^{N} / N!=e^{z V f(T)}
$$

and

$$
q(z, V, T)=z V f(T)
$$

Now the TD derivation

$$
\begin{aligned}
P & =\frac{T}{V} q=z T f(T) \\
N & =z \frac{\partial}{\partial z} q=Z V f(T)=q \\
U & =T^{2} \frac{\partial}{\partial T} q=Z V T^{2} f^{\prime}(T) \\
A & =N T \ln Z-T \underbrace{z V f(T)}_{q} \\
S & =\frac{U-A}{T}=Z V T f^{\prime}(T)-N \ln Z+Z V f(T)
\end{aligned}
$$

E. 0.5 $\left.\begin{array}{rl}P & =z T f(T) \\ N & =z \vee f(T)\end{array}\right\} \rightarrow \frac{P}{N}=\frac{T}{V} \rightarrow P V=N T$

73
Energy relation

$$
\left.\begin{array}{l}
N=z V f(T) \\
U=z V T^{2} f^{\prime}(T)
\end{array}\right\}=\frac{U}{N}=\frac{T^{2} f^{\prime \prime}(T)}{f(T)}
$$

Specific hent

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{N, V}=N \frac{\partial}{\partial T}\left[T^{2} \frac{f^{\prime}(T)}{f(T)}\right]=N \frac{\partial}{\partial T}\left[T^{2} \frac{\partial}{\partial T} \ln f(T)\right]
$$

- Simple causes: if $f(T) \propto T^{\text {I }}$

$$
\frac{U}{N}=T^{2} \frac{f^{\prime}(T)}{f(T)}=n T \rightarrow U=n N T
$$

and $\quad C_{V}=N \frac{\partial}{\partial T}\left[T^{2} \frac{\partial}{\partial T} \ln f(T)\right]=n N$
Since $\quad P=\frac{N}{V} T=\frac{1}{V}\left(\frac{U}{n}\right) \quad$ energy density
(For now-relativistic gas $n=\frac{3}{2}$; relativistic gas $n=3$)
Finally

$$
\left.\left.\begin{array}{rl}
N & =z V f(T) \\
A & =N T \ln Z-T z V f(T)=N T \ln \frac{N}{V f(T)}-N T \\
& =N T\left[\ln \frac{N}{V f(T)}-1\right] \\
S & =\frac{1}{T}(U-A)
\end{array}\right)=N T \frac{f^{\prime}(T)}{f(T)}-N \ln \frac{N}{V f(T)}+N\right]
$$

74/ * Independent localized particles
(An approximation fur non-interacting solid)
This is similar to the case of harmonic oscillators
Nowt $\quad Q_{N}(V, T)=\left[Q_{1}(V, T)\right\}^{N}$
Since particles are localized Q_{1} does not depend ont.

$$
Q_{1}=(V, T)=\phi(T)
$$

The GPF is

$$
\begin{aligned}
& \text { The GPF is } \\
& Q(z, V, T)=\sum_{N_{r}=0}^{\infty} z^{N_{r}}[\phi(T)]^{N(r)}=\frac{1}{1-z \phi(T)} \\
& \text { We start from pressure }
\end{aligned}
$$

$$
P=\frac{T}{V} \ln Q=-\frac{T}{V} \ln [1-z \phi(T)]
$$

* Since bath Z and T are intensive P vanishes at the TD limit when $V \rightarrow \infty$
- The other TD functions

$$
\begin{aligned}
N & =\dot{z} \frac{\partial}{\partial z} \ln Q=\frac{z \phi(T)}{1-z \phi(T)} \\
U & =T^{2} \frac{\partial}{\partial T} \ln Q=T^{2} \frac{z \phi^{\prime}(T)}{1-z \phi(T)} \\
A & =-T \ln \frac{Q}{z^{N}}=-T \ln \frac{1}{z^{N}(1-z \phi(T)} \\
& =T \ln \left[z^{N}(1-z \phi(T))\right]=N T \ln z+T \ln (1-z \phi(T)) \\
S & =\frac{1}{T}(U-A)=T \frac{z \phi^{\prime}(T)}{1-z \phi(T)}-N T \ln z+T \ln (1-z \phi) \\
N & =\frac{z \phi}{1-z \phi} \rightarrow N=z \phi(N+1) \rightarrow z \phi=\frac{N}{N+1} \simeq 1-\frac{1}{N}
\end{aligned}
$$

76/ Therefore $1-z \phi(T) \simeq 1-\left(1-\frac{1}{N}\right) \simeq \frac{1}{N}$
Anal

$$
\begin{aligned}
A & =N T \ln Z+T \ln (1-z \phi(T)) \\
& =N T \ln \left[\frac{1}{\phi}\left(1-\frac{1}{N}\right)\right]+T \ln \frac{1}{N} \\
& =-N T \ln \phi(T)-N T \ln \frac{1}{V}-T \ln N \\
\rightarrow\left[\frac{A}{N}\right. & =-T \ln \phi(T)+\underbrace{\left(\frac{\ln N}{N}\right)}
\end{aligned}
$$

in TD limit
Similudy

$$
\begin{aligned}
& U=T^{2} \frac{z \phi^{\prime}}{1-z \phi}=T^{2} \underbrace{\frac{\left(1-\frac{1}{N}\right) \frac{1}{\phi}}{1 / N} \phi^{\prime}}=N T^{2}{\frac{\phi^{\prime}(T)}{\phi^{\prime}(T)}}_{\left[\frac{U}{N}\right.}=T^{2} \frac{\phi^{\prime}(T)}{\phi(T)} \\
& {\left[\begin{array}{rl}
\frac{S}{N} & =\frac{1}{T}\left(\frac{U}{N}-\frac{A}{N}\right)=T \frac{\phi^{\prime}(T)}{\phi(T)}+\ln \phi(T) \\
& =\frac{d}{d T}[T \ln \phi(T)]
\end{array}\right.}
\end{aligned}
$$

We already calculated the partition functions of classical oscillators and of QM oscillators

$$
\begin{aligned}
& \phi=Q_{1}(V, T)=\frac{T}{\frac{\hbar}{\hbar} \omega} \\
& \phi=Q_{1}=\frac{1}{2 \sinh \left(\frac{\hbar \omega}{T 2}\right)} \stackrel{\text { high } T}{ } \frac{T}{\hbar \omega} \\
& \text { liters }
\end{aligned}
$$

For example, for classical oscillators

$$
\frac{S}{N}=T \frac{\phi^{\prime}}{\phi}+\ln \phi=1+\ln \left(\frac{T}{\hbar w}\right)
$$

76/ Example: solid-vapor equilibrium
In equilibrium, the solid and
vapor
v, τ
T/ solid/ vapor are exchanging particles such that they hume the same T, r (and P)
\rightarrow they have the same fugacity Now, for an Ideal Gas we saw that

$$
\left[N_{g}=z_{g} V_{g} f(T)\right.
$$

Fur the solid phase we sow

$$
\begin{gathered}
N_{s}=\frac{z_{s} \phi}{1-z_{s} \phi} \rightarrow z_{s} \phi=\frac{N}{N+1} \approx 1 \\
{\left[z_{s}=\frac{1}{\phi}\right.} \\
\text { Since } \quad z_{g}=z_{s} \rightarrow \frac{N_{g}}{V_{g} f(T)}=\frac{1}{\phi} \rightarrow \frac{N_{g}}{V_{g}}=\frac{f(T)}{\phi(T)}
\end{gathered}
$$

For gas $\frac{P_{y}}{N_{g}}=\frac{T}{V_{g}} \rightarrow P_{g}=\frac{N_{y}}{r_{g}} T=T \frac{f(T)}{\phi(T)}$
Specifically, we can take monoutumic g as

$$
\text { with } Q_{1}=V f(T) \quad f(T)=\frac{1}{t^{3}} \quad t=\frac{h}{(2 \pi m T)^{1 / 2}}
$$

For a 3D "solid" of harmonic orsillators

$$
Q_{1}=\phi(T)=\left[\frac{1}{2 \sinh \left(\frac{\hbar \omega}{2 T}\right)}\right]^{3}
$$

From which we get

$$
P_{g}=T \frac{f(T)}{\phi(T)}=T \cdot \frac{(2 \pi m T)^{3 / 2}}{h^{3}}\left[2 \sinh \left(\frac{\hbar \omega}{2 T}\right)\right]^{3}
$$

If we also ald sarre cohesion energy for the solid

$$
\phi(\tau) \rightarrow \phi(\tau) e^{\varepsilon / \tau} \quad(\varepsilon>0)
$$

So $\quad P_{g}=T \frac{(2 \pi m T)^{3 / 2}}{h^{3}}\left[2 \sinh \left(\frac{\hbar \omega}{2 T}\right)\right]^{3} e^{-\varepsilon / T}$
For high T
[check dimensions $\left.\left[\frac{m^{3 / 2} \omega^{3}}{T^{1 / 2}}\right]=\frac{m^{3 / 2} t^{-3} \cdot t}{m^{1 / 2} l}=\frac{m}{t^{2} l}=\frac{E}{V}\right]$
The condition to get solid is

$$
N>N_{g}=V \frac{f(T)}{\phi(T)}
$$

Or that the temperature is low enough

$$
T<T_{c} \quad \text { with } \frac{N}{V}=\frac{f\left(T_{c}\right)}{\phi\left(T_{c}\right)}
$$

characteristic temperature
When two pluses appear $N g(T)$ particles are in vapor, while $N-N g$ are in solidplase.
(4.5) Density and Energy fluctuations in GCE

* In the Canonical Ensemble (CE) we saw that we get the game $T D$ as in the /LCE, because the energy fluctuations vanish as $\frac{\sqrt{N}}{N} \rightarrow 0$. Similarly, we can show that the number fluctuations also vanish.
(
CE N, E
CE

To see this, consider the average number of particles:

$$
\begin{aligned}
& \bar{N}=\frac{\sum_{r, 5} N_{r} e^{-\alpha N_{r}-\beta E_{s}}}{\sum_{r, s} e^{-\alpha N_{r}-\beta E_{s}}}=-\frac{1}{Q}\left(\frac{\partial Q}{\partial \alpha}\right)_{\beta_{1} E_{s}}=-\left(\frac{\partial \ln Q}{\partial \alpha}\right) \\
&\left(\frac{d \bar{N}}{\partial \alpha}\right)_{\beta_{1} E_{s}}=+\frac{1}{Q^{2}}\left(\frac{\partial Q}{\partial \alpha}\right) \cdot\left(\frac{\partial Q}{\partial \alpha}\right)-\frac{1}{Q}\left(\frac{\partial^{2} Q}{\partial \alpha^{2}}\right) \\
&=+\left(\frac{1}{Q} \frac{\partial Q}{\partial \alpha}\right)^{2}-\frac{1}{Q}\left(\frac{\partial^{2} Q}{\partial \alpha^{2}}\right)=\bar{N}^{2}-\overline{N^{2}}
\end{aligned}
$$

Therefore,

$$
\frac{\text { fore, }}{\frac{\overline{\Delta N^{2}}=\overline{N^{2}}-\bar{N}^{2}=-\left(\frac{\partial \bar{N}}{\partial \alpha}\right)_{\beta, E_{S}}}{}=-\left(\frac{\partial \bar{N}}{\partial \mu}\right)\left(\underset{\sim}{\left(\frac{\partial \mu}{\partial \alpha}\right)}=T\left(\frac{\partial \bar{N}}{\partial \mu_{L}}\right)_{T, V}\right.} \underset{-T}{\alpha=-\frac{\mu}{T}}
$$

$79 /$ The relative mean square fluctuation is therefore $\frac{\overline{(\Delta N)^{2}}}{N^{2}}=\frac{\overline{(\Delta n)^{2}}}{\bar{n}^{2}}=\frac{T}{\bar{N}^{2}}\left(\frac{\partial \bar{N}}{\partial \mu}\right)_{T, V} \quad$ where $n=\frac{N}{V}$

Sometimes it is useful to define specific volume

$$
\begin{aligned}
& v=\frac{V}{\bar{N}} \longrightarrow \bar{N}=\frac{V}{v} \text { so } \\
& \begin{aligned}
\frac{(\Delta n)^{2}}{\bar{n}^{2}} & =\frac{T v^{2}}{V^{2}} \cdot\left(\frac{\partial(V / v)}{\partial \mu}\right)_{T, V}=\frac{T v^{2}}{V^{2}} \cdot V\left(\frac{\partial(1 / v)}{\partial \mu}\right)_{T, V} \\
& =\frac{T v^{2}}{V} \cdot\left(-\frac{1}{v^{2}}\right)\left(\frac{\partial v}{\partial \mu}\right)_{T, V}=-\frac{T}{V}\left(\frac{\partial v}{\partial \mu}\right)_{T}
\end{aligned} \\
& m \text { TD we can finch } \overline{\underline{\partial v}}
\end{aligned}
$$

From $T D$ we can finch $\frac{\partial v}{\partial \mu}$

$$
\begin{aligned}
& G=U-T S+P V=\mu N \\
& d V-T d S+S d T+P d V+V d P=\operatorname{retN}+d \mu \cdot N
\end{aligned}
$$

is law

Therefore at constant $T \quad d_{p}=v d P$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\overline{(\Delta n)^{2}}}{\bar{n}^{2}}=-\frac{T}{V}\left(\frac{\partial v}{\partial \mu}\right)_{\pi}=-\frac{T}{V} \cdot \underbrace{\frac{1}{V}\left(\frac{\partial v}{\partial P}\right)}_{-k_{T}}]=\frac{T}{V} k_{T} \\
& \text { We see that this scales like }
\end{aligned}
$$

We see that this scales like

$$
p \quad s=\frac{S}{N} \quad \checkmark=\frac{V}{N}
$$

$$
\begin{aligned}
& d v=T d s-P d v+\mu d N \\
& N d \mu=-s d T+v d P \\
& d \mu=-s d T+v d P
\end{aligned}
$$

80/ The only exception is at phase transitions when the compressibility diverges. $K_{T} \rightarrow \infty$

As fur the energy fhuctutions

$$
\begin{aligned}
& \bar{E}=-\frac{1}{Q}\left(\frac{\partial Q}{\partial \beta}\right)_{Z, V} \\
& \overline{(\Delta E)^{2}}=-\left(\frac{\partial E}{\partial \beta}\right)=\frac{1}{Q}\left(\frac{\partial^{2} Q}{\partial \beta^{2}}\right)^{2}-\left[\frac{1}{Q}\left(\frac{\partial Q}{\partial \beta}\right)\right]^{2}=\overline{E^{2}}-\bar{E}^{2} \\
& \overline{(\Delta E)^{2}}=-\left(\frac{\partial U}{\partial T}\right)\left(\frac{\partial T}{\partial \beta}\right)=T^{2}\left(\frac{\partial U}{\partial T}\right)_{Z, V} \quad \begin{array}{ll}
& \begin{array}{l}
\text { Note that } \\
\text { this is not }
\end{array} \\
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V, N} \\
\frac{\partial \beta}{\partial T}=-\frac{1}{T}
\end{array} \\
& \left(\frac{\partial U}{\partial T}\right)_{Z, V}=\left(\frac{\partial U}{\partial T}\right)_{N, V}+\left(\frac{\partial U}{\partial N}\right)_{T, V}\left(\frac{\partial N}{\partial T}\right)_{Z, V} \quad \& \quad d U=\left(\frac{\partial U}{\partial T}\right)_{N, V} d T+\left(\frac{\partial U}{\partial N}\right)_{T, V} d N
\end{aligned}
$$

From

$$
\begin{aligned}
& \underbrace{N}_{\left(\frac{\partial N}{\partial \beta}\right)_{\alpha, V}=-\frac{1}{Q}\left(\frac{\partial Q}{\partial \alpha}\right)_{\beta, V} ; \quad U=-\frac{1}{Q \alpha}\left(\frac{\partial Q}{\partial \beta}\right)_{\alpha, V}} \\
& \left(\frac{\partial N}{\partial T}\right)_{\alpha, v}\left(\frac{\partial T}{\partial \beta}\right)=\left(\frac{\partial U}{\partial \mu}\right)\left(\frac{\partial \tau}{\partial \alpha}\right) \rightarrow\left(\frac{\partial N}{\partial T}\right)_{2, V}=\frac{1}{T}\left(\frac{\partial U}{\partial \mu}\right)_{T, V} \\
& /-\frac{1}{T}
\end{aligned}
$$

Finally we find

$$
\overline{(\Delta E)^{2}}=K T^{2} C_{V}+T\left(\frac{\partial U}{\partial N}\right)_{T, V}\left(\frac{\partial U}{\partial / \tau}\right)_{T, V}
$$

81
Or uning the result fur $\overline{(\Delta N)^{2}}$

$$
\begin{aligned}
\overline{(\Delta E)^{2}} & =T^{2} C_{V}+T\left(\frac{\partial U}{\partial N}\right)_{T, V}\left(\frac{\partial U}{\partial N}\right)_{T, V} \\
\overline{(\Delta E)^{2}} & =\underbrace{T^{2} C_{V}+\left(\frac{\partial U}{\partial N}\right)_{T, V}^{2} \overline{(\Delta N)^{2}}} \underbrace{\left(\frac{\partial N}{T}\right)_{T, V}}_{\overline{(\Delta N)^{2}} \cdot \frac{1}{T}} \\
& =\overline{(\Delta E)^{2}} \text { cuncmical }
\end{aligned}
$$

* The GCE flucturationg are laryer becunse it has more frechom, of also chanying the number.

$$
\overline{(\Delta E)^{2} G C E} \geqslant \overline{(\Delta E)^{2}} C E
$$

Sinna ary

* GCE
- $P_{r, s} \propto e^{\frac{\pi}{T} N_{r}-\frac{1}{T} E_{S}}$
- $Q=\sum_{r_{1,}} e^{\frac{\mu}{T} N_{r}-\frac{1}{\tau} E_{5}}$
- $\frac{P V}{T}=\ln Q \rightarrow \rho=\frac{T}{V} \ln Q$

82 (4.6) Thermodynamic Phase Diayrany

- Materials exist in a variety of phases, which depend on pressure, temperature, electric and magnetic field...
- TD and Stat Mech can determine the physical properties and the transitions between the phases.
* Thermodynamic Phases are royians of phase space where TD properties are analytic functions of the TD parameters.
* Phase. Transitions coccus where the functions are non-analytic.

Analytic function can be expanded as a power series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \text { for }
$$ all $x \in N\left(x_{0}\right.$

We will fores an phosses and phase transitions Let's look at the example of Argon which is a type of please diagram we see in many materials.

* Morlerat Fond P: three phases S, L, V $^{\text {a }}$,
* High T, P : supercritical fluid-smouthly connects L and V
* S- L cuexistenc; $L-V$ coexistence; $S-V$ coexistence \rightarrow Triple point

For Argon:
Triple point $\quad T_{t}=83.8^{\circ} \mathrm{K} \quad P_{t}=68.9 \mathrm{kPa}$
Critical point $\quad T_{c}=150.7^{\circ} \mathrm{K} \quad P_{c}=4.86 \mathrm{MPa}$
(1 atmosphere $\approx 10^{5} \mathrm{~Pa}$)

* In the P-V diagram the coexistence lines open into areas where bath phones coexist.
Tie lines connect the coexisting phases at a given temperature S-V lines - sublimation lines between vapor and solid.
Triple paint - connects $S-L-V$
T S-L line with $L-V$ lines
critical paint $L=V$
S-L line
Properties of phases
- Vapor: Low-density gas thant is approximately ideal $P V=N T$, with small corrections due to interaction
- Lignid: High density with strong intercutions Strong interactions between atoms Shart-range order.
- Solid Ordered crystal with lony-range order.

84 All TD properties in a single phase are analytic functions of the parameters (for example $\rho(P, T)$ the equation-of-state)

* Phase transitions occur when the functions are nen-analytic.
* At coexistence lines the density is discontinuous as we see from the tie lines in the P-V diagrams.
* In general, all densities such os $\frac{V}{N}, \frac{U}{N}, \frac{S}{N}$ are discontinuers.
- The liquid-vapar coexistence line extends from the triple point to the critical point.
- The discontinuity of the volume/density disappears at the critical paint
- For this reason critical pants are called continuery transitions.

or second-order phase transitions
- At the critical paint the correlation length diverges.

While we can derive the phase diagram of Argon from classical stat-Mech, at low temperatures there are stony quantum effects.
Quantitatively this happens when

$$
\left.\begin{array}{l}
\text { thermal } \\
\text { deBraglie } \\
\text { length }
\end{array}\right\} \lambda=\frac{h^{2}}{\sqrt{2 \pi m T}} \approx n^{-1 / 3} \left\lvert\, \begin{aligned}
& \text { distance } \\
& \text { between } \\
& \text { molecules }
\end{aligned}\right.
$$

85) A fumorus example is liquid helium at temperatures of a few ${ }^{\circ} \mathrm{K}$

${ }^{4} \mathrm{He}$

Similar: $L-V$ line that end at T_{c}
Different $S-L$ does nowt meet $L-V$ line (no T_{t})
Superflnich zero viscosity
macroscopic quantum coherence.
(tHe doesn't have superfhid)
(4.7) Phase Equilibrium and Clausius-Clapeyron Equation

* The quantity that determine the geometry of the phase didyram is the Gibbs free energy:

$$
G(N, P, T)=U-T S+P V=\mu N
$$

* Chemical potential $=\frac{G}{N}$ Gibbs energy/molecule

86
Consider a cylinder containing
(A) Vapor $+(B)$ Liquid
$N=N_{A}+N_{B}$ total \# of molecules.
Total Gibls energy:

$$
G=G_{A}\left(N_{A}, P, T\right)+G_{B}\left(N_{B}, P, T\right)
$$

At equilibrium:
Gibbs energy is minimized as the phases exchange particles

$$
\begin{aligned}
d G=\left(\frac{\partial G_{A}}{\partial N_{A}}\right)_{T, P} d N_{A}+\underbrace{\left(\frac{\partial G_{B}}{\partial N_{B}}\right)_{T, P}}_{N_{A}} d N_{B} & =\left(\mu_{A}-\mu_{B}\right) d N_{A}=0 \\
& \Rightarrow \mu_{A}=\mu_{B}
\end{aligned}
$$

Example: consider water at the boiling point: $P=1 \mathrm{~atm} T=100^{\circ} \mathrm{C}$.

* At this point $\mu_{\text {vapor }}(P, T)=\mu_{\text {liquid }}(P, T)$

So we can mare particles between Liquid and Vapor without changing G.

* The combination of liquid/rapor is determined by the amount of heat that it ached or taken. This is culled latent heat of phase transition.
* For water $L_{V}=2,260 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

We can find the coexistence curve franc the condition of equal chemical potentials

$$
\begin{aligned}
\mu_{A}(P, T)=\mu_{B}(P, T) \rightarrow & \begin{array}{l}
\text { a relation } \\
\text { between } P, T
\end{array} \\
& P_{\sigma}(T)
\end{aligned}
$$

Along the line $d \mu_{A}=d \mu_{B}$

$$
\left(\frac{\partial \mu_{A}}{\partial T}\right)_{P} d T+\left(\frac{\partial \mu_{A}}{\partial P}\right)_{T} d P=\left(\frac{\partial \mu_{B}}{\partial T_{P}} d T+\left(\frac{\partial \mu_{B}}{\partial P}\right)_{T} d P\right.
$$

$$
\left(\frac{\partial \mu_{A}}{\partial T}\right)_{P}+\left(\frac{\partial \mu_{A}}{\partial P}\right) \frac{d \rho_{\sigma}}{d T}=\left(\frac{\partial \mu_{B}}{\partial T}\right)_{P}+\left(\frac{\partial \mu_{B}}{\partial P}\right)_{T} \frac{d P_{\sigma}}{d T}
$$

$$
\begin{align*}
& \text { definition of } G=U-T S+P V=\mu N \tag{2}\\
& d G=d V-d(T S)+d(P V)=d(\mu N) \\
& d G=d V-T d S-S d T+P d V+V d P=\Gamma e d N+N d \mu \\
& \text { energy } \\
& \text { conservation } \frac{d V}{}=T d S-P d V+\mu d N-T \\
&-S d T+V d P=N d \mu \\
& d r=-\frac{S}{N} d T+\frac{V}{N} d P \\
&\left(\frac{\partial r}{\partial T}\right)_{P}=-\frac{S}{N} \equiv S \quad ;\left(\frac{\partial r}{\partial P}\right)_{T}=\frac{V}{N} \equiv v \\
&-S_{A}+v_{A} \frac{d P}{d T}=-S_{B}+V_{B} \frac{d P_{O}}{d T} \\
& S_{B}-S_{A}=\frac{d P_{S}}{d T}\left(v_{B}-V_{A}\right)
\end{align*}
$$

$$
\underset{\substack{\text { of } \\ \text { coexistence }}}{\text { Slope }} \rightarrow \frac{d P_{\sigma}}{d T}=\frac{S_{B}-S_{A}}{v_{B}-v_{A}}=\frac{\Delta S}{\Delta V}=\frac{L_{V}}{T \Delta V} \quad L_{V} \equiv T \Delta S
$$

curve

From this we can determine $P_{\sigma}(T)$ from the phone transition

88 What happens at the triple paint

$$
\mu_{S}=\mu_{L}=\mu_{V}
$$

We can apply the $C-C$ relation for each line

$$
\begin{aligned}
\Delta S_{L V}=S_{L}-S_{V} & =\Delta v_{L V} P_{L V}^{\prime} \\
\Delta S_{U S}=S_{V}-S_{S} & =\Delta v_{V S} P_{V S}^{\prime} \\
\Delta S_{S L}=S_{S}-S_{L} & =\Delta v_{S L} P_{S L}^{\prime} \\
\frac{O}{S} & =\Delta v_{L V} P_{L V}^{\prime}+\Delta v_{V S} P_{V S}^{\prime}+\Delta v_{S V} P_{S L}^{\prime}
\end{aligned}
$$

Also $\quad \Delta v_{L V}+\Delta V_{U S}+\Delta v_{S L}=0$

$$
\begin{aligned}
\rightarrow \quad & =-\left(\Delta v_{U S}+\Delta v_{S L}\right) P_{L V}^{\prime} \neq \Delta v_{U S} P_{V S}^{\prime}+\Delta v_{S L} P_{S L}^{\prime} \\
{\left[P_{L V}^{\prime}=\right.} & \left.\frac{\Delta v_{U S}}{\Delta v_{U S}+\Delta v_{S L}} P_{U S}^{\prime}+\frac{\Delta v_{S L}}{\Delta v_{V S}+\Delta v_{S L}} P_{S L}^{\prime}\right] \\
P_{L V}^{\prime}= & \frac{v_{V}-v_{S}}{U_{V}-v_{L}} P_{V S}^{\prime}+\frac{v_{S}-V_{L}}{v_{V}-v_{L}} P_{S L}^{\prime}
\end{aligned}
$$

* Until nor, we have considered:
(A) Classical systems
(B) Quantum systems of distinguishable particles.
* We will see that treating Q systems of indistinguishable particle requires new formalism and brings new physics.
* This new formalism will allow us
- to obtain classical systems as limit of Qsystens
- justify to normalization of phase space $\frac{1}{h^{3 N}}$
(5.1) QM ensemble theory: density matrix
$\left(\begin{array}{ll}M & \text { identical } Q M \text { systems; } M \gg 1 \\ & M\end{array}\right.$
\hat{H} - Hamiltonian opercetor
$\psi\left(\bar{r}_{i}, t\right)$ - wave function charcieterize physical state.
l $\psi^{k}\left(\bar{r}_{i}, t\right)$ - physical state of the k th system.
The evolution of the wave function is determined by the Schrödinger equation

$$
\hat{J} \psi^{k}(t)=i \hbar \dot{\psi}^{k}(t)
$$

where $\frac{d f}{d t}=\dot{f}$
We cur anile the w.f. in a basis (complete orthonormal

$$
\psi^{k}(t)=\sum_{n} a_{n}^{k}(t) \phi_{n}
$$ where the coefficients $a_{n}^{k}(t)$ are

$$
a_{n}^{k}(t)=\int \phi_{n}^{*} \psi^{k}(t) d v
$$

- the integration is over the coordinate space
- in bracket natation $a_{n}^{k}(t)=\left\langle\phi_{n} \mid \psi^{k}(t)\right\rangle$

Schrö.

$$
\psi^{\prime \prime}(t)=\sum_{n} a_{n}^{K}(t)\left|\phi_{n}\right\rangle
$$

$$
\begin{aligned}
i \hbar \dot{a}_{n}^{k}(t) & =\int \phi_{n}^{*}\left(i \hbar \dot{\psi}^{k}(t)\right) d \forall \\
& =\int \phi_{n}^{*} \hat{\jmath} \rho \psi^{k}(t) d V \\
& =\int \phi_{n}^{*} \hat{J}\left(\sum_{m} a_{m}^{k}(t) \phi_{m}\right) d V \\
& =\sum_{m} a_{m}^{k} \int \phi_{n}^{*} \hat{H} \phi_{m} d V \equiv \sum_{m} a_{m}^{k} H_{n m}
\end{aligned}
$$

where we define $\quad \mathcal{H}_{n m} \equiv \int \phi_{n}^{*} \hat{\jmath} \phi_{m} d V=\left\langle\phi_{n}\right| \hat{H}\left|\phi_{m}\right\rangle$
To summarize

$$
i \hbar \dot{a}_{n}^{k}=\sum_{m} y_{n m} a_{m}^{k}
$$

As usual in $Q M$, the coefficints a_{n}^{*} represent the probability to be in a state n of system k $\left|a_{n}^{k}(t)\right|^{2}=P_{n}^{k} \quad$ and $\quad \sum_{n}\left|a_{n}^{k}\right|^{2}=1$.

The density operator is defined as a matrix ρ with elements

$$
\rho_{m n}(t)=\frac{1}{\mathcal{M}} \sum_{k=1}^{\mathcal{M}} a_{m}^{k}(t)\left[a_{n}^{k}(t)\right]^{*}
$$

this is the ensemble average of $a_{m}(t) a_{n}(t)^{*}$.
al) In particular, the diayonul elements are the average probability $\left|a_{n}\right|^{2}$
[Note that that is a duwble average: $\left|a_{n}^{k}(t)\right|^{2}$ itself is a proporbility and then we take average] $\rho_{n n}(t)$ is the probability that a randomly chosen system is at state n.

By definition of $\rho \quad \sum_{n} \rho_{n n}=1$
Let's see how $\rho_{\mathcal{M}}$ evolves

$$
\begin{aligned}
i \hbar \dot{\rho}_{m n}(t) & =\frac{1}{\mathcal{M}} \sum_{k=1}^{N} i \hbar\left[\dot{a}_{m}^{k}(t) a_{n}^{k}(t)^{*}+a_{m}^{k}(t) \dot{a}_{n}^{k}(t)^{*}\right] \\
& =\frac{1}{\mathcal{M}} \sum_{k=1}^{\mathcal{N}}\left\{\left[\sum_{l} H_{m l} a_{l}^{k}(t)\right] a_{n}^{k}(t)\right. \\
\left.-i \hbar \dot{a}_{n}^{k *}=2 H_{n m}^{*} a_{m}^{k *}\right] & \left.a_{m}^{k}(t)\left[\sum_{l} H_{n l}^{*} a_{l}^{k}(t)^{*}\right]\right\}=H_{n l}^{*}=H_{l n} \\
& =\sum_{l}\left[H_{m l} \rho_{l n}(t)-H_{l n} \rho_{m l}(t)\right]
\end{aligned}
$$

To summarize

$$
i \hbar \dot{\rho}_{m n}=[\hat{H} \hat{\rho}-\hat{\rho} \hat{H}]_{m, n}
$$

or in matrix form

$$
i \hbar \dot{\hat{\rho}}=[\hat{H}, \hat{\rho}]
$$

This is the $Q M$ analogue of an equation we already have seen, the Lionville equation.

Reminder:
Lionville's equation is for the density in phase-space $\rho(q, p, t)$:

$$
\dot{\rho}=[\rho, H]+\frac{\partial \rho}{\partial t}
$$

$$
[\rho, H]=\sum_{i=1}^{3 N}\left[\frac{\partial \rho}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial \rho}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right]
$$ and compare to

$$
\dot{\hat{\rho}}=\frac{[\hat{H}, \hat{\rho}]}{i \hbar}
$$

* If the system is at equilibrium, the corresponding ensemble must be stationary $\quad \dot{\rho}_{m n}=0$.

This means that:
(i) $\hat{\rho}$ is an explicit function of $\hat{H}, \hat{\rho}=\hat{\rho}(\hat{H})$.
(ii) The hamitonian must not depend explicitly on time, $\dot{\vec{H}}=0$.

* Now if ϕ_{n} are the eigenfunction of the Hamiltonian then

$$
H_{m n}=E_{n} \delta_{m n}
$$ and since $\hat{\rho}=\hat{\rho}(\hat{H})$

$$
\rho_{m n}=\rho_{n} \delta_{m n}
$$

So in this basis both matrices are diagonal.

* In any other representation, the matrix may not be diagonal, but usually it is symmetric $\rho_{m n}=\rho_{n m}$. This comes from the pproperty of detailed blance. the forward $m \rightarrow n$ transition rate is like the reverse $n \rightarrow n$.

Finally, we calculate the expectation value of a physical quantity G, represented by the operator \hat{G}.

$$
\langle G\rangle=\frac{1}{\mathcal{M}} \sum_{k=1}^{\mathcal{M}} \psi^{k^{*}} G \psi^{k} d V=\frac{1}{\mathcal{M}} \sum_{k}\left\langle\psi_{k}\right| G\left|\psi_{k}\right\rangle
$$

In terms of the basis ϕ_{n}

$$
\begin{aligned}
& \langle G\rangle=\sum_{k=1}^{M} \sum_{m, n} a_{n}^{k *} G a_{n m}^{k} \quad \text { where } G_{n m}=\int \phi_{n}^{*} G \phi_{m} d V \\
& (\text { or } G=\frac{1}{M} \sum \underbrace{\left\langle\psi^{\psi^{k}}\right| \phi_{n}}_{a_{n}^{k *}}\rangle \phi_{n}|G| \phi_{m} \times \underbrace{\phi_{m}\left|\psi^{k}\right\rangle}_{a_{m}})
\end{aligned}
$$

Using the definition of the matrix density $\hat{\rho}_{m n}=\frac{1}{M} \sum_{N=1=1}^{N} a_{m}^{k} a_{n}^{k *}$ we find

$$
\begin{aligned}
& \langle G\rangle=\sum_{m, n} \rho_{m n} G_{m m}=\sum_{m}(\hat{\rho} \hat{G})_{m m}=\operatorname{Tr}(\hat{\rho} \hat{G}) \\
& \langle G\rangle=\operatorname{Tr}(\hat{\rho} \hat{G})
\end{aligned}
$$

* Taking \hat{G} the unity $\hat{G}=\hat{1}$ we have

$$
T_{r} \hat{\rho}=\langle\hat{1}\rangle=1
$$

In general if ψ^{k} the w.f. are not normalized

$$
\langle G\rangle=\frac{\operatorname{Tr}(\hat{\rho} \hat{G})}{\operatorname{Tr}(\hat{\rho})}
$$

Note: $\langle G\rangle=\operatorname{Tr}(\hat{\rho} \hat{G})$ does not depend on the choice of basis (This is a trace of a matrix)

94 (5.2) Statistics of various ensembles
(A) The microcanonical ensemble

This ensemble is charcterized by fixed N, fixed V and fixed E (practically, we can say that it is in $\left(E-\frac{\Delta}{2}, E+\frac{\Delta}{2}\right)$) with $\triangle \ll E$
$\Gamma(N, V, E ; \Delta)=\#$ of micro-states.
By assumption, all microstates are equally probable. Accordingly, the density matrix must be diagonal:

$$
\rho_{m n}=\rho_{n} \delta_{m n}
$$

with

$$
\rho_{n}= \begin{cases}1 / \Gamma & \text { fur each accessible state } \\ 0 & \text { otherwise }\end{cases}
$$

As we have shown all TD is derived from the entropy

$$
\delta=\ln \Gamma
$$

In a real QM calculation we will not need to introduce a $1 / N$! factor to resolve Gibbs paradox. for indistinguishable particles.
In a pure state only ane state appears in all systems and $\Gamma=1$ with $S=\ln \Gamma=0$,
This means that only ane entry in ρ is non-zero $\rho=\binom{\theta_{0}}{0_{0}}$ and $\rho^{2}=\rho$

95 If we write the pure state in a different representation than

$$
\rho_{m n}=\frac{1}{M} \sum_{k=1}^{M} a_{m}^{k} a_{n}^{k *}=a_{m} a_{n}^{*}\left\{\begin{array}{l}
\text { same } \\
\text { tor all } \\
k \text { systems }
\end{array}\right.
$$

and the square matrix is

$$
\begin{aligned}
\rho_{m n}^{2} & =\sum_{l} \rho_{m e} \rho_{e n}=\sum_{l} a_{m} a_{l}^{*} a_{l} a_{n}^{*} \\
& =a_{m} a_{n}^{*} \sum_{l} a_{e}^{*} a_{l}
\end{aligned}=a_{m} a_{n}^{*} . ~ \$
$$

In a mixed state $\Gamma>1$,
To see the properties of $\hat{\rho}$ for a mixed state we neal to add another assumption:
Random a priors phase (in addition to equal preb-abilitie) for the probability amplitucles a_{n}^{k}.
This implies that the w.f. ψ^{k} is an incoherent superposition of $\left\{\phi_{n}\right\}$. Thus, in any representation

$$
\begin{aligned}
\rho_{m n} & =\frac{1}{M} \sum_{k=1}^{\mathcal{N}} a_{m}^{k} a_{n}^{k}=\frac{1}{\mathcal{N}} \sum_{k=1}^{\mathcal{N}} \underbrace{\left|a_{m}\right|\left|a_{n}\right|}_{=|a|^{2}} e^{i\left(\theta_{m}^{k}-\theta_{n}^{k}\right)} \\
& =|a|^{2}\left\langle e^{i\left(\theta_{m}^{k}-\theta_{n}^{k}\right)}\right\rangle=|a|^{2} \delta_{m n}
\end{aligned}
$$

We find that ρ continues to be diayencal.
Note that we now used two assumptions ("postulates"):
(1) Equal a prion i probability.
(2) Random a prions phase.

Assumption (2) is purely QM: it avoids interference and correlation g among systeng in the ensemble.

96 The Canonical Ensemble
Now a mucrostate is defined by N, V and T. E is now a variable quantity chosen raudanly from an ensemble according to Boltzmann distribution $\sim \exp (-\beta E)$.
The density matrix in the energy representation is therefore

$$
\begin{aligned}
& \rho_{m n}=\rho_{n} \delta_{m n} \\
& \rho_{n}=\frac{e^{-\beta E_{n}}}{Q_{N}(\beta)} ; Q_{N}(\beta)=\sum_{n} e^{-\beta E_{n}}
\end{aligned}
$$

with the usual partition function.
We can therefore write

$$
\begin{aligned}
\hat{\rho} & \left.=\sum_{n}\left|\phi_{n}\right\rangle \frac{e^{-\beta E_{n}}}{Q_{N}(\beta)}<\phi_{n} \right\rvert\, \\
& \left.=\frac{1}{Q_{N}(\beta)} e^{-\beta \hat{H}} \sum_{n}^{\sum_{n}}\left|\phi_{n}\right\rangle \phi_{n} \right\rvert\, \\
& =\frac{e^{-\beta \hat{H}}}{Q_{N}(\beta)}=e^{\hat{1}} \\
\hat{\rho} & =\frac{e^{-\beta \hat{H}}}{T_{r}\left(e^{-\beta \hat{H}}\right)} \text { expansion } e^{-\beta \hat{H}=\sum_{k=0}^{\infty} \frac{1}{k!}(-\beta \hat{H})^{k}}
\end{aligned}
$$

97) The expectation value of an operator G is

$$
\begin{aligned}
\langle G\rangle_{N} & =\operatorname{Tr}(\hat{\rho} \hat{G})=\frac{1}{Q_{N}(\beta)} \operatorname{Tr}\left(e^{-\beta \hat{H}} G\right) \\
& =\frac{\operatorname{Tr}\left(e^{-\beta \hat{H}} \hat{G}\right)}{\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)}
\end{aligned}
$$

The Grand Canonical Ensemble
In this ensemble $\hat{\rho}$ operates on a space where the number of particles can be any integer ≥ 0. $\hat{\rho}$ must therefore commute with \hat{H} and with the number user tor \hat{n} whose eigenvalues are $0,1,2 \ldots$. The precise form of the density operator is

$$
\hat{\rho}=\frac{1}{Q(\mu, V, T)} e^{-\beta(\hat{H}-\mu \hat{n})}
$$

with the usual grommet partition function

$$
Q(\mu, V, T)=\sum_{r, s} e^{-\beta\left(E_{r}-\mu N_{s}\right)}=T_{r}\left(e^{-\beta(\hat{H}-\mu \hat{n}))}\right.
$$

The ensemble averay of G is

$$
\begin{aligned}
&\langle G\rangle=\frac{1}{Q\left(\mu_{1} V_{1} T\right)} \operatorname{Tr}\left(\hat{G} e^{-\beta \hat{H}} e^{\beta / \hat{n}}\right) \\
&=\frac{\sum_{N=0}^{\infty} z^{N}\langle G\rangle_{N} Q_{N}(\beta)}{\sum_{N=0}^{\infty} z^{N} Q_{N}(\beta)} \ll \quad z=e^{\beta / \tau} \\
&\langle G\rangle_{N}=\frac{1}{Q_{N}} \operatorname{Tr}\left(e^{-\beta \hat{H}_{N}}\right)
\end{aligned}
$$

(5.3) EXAMPLES
(A) Electron in a magnetic field

The electron has intrinsic spin $\frac{1}{2} \hbar \hat{\sigma}\binom{\hat{\sigma}$ pauli }{ spin operator } The electron has $J=\frac{1}{2}$ so it has $2 J+1=2$ states, up on down $\uparrow \downarrow$
The magnetic field is in the z direction, so the configurational Hamiltonian is

$$
\hat{H}=-\mu_{\beta}(\hat{\sigma} \cdot B)=-\mu_{B} B \hat{\sigma}_{z}
$$

where $\mu_{B}=\frac{e \hbar}{2 m c}$ is the Bohr magneton. and Pauli matrices are

$$
\hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \quad \hat{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \quad \hat{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The density matrix in the canonical ensemble is

$$
\hat{\rho}=\frac{e^{-\beta \hat{H}}}{\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)}=\frac{1}{e^{\beta \Gamma_{B}^{B}}+e^{-\beta \beta_{B}}}\left(\begin{array}{cc}
e^{\beta \mu_{B} B} & 0 \\
0 & e^{-\beta \mu_{B} B}
\end{array}\right)
$$

To calculate $e^{-\beta \hat{H}}$ we can write it as

$$
\begin{gathered}
e^{-\beta \hat{H}}=\sum_{k=0}^{\infty} \frac{1}{k!}(\beta \hat{H})^{k}=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\beta \mu_{B} B\right)^{k}\left(\hat{\sigma}_{z}\right)^{k} \\
\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(e^{-\beta \hat{H}}\right)\binom{1}{0}=\sum_{k=0}^{\infty} \frac{1}{k!}\left(\beta \mu_{B} \beta\right)^{k}[\underbrace{\left(\hat{\sigma}_{z}\right)_{11}}_{1}]^{k}=e^{\beta \mu_{B} B}
\end{gathered}
$$

and so on and so firth

99 If we want the expectation value of $\hat{\sigma}_{z}$

$$
\begin{aligned}
& \left\langle\sigma_{z}\right\rangle=\frac{\operatorname{Tr}\left(\hat{\theta} e^{-\beta \hat{H}}\right)}{\operatorname{Tr}\left(e^{-\beta A}\right)}=\frac{1}{\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)} \operatorname{Tr}(\begin{array}{c}
e^{\beta / \mu_{B} B} \\
\left.0-e^{-\beta \Gamma_{\beta} A}\right) \\
\left\langle\sigma_{z}\right\rangle=\frac{e^{\beta / \mu_{B} \beta}-e^{-\beta \mu_{\beta} \beta}}{e^{\beta / \mu_{B} \beta}+e^{-\beta \mu_{\beta} \beta}}=\operatorname{tgh}\left(\beta \mu_{B} B\right)
\end{array}+\underbrace{\left\langle\sigma_{z}\right\rangle}_{-1} \\
& \text { A particle in a box }
\end{aligned}
$$

A free particle of mars m in a box L^{3} The Hamiltonian is

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)
$$

with periodic boundary conditions

$$
\phi(x, y, z)=\phi(x+L, y, z)=\phi(x, y+L, z)=\phi(x, y, z+L)
$$

The general solutions are
with energy

$$
\begin{aligned}
& \phi_{E}(\bar{r})=\frac{1}{L^{3 / 2}} e^{i \bar{K} \cdot \vec{F}} \\
& E=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}
\end{aligned}
$$

The mave-length that satisfy the B.C. are $\bar{K} \equiv\left(k_{x}, k_{y}, k_{z}\right)=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$ with the integer quantum numbers $\left(n_{x}, n_{y}, n_{z}\right)$ We can write $\bar{k}=\frac{2 \pi}{L} \bar{n}$ where \bar{n} is a vector $0, \pm!\pm 2 \ldots$

100 Let us now calculate the density matrix $\hat{\rho}$. We will use coorrelinate representation, ie wo of F.

$$
\begin{aligned}
\langle F| e^{-\beta \hat{H}}\left|F^{\prime}\right\rangle & =\sum_{E, E^{\prime}}\langle F| E X \underbrace{\langle E| e^{-\beta \hat{H}} \mid E^{\prime}}_{e^{-\beta E} \delta_{E E^{\prime}}} \times E^{\prime}\left|\bar{r}^{\prime}\right\rangle \\
& =\sum_{E} \underbrace{\langle-\beta E}_{\left.\phi_{E^{\prime}(\vec{r})}^{\langle F| E}\right\rangle} \underbrace{}_{\left.\phi_{\phi_{E}^{*}\left(r^{\prime}\right)}^{\left\langle E \mid F^{\prime}\right\rangle}\right\rangle=\sum_{E} e^{-\beta E} \phi_{E}(F) \phi_{E}^{*}\left(\bar{r}^{\prime}\right)}
\end{aligned}
$$

We can now substitute the eigenfunction $\phi_{E}(F)=\frac{\hbar^{*}}{L^{3 / 2}} e^{i \bar{K} \cdot \bar{F}}$

$$
\begin{aligned}
& \langle F| e^{-\beta \hat{H}}\left|F^{\prime}\right\rangle=\sum_{K} e^{-\beta E(k)} \phi_{k}(\bar{F}) \phi_{K}\left(\bar{F}^{\prime}\right)^{*} \\
& =\frac{1}{L^{3}} \sum_{K} \exp \left[-\frac{\beta \hbar^{2}}{2 m} k^{2}+i \bar{K} \cdot\left(\bar{r}-\bar{F}^{\prime}\right)\right]
\end{aligned}
$$

Replace sum by
integral $\left.\sum_{k} \rightarrow\left(\frac{2}{2 \pi}\right)^{3} d^{3} k\right\rangle \rightarrow=\frac{1}{(2 \pi)^{3}} \int_{-\infty}^{\infty} \exp \left[-\frac{\beta \hbar^{2}}{2 m^{2}} k^{2}+i k\left(F-F^{\prime}\right)\right] d k$
The integral is the inverse Fourier transform.

$$
\mathcal{f}^{-1}\left[e^{-a k^{2}}\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\alpha k^{2}} e^{-i k r} d k=\frac{1}{2 \pi^{1 / 2} d^{1 / 2}} e^{-\frac{r^{2}}{4 a}}
$$

We can write it as a product

$$
\langle F| e^{-\beta \hat{H}}\left|\vec{r}^{\prime}\right\rangle=\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\alpha k_{x}^{2}} e^{i k_{x}\left(x^{\prime}-x\right)} d x\right]\left[\begin{array}{c}
\text { same for } \\
y
\end{array}\right]\left[\begin{array}{c}
\text { same } \\
z
\end{array}\right]
$$

with $\alpha=\frac{\beta \hbar^{2}}{2 m}$

$$
=\left(\frac{1}{2 \pi^{1 / 2} \alpha^{1 / 2}}\right)^{3} e^{-\frac{1}{4 \alpha}\left|r-r^{\prime}\right|^{2}}
$$

Finally,

$$
\langle F| e^{-\beta \hat{H}}\left|F^{\prime}\right\rangle=\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{3 / 2} \exp \left(-\frac{m}{2 \beta \hbar^{2}}\left|F-F^{\prime}\right|^{2}\right)
$$

The partition function is

$$
\begin{aligned}
\operatorname{Tr}\left(e^{-\beta \hat{H}}\right) & =\int d^{3} r\langle\bar{F}| e^{-\beta^{\hat{H}}}|F\rangle=\left(\frac{m}{2 \pi \beta \hbar^{\hbar}}\right)^{3 / 2} \int d^{3} r \\
& =\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{3 / 2} V
\end{aligned}
$$

This is the well-known partition function of single particle $Q(\beta)$.
We can now write the density matrix

$$
\left.\langle F| \hat{\rho}\left|\vec{F}^{\prime}\right\rangle=\frac{\langle F| e^{-\beta \hat{H}}\left|F^{\prime}\right\rangle}{\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)}=\frac{1}{V} \exp \left|-\frac{m}{2 \beta \hbar^{2}}\right| r-\left.r^{\prime}\right|^{2} \right\rvert\,
$$

- As expected, the density matrix is symmetric

$$
\langle\bar{F}| \hat{\rho}|\bar{r}\rangle=\left\langle F^{\prime}\right| \hat{\rho}|\vec{F}\rangle
$$

- Moreover, the diagonal elements are $\langle F| \bar{S}|\bar{F}\rangle=\frac{1}{V}$. All positions in the box are equally probable.
- The non-diagomal elements represent the probability for $F \underset{F}{F}$ transitions.
- The spatial extent of the wave packet is

$$
\frac{1}{2 \sigma^{2}}=\frac{m}{2 \beta \hbar^{2}} \rightarrow \sigma=\left(\frac{\beta}{m}\right)^{1 / 2} \hbar=\frac{\hbar}{(m T)^{1 / 2}}
$$

This QM vanishes at high-temperatuce and we get δ-function of a paint particle.

Finally, we calculate the expectation value of the Hamiltonian

$$
\begin{aligned}
\langle H\rangle & =\operatorname{Tr}(\hat{H} \hat{\rho})=\frac{\operatorname{Tr}\left(\hat{H} e^{-\beta \hat{H}}\right)}{\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)} \\
& =-\frac{\partial}{\partial \beta} \ln \operatorname{Tr}\left(e^{-\beta \hat{H}}\right)=-\frac{\partial}{\partial \beta} \ln \left(\frac{m}{2 \pi \beta^{2}}\right)^{3 / 2} \\
& =-\frac{\partial}{\partial \beta}\left[-\frac{3}{2} \ln \beta\right]=\frac{3}{2} \cdot \frac{1}{\beta}=\frac{3}{2} T
\end{aligned}
$$

C) Linear Harmonic Oscillator

In the book by Pathria this is calculated in real space representation. Here we will use energy representation

$$
\hat{H}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial q^{2}}+\frac{1}{2} m \omega^{2} q^{2}
$$

$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \sigma \quad n=0,1,2,3 \ldots$.
$\phi_{n}(q)$ are Hermite polynomials

$$
\phi_{n}(q)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 2} \frac{\mu_{n}(\xi)}{\left(2^{n} n!\right)^{1 / 2}} e^{-\frac{1}{2} \xi^{2}} \quad \xi=\left(\frac{m \omega}{\hbar}\right)^{1 / 2} q
$$

However we use the simple energy representation

$$
\begin{aligned}
& \text { in which } \quad T_{r}\left(e^{-\beta \hat{H}}\right)=\sum_{n=0}^{\infty} e^{-\beta\left(n+\frac{1}{2}\right) \hbar \omega} \\
& =e^{-\frac{1}{2} \beta \hbar \omega} \cdot \frac{1}{1-e^{-\beta \hbar \omega}=1 / 2 \sin \hbar\left(\frac{1}{2} \beta \hbar \omega\right)}
\end{aligned}
$$

$$
\begin{aligned}
\langle\boldsymbol{H}\rangle & =-\frac{\partial}{\partial \beta} \ln T_{1}\left(e^{-\beta \hat{H}}\right)=-\frac{\partial}{\partial \beta} \ln \frac{1}{2 \sinh \left(\frac{1}{2} \beta \hbar \omega\right)} \\
& =\frac{\partial}{\partial \beta} \ln \left[2 \sinh \left(\frac{1}{2} \beta \hbar \omega\right)\right]= \\
& =\frac{2 \cosh \left(\frac{1}{2} \beta \hbar \omega\right)}{2 \sinh \left(\frac{1}{2} \beta \hbar \omega\right)} \frac{1}{2} \hbar \omega \cdot \operatorname{coth}\left(\frac{1}{2} \beta \hbar \omega\right)
\end{aligned}
$$

The limits:

○
(i) low $T ; \beta \rightarrow \infty$

$$
\langle H\rangle=\frac{1}{2} \hbar \omega<\text { coth } x \approx 1
$$

(ii) high T; $\beta \rightarrow \infty$

$$
\langle H\rangle=\frac{\frac{1}{2} \hbar \omega}{\frac{1}{2} \beta \hbar \sigma}=\frac{1}{\beta}=T
$$

the classical limit

$$
\operatorname{coth} x \approx \frac{1}{x}
$$

(5.4) Systems comporeal of indistinguishable particles

Take N identical particles.
For simplicity assume that they are non-inter-acting. The the Hamitonian is a sum of single-particle Hamiltonian

$$
\hat{H}(p, q)=\sum_{i=1}^{N} \hat{H}_{i}\left(q_{i}, p_{i}\right)
$$

The \hat{H}_{i} are the same for all particles.
The Schrödinger equation is (time-independent)

$$
\hat{H} \psi_{E}(\bar{q})=E \psi_{E}(\bar{q})
$$

A stanight-formared solution would be:

$$
\psi_{E}(\bar{q})=\prod_{i=1}^{N} u_{\varepsilon_{i}}\left(q_{i}\right)
$$

where each $u_{\varepsilon_{i}}\left(q_{i}\right)$ is eigenfunction of \hat{H}_{i}

$$
\hat{H}_{i} u_{\varepsilon_{i}}\left(q_{i}\right)=\varepsilon_{i} u_{\varepsilon_{i}}\left(q_{i}\right)
$$

and

$$
E=\sum_{i=1}^{N} \varepsilon_{i}
$$

* From all this we see that a stationary state may be described in terms of consisterent particles.
In general, we can identify the state by specifing $\left\{n_{i}\right\}=\#$ of particles in eigenstate ε_{i}.

As usual,

$$
\begin{aligned}
& \sum_{i} n_{i}=N \\
& \sum_{i} n_{i} \varepsilon_{i}=E
\end{aligned}
$$

Accordingly, the wave-function is

$$
\psi_{E}(\bar{q})=\prod_{m=1}^{n_{1}} u_{1}\left(q_{m}\right) \prod_{m=n_{1}+1}^{n_{1}+n_{2}} u_{2}\left(q_{m}\right) \ldots .
$$

Assume, that we apply a permutation of coordinates

$$
(1,2, \ldots N) \longrightarrow\left(p_{1}, p_{2} \ldots P_{N}\right)
$$

The resulting wave-function is $P_{E}(\bar{q})$

$$
P \psi_{E}(\bar{q})=\prod_{m=1}^{n_{1}} u_{1}\left(q_{p m}\right) \prod_{m=n_{1}+1}^{n_{1}+n_{2}} u_{2}\left(q_{p m}\right) \cdots
$$

In classical physics particles are distinguishable so permutations of ichentical partides create new states. This leacls to $\left[\frac{N!}{n_{1}!n_{2}!\ldots}\right.$ states for the partition $\{$

Preniansly we applied Gibbs recipe
Divide by N! and get

$$
W_{C}\left\{n_{i}\right\}=\frac{1}{n_{1}!n_{2}!\ldots!}
$$

But in QM this is not enough because even if two particles are in different energy levels it is still physically the same stake.

- The whole concept of indexing particles is wrong.
- Only the numbers $\left\{n_{i}\right\}$ matter.

So all permutations which keep $\left\{n_{i}\right\}$ give the same state.

In other wercls $W_{q}\left\{n_{i}\right\}=1$

At the sane time, the wave function we previously wrote

$$
\psi_{E}(\bar{q})=\prod_{m=1}^{n_{1}} u_{1}\left(q_{m}\right) \prod_{m=n_{1}+1}^{n_{1}+n_{2}}\left(q_{m}\right)
$$

is inappropriate, because when we interchange coordinates between u_{i} and u_{j} with $i \neq j$, we get a different form of ware function.

- We therefore need to construct a form of $\sum_{\bar{E}}(\bar{q})$ that is insensitive to such chances.
- A simple recipe is to take a combination of all N! w.f.

The combination must have the following property:

$$
|P \psi|^{2}=|\psi|^{2}
$$

There are two possibilities:
(A) $P \psi=\psi$ for all P
(B) $\quad P \psi=\left\{\begin{array}{l}+\psi: P \text { is an even permutation } \\ -\psi: P \text { is an odd permutation }\end{array}\right.$

These are culled symmetric ψ_{S} and anti-symmetric ψ_{A} wave functions.

Their mathematical structure is given by

$$
\begin{aligned}
& \psi_{s}(\bar{q}) \propto \sum_{P} p \psi_{B}(\bar{q}) \\
& \psi_{A}(\bar{q}) \propto \sum_{P} \delta_{P} p \psi_{B}(\bar{q})
\end{aligned}
$$

where $\psi_{B}=\prod_{m=1}^{n_{1}} u_{1}\left(q_{m}\right) \prod_{m=n_{1}+1}^{n_{1}+n_{2}} u_{2}\left(q_{m}\right) \ldots$ is the product form and δ_{p} is the parity of the permutation
$\delta_{p}=+1$ for even carrel $\delta_{\rho}=-1$ for oud.
We can write the anti-symmetric form using the determinant, which is the anti-symmetric invariant

Slater's
determinant $\left|\begin{array}{llll} & u_{l}\left(q_{1}\right) & u_{l}\left(q_{2}\right) \ldots & u_{l}\left(q_{N}\right)\end{array}\right|$
In the determinant we can get the signs through the expansion.
For example:

$$
\left|\begin{array}{ll}
u_{1}\left(q_{1}\right) & u_{1}\left(q_{2}\right) \\
u_{2}\left(q_{1}\right) & u_{2}\left(q_{2}\right)
\end{array}\right|=u_{1}\left(q_{1}\right) u_{2}\left(q_{2}\right)-u_{1}\left(q_{2}\right) u_{2}\left(q_{1}\right)
$$

In general, $\quad \operatorname{det}\left|u_{i}(q \alpha)\right|=\sum_{p} \delta_{p} p \psi_{B}(\bar{q})$
(A) When we exchange the arguments of a pair of particles, we exchange the columns of the determinant aud it changes sign

$$
\left|\begin{array}{cccccc}
u_{i}\left(q_{1}\right) \ldots & u_{i}\left(q_{a}\right) & \ldots & u_{i}\left(q_{\beta}\right) \ldots & \ldots & u_{i}\left(q_{N}\right) \\
u_{j}\left(q_{1}\right) & \ldots & u_{j}\left(q_{\alpha}\right) & \ldots & u_{j}\left(q_{\beta}\right) & \ldots
\end{array} u_{j}\left(q_{N}\right)\right|
$$

(B) If two particles are in the same single particle state we have two rows that are equal to each other (because the same $4 y$ appears at two rows) and the determinant vanishes.
\Rightarrow A system of indistinguishable particles with anti-symmetric uave-functions has all particles in different single particle states
This is Panti's Exclusion Principle

* The inverse is also true: Parrictes obeying an exclusion principle are described by an anti-symmetric wave function.
* The particles obey Fermi-Dirac statistics

$$
W_{F D}\left\{n_{i}\right\}= \begin{cases}1 & \text { if } \quad \sum_{i} n_{i}^{2}=N \tag{Fermions}\\ 0 & \text { if } \quad \sum_{i} n_{i}^{2}>N\end{cases}
$$

Particles that are described by symmetric wave function have no similar restriction and can have any non-negative $\left\{n_{i}\right\}$ These statistics are called Bose-Einstein. For such BOSONS all such stutes are equally probable

$$
W_{B E}\left\{n_{i}\right\}=1 \text { for } n_{i}=0,1,2 \ldots
$$

Stutistics is linked to spin:
Particles with integral spin (in units of \hbar) are bosons - with half-integral spin are fermions.

Bosons: photons, phonons, gravitons, a particles
Fermion: electrons, protons, neutrons
Our conclusions remain valid also for interacting particles, but still the wave function obeys:

$$
\begin{aligned}
& P \psi_{s}=\psi_{s} \\
& P \psi_{A}=\left\{\begin{aligned}
\psi_{A} & \text { even } P \\
-\psi_{A} & \text { oed } P
\end{aligned}\right.
\end{aligned}
$$

The Density matrix and Partition function for free particles
N indisinguishable non-interacting particles.
V volume of the system $=L^{3}$
In the canonical ensemble

$$
\left\langle r_{1} \ldots r_{N}\right| \hat{\rho}\left|r_{1}^{\prime} \ldots . r_{N}^{\prime}\right\rangle=\frac{1}{Q_{N}(\beta)}\left\langle r_{1} \ldots r_{N}\right| e^{-\beta \hat{H}}\left|r_{1}^{\prime} \ldots r_{N}^{\prime}\right\rangle
$$

with the partition function:

$$
Q_{N}(\beta)=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)=\left.\int\left\langle r_{1} \ldots r_{N}\right| e^{-\beta \hat{H}}\right|_{\left.r_{0} \ldots r_{N}\right\rangle} d^{3 N}
$$

Shorthand notation $r_{i} \rightarrow i ; r_{i}^{\prime} \rightarrow i^{\prime}$

$$
\left\langle 1 \ldots N \mid \psi_{E}\right\rangle=\psi_{E}(1, \ldots N) \text { are eigenfunctions }
$$ with energies E.

We can then expand:

$$
\begin{aligned}
& \left.\langle 1 \ldots N| e^{-\beta \hat{H}}\left|1^{\prime} \ldots N^{\prime}\right\rangle=\sum_{E, E^{\prime}}\langle 1 \ldots N| \psi_{E} \times \psi_{E}\left|e^{-\beta \hat{H}}\right| \psi_{E^{\prime}} X_{\psi_{E}}| |^{\prime} \ldots N^{\prime}\right\rangle \\
& =\sum_{E_{1} E^{\prime}}\left\langle 1 \ldots N \mid \psi_{E}\right\rangle e^{-\beta E} \delta_{E E^{\prime}}\left\langle\psi_{E^{\prime}} \mid \ldots N^{\prime}\right\rangle \\
& =\sum_{E} e^{-\beta E} \psi_{E}(1 \ldots N) \psi_{E}^{*}\left(1^{\prime} \ldots N^{\prime}\right)
\end{aligned}
$$

Since particles are non-interacting, we can express the eigenfunctions in terms of single particles and their eigenfunction $u_{i}(m)$
(11) The single particle energies are written in terms of the momentum:

$$
E=\frac{\hbar^{2}}{2 m} K^{2}=\frac{\hbar^{2}}{2 m}\left(\bar{K}_{1}^{2}+\bar{K}_{2}^{2}+\ldots+\bar{K}_{N}^{2}\right)=\sum_{i} \varepsilon_{i}
$$

With periodic boundary conditions

$$
u_{k}(\bar{r})=\frac{1}{V^{1 / 2}} e^{i \bar{F} \cdot \vec{F}} \text { with } \bar{K}=\frac{2 \pi}{L} \bar{n}
$$

The factor $\frac{1}{V^{1 / 2}}$ ensures normalization $\int\left|\mu_{\bar{k}}(\bar{r})\right|^{2} d \bar{r}=1$ \bar{n} is a rector of integers $0, \pm 1, \pm 2 \ldots$
The total wave function is the sum of permutation

$$
\psi_{k}(1 \ldots N)=(N!)^{-1 / 2} \sum_{P} \delta_{P} P\left[\mu_{k_{1}}(1) \ldots u_{k_{N}}(N)\right]
$$

where $\delta_{p}=+1$ if the particles are bowers and $\delta_{\rho}=\operatorname{sgn}(P)= \pm 1$ for fermions.
and the total momentum $K^{2}=K_{1}^{2}+\ldots+K_{N}{ }^{2}$ amplitude
When me permute, we can either change the particles or change the momenta $k_{1}, \ldots k_{N}$
There will give the same permutations

$$
\begin{aligned}
\psi_{k}(1 \ldots N) & =(N!)^{-1 / 2} \sum_{P} \delta_{P}\left[u_{k_{1}}(P 1) \ldots u_{k_{N}}(P N)\right] \\
& =(N!)^{-1 / 2} \sum_{\rho} \delta_{P}\left[u_{P k_{1}}(1) \ldots u_{P k_{N}}(N)\right]
\end{aligned}
$$

112 We can now substitute into the density operator

$$
\begin{aligned}
& \left.\langle 1 \ldots N| e^{-\beta \hat{H}}| |^{\prime} \ldots N^{\prime}\right\rangle=\sum_{E} e^{-\beta E} \psi_{E}(1 \ldots N) \psi_{E}^{*}\left(1 \ldots . N^{\prime}\right) \\
& \left.\quad=\frac{1}{N!} \sum_{K} e^{-\frac{\beta \hbar^{2}}{2 m} K^{2}} \sum_{\text {sum sneak }}^{\left\{\sum_{P} \delta_{p}\left[u_{k_{1}}(\rho 1) \ldots u_{k_{N}}(\rho N)\right]\right.} \times \sum_{\widetilde{P}} \delta \delta_{\tilde{P}}\left[H_{\tilde{\rho}_{K_{1}}}^{*}\left(1^{\prime}\right) \ldots u_{\widetilde{P} K_{N}}^{*}\left(N^{\prime}\right)\right]\right\}
\end{aligned}
$$

Three comments
(i) The quantity $\left\{\psi \psi^{*}\right\}$ is invariant to permutation of k_{i}.
(ii) The summation is therefore equivalent to summing the K_{i} independently and then dividing by $\frac{1}{N!}$ This is equivalent to trying all permutations

(iii) Similarly, the N -fold
summation over the k_{i} all the permutations \tilde{P} will contribut the same.
Therefore we can take only one of them, say $\tilde{P}_{k_{1}}=k_{1}, \ldots . P_{k_{n}}=k_{n}$, and multiply by (N !) The end result is

$$
\begin{aligned}
& \text { The end result is } \\
& \langle 1 \ldots N| e^{-\beta \hat{H}}\left|1_{1}^{\prime} \ldots . N^{\prime}\right\rangle=\frac{1}{N!} \sum_{k_{1} \ldots k_{N}} e^{-\frac{\beta \hbar^{2}}{2 m}\left(k_{1}^{2}+\ldots k_{N}^{2}\right)} \\
& \\
& \times\left[\sum_{p} \delta_{p}\left[u_{k_{1}}(P 1) u_{k_{1}}^{*}\left(1^{\prime}\right)\right] \ldots .\left[u_{k_{N}}(P N) u_{k_{N}}^{*}\left(N^{\prime}\right)\right]\right]
\end{aligned}
$$

We can now replace all the discrete summation over k_{i} by integrations $\sum_{k_{i}} \rightarrow \int \frac{L}{2 \pi} d k_{i}$

$$
\begin{aligned}
& \langle 1 \ldots N| e^{-\beta \hat{H}}\left|1_{1}^{\prime} \ldots N^{\prime}\right\rangle= \\
& =\frac{1}{N!} \cdot \frac{1}{(2 \pi)^{3 N}} \sum_{P} \delta_{P}\left[\int\left[e^{-\frac{\beta \hbar^{2}}{2 m} k_{1}^{2}+i k_{1}\left(P 1-1^{\prime}\right)}\right] d k_{1}\right] x \\
& \pi
\end{aligned}
$$

$$
\text { with the } \frac{1}{v^{\prime} / 2} \text { factors }
$$

Integration is Fourier union is Fowler Gaussian
transform over Gars in the $\mu_{i}(m)$

$$
=\frac{1}{(N!)}\left(\frac{m}{2 \pi \beta \hbar^{2}}\right)^{3 N / 2} \sum_{p} \delta_{p}\left[f\left(P_{1}-1^{\prime}\right) \ldots . . f\left(P N-N^{\prime}\right)\right]
$$

where $f(x)=e^{-\frac{m}{2 \beta \hbar^{2}} x^{2}}$ is the F.T. of Gaussian.
Use the definition of the thermal de Broglie toavelength $\lambda=\frac{h}{(2 \pi m T)^{1 / 2}}=\hbar\left(\frac{2 \pi \beta}{m}\right)^{1 / 2}$ and finally get.

$$
\left[\langle 1 \ldots N| e^{-\beta \hat{H}}\left|1 \ldots N^{\prime}\right\rangle=\frac{1}{N!\star^{3 N}} \sum_{P} \delta_{P}\left[f\left(P r_{1}-r_{1}\right) \ldots f\left(P r_{N}-r_{n}\right)\right]\right.
$$

with

$$
f(r)=e^{-\pi r^{2} / \pi^{2}}
$$

To calculate the partition function we have to integrate the density matrix:

$$
Q_{N}(\beta)=\operatorname{Tr}\left(e^{-\beta \hat{H}}\right)=\int d r_{1} \ldots d r_{N}\langle 1 \ldots N| e^{-\beta \hat{H}}\left|\ldots N^{*}\right\rangle
$$

Before we do that, note that:
(i) The leading term in the summation is when
$\rho_{r_{i}}=r_{i}$ and then we get 1
(ii) The second term will include one pair exchange,

$$
f\left(r_{j}-r_{i}\right) f\left(r_{j}-r_{i}\right)
$$

(iii) The next term mill include triplets

So we have bosuns

$$
\sum_{p}=1 \pm \sum_{i<j}^{\text {bosuns }} f_{i j} f_{j i}+\sum_{i<j<k} f_{i j} f_{j k} f_{k i}+\ldots
$$

where the shortheund is $f_{i j}=f\left(r_{i}-r_{j}\right)$
Note that the scale of the Gaussian in f is λ, so if the typical distances between the particles are larger, $f \ll 1$.
In other wards when $n t^{3}=\frac{n h^{3}}{(2 \pi m T)^{3 / 2}} \ll 1$ the system can be approximated by the first term This yields $Q_{N}(\beta)=\operatorname{Tr}\left(e^{-\beta^{\hat{H}}}\right)=$

$$
\left.\begin{array}{l}
\text { Classical } \\
\text { Ideal Gas }
\end{array}\right) \rightarrow=\frac{1}{N!\lambda^{3 N}} \int d^{3 N} \cdot 1=\frac{V^{N}}{N!\lambda^{3 N}}
$$

* This shown that we get the the ideal gas partition function from precise QM. Indeed, the Gibbs recipe is correct and originates from the symmetrization of wave functions.
* It also shourg that the correspomelen y between the phese-space integration of classical mechanics over phase space and the sumonation over the density operator when we divide by cells of volume $w_{0}=h^{3 N}$

The normalized density operator is

$$
\left.\langle | \ldots N||\hat{\rho}||_{\ldots}^{\prime} \ldots N^{\prime}\right\rangle=\frac{1}{Q_{N}}\langle 1 \ldots N| e^{-\beta \hat{H}\left|i_{1} \ldots N^{\prime}\right\rangle}
$$

In the classical limit

$$
\left.\langle | \ldots N|\hat{\rho}| I^{\prime} \ldots N^{\prime}\right\rangle=\frac{1}{N!\lambda^{3 N}} / \frac{V^{N}}{N!\lambda^{3 N}}=\frac{1}{V^{N}}
$$

which is as procluct of N single particle $\frac{1}{V}$ factors since

$$
\langle r| \hat{\rho}_{1}\left|r^{\prime}\right\rangle=\frac{1}{V}
$$

From this we see that in the classical limit there are no correlations between the particles:
However, when the system is genuinely QM and it is degenerate $n t^{3} \geqslant 1$ there could be correlations even if the particles are not interacting through the Hamiltonian.

116 These purely $Q M$ interactions come from the symmetrization of the wave functions. Of course, these interaction g are significant when the inter-particle distance is comparable to $\lambda, \quad n^{-1 / 3} \lesssim \lambda$.

We can see this by considering two particles $N=2$. The summation is now simple

$$
\left\langle r_{1} r_{2}\right| e^{-\beta \hat{H}}\left|r_{1} r_{2}\right\rangle=\frac{1}{2!\lambda^{6}}\left[1 \pm e^{\left.-2 \pi \frac{r_{12}^{2}}{t^{2}}\right]}\right.
$$

So the partition function is

$$
\begin{aligned}
& Q_{2}(\beta)=\frac{1}{2 \lambda^{6}} \int\left(1 \pm e^{\left.-2 \pi \frac{r_{12}^{2}}{2}\right) d r, d r_{2}}\right. \\
& =\frac{1}{2} \frac{V}{\lambda^{6}}\left[V \pm \int_{0}^{\infty} e^{\left.-2 \pi \frac{r^{2}}{\lambda^{2}} 4 \pi r^{2} d r\right]} \begin{array}{l}
\text { change cocradinetey } \\
=\frac{1}{2}\left(\frac{V}{\lambda^{3}}\right)^{2}\left[1 \pm \frac{1}{2^{3 / 2}}\left(\frac{t^{3}}{V}\right)\right] \approx\binom{r_{1}}{r_{2}} \rightarrow\binom{r_{1}-r_{2} \equiv r}{r_{1}}
\end{array}\right.
\end{aligned}
$$

The density uperater is therefore (diagonal terns)

$$
\left\langle r_{1}, r_{2}\right| \hat{\rho}\left|r_{1}, r_{2}\right\rangle=\frac{1}{V^{2}}\left[1 \pm e^{\left.-2 \pi \frac{r_{12}^{2}}{\pi^{2}}\right]}\right.
$$

117 We see that the probability differs considerably from the classical vale $\frac{1}{V^{2}}$

$$
P\left(r_{1}, r_{2}\right)=\left\langle r_{1} r_{2}\right| \hat{\rho}\left|r_{1} r_{2}\right\rangle=\frac{1}{V^{2}}\left[1 \pm \exp \left(\frac{2 \pi r_{12}^{2}}{t^{2}}\right)\right]
$$

- For bosons $P\left(r_{1}=r_{2}\right)=\frac{2}{V^{2}}$ twice as classical particles
- For fermiary $P\left(r_{1}=r_{2}\right)=0 \quad$ Pauli's exclusion

Sometimes it is useful to describe this QM effect by a closssicul potential $v_{s}(r)$.

The relation between correlation functions and potentials give

$$
\begin{aligned}
& e^{-\beta v_{s}(r)}=g(r) \\
\rightarrow & v_{s}(r)=-\frac{1}{\beta} \ln \left[1 \pm \exp \left(\frac{-2 \pi r^{2}}{\lambda^{2}}\right)\right]
\end{aligned}
$$

