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Biological Q: How do molecular machines convert scalar chemical energy            

into directed motion, a vector?

Physical idea: Mechano-chemical coupling by random walk of the motor 

on a free energy landscape defined by the geometry of the motor.



I. Survey of molecular devices in cells



Artificial and natural molecular machines

• A molecular machine, or a nanomachine: a molecule or a an 

assembly of a few molecules, that performs mechanical 

movements as a consequence of specific stimuli.

The Nobel Prize in Chemistry 2016: 

Sauvage, Stoddart and Feringa

"for the design and synthesis of molecular machines".

The most complex molecular machines 

are proteins found within cells.



Classification of molecular devices in cells

(A) Enzymes: biological catalysts that enhance reaction rate.        

(B)  Machines: reverse the natural flow of a chemical or  

mechanical process by coupling it to another process.

• “One-shot” machines: use free energy for a single motion. 

• Cyclic machines: repeat motion cycles. Process some source of free 

energy such as food molecules, absorbed sunlight, concentration 

difference across a membrane, electrostatic potential difference. 



• “One-shot” machines

• Cyclic machines



Cyclic machines are essential to Life

• Motors: transduce free energy into directional motion

(case study: kinesin)

• Pumps: transduce free energy to create concentration gradients

across membranes (ion channels).

• Synthases: transduce free energy to drive a chemical reaction and

then synthesize some products (ATP synthase). 

Let’s look at a few representative classes of the molecular devices.



(A) Enzymes enhance chemical reactions

• Even if ∆G<0, a reaction might still be very slow due energetic barriers.

• Good for energy storage, but how to release the energy when needed?



Enzymes display saturation kinetics

• Most enzymes are made of proteins.

• Ribozymes consist of RNA.

• Ribosome: complex of proteins with RNA.

𝑉 =
[𝑆]

[𝑆] + 𝐾𝑀
𝑉max

speedup by 1012

Vmax=107 molec/sec



(B) One-shot motors assist in cell 

locomotion and spatial organization

● Translocation

Several mechanisms can rectify (make 

unidirectional) the diffusive motion of 

protein through the pore.

●
Polymerization

Actin polymerization from one end of an 

actin bundle provides force to propel a

Listeria bacterium through the cell surface



All eukaryotic cells 

contain cyclic motors

• Molecular forces were measured 

by single molecule experiment.



Some important cyclic machines 



II. Mechanical machines



Macroscopic machines can be 

described by an energy landscape

load

“motor”
U = − w Rmoto

r

2

perfect 

axis

The movement of macroscopic machines is

totally determined by the energy landscape.

 1 2totU w R w R  

2motorU w R 

1loadU w R



Overdamping macroscopic machines

cannot step past energy barriers

load

“motor”

U = − w Rmoto

r

2

perfect 

axis
tot motor loadU U U 

2motorU w R 

1loadU w R

imperfect axis

(e.g. friction)



Some machines have more degrees of freedom

• The angles are constrained to “valleys.

• Slipping: imperfections (e.g. irregular 

tooth) may lead to hopping.

Gears: the angular variables 

both decrease as w2 lifts w1.

• The machine stops if:

– w2 = w1 .

– Slipping rate too large.

constraint:  2
n

N
    



Microscopic machines can step past energy barriers

• A nanometric rod makes a one-way trip to the 

right driven by random thermal fluctuations. 

• Moving to the left is impossible by sliding bolts, 

which can move down to allow rightward motion; 

• It can move against  external "load" f.

• Where does the work against f comes from?

• What happens if one makes the shaft into a circle?



Can one extract work from thermal fluctuations?

• Rod cannot move at all unless 𝜀~𝑘𝐵 𝑇. 

• But then bolts will spontaneously retract 

from time to time…

• Leftward thermal kick at just such a 

moment and rod steps leftwards. 

• Where does the work against f comes from?

• What happens if one makes the shaft into a circle?



Can we save the second law of thermodynamics?

• Bolts are tied down on the left side, 

then released as they emerge on the right. 

• Where does the work against f comes from?

• What happens if one makes the shaft into a circle?



Can we save the second law of thermodynamics?

• Where does the work against f comes from?

-- Potential energy stored in the compressed 

springs on the left. 

• What happens if one makes the shaft into a circle?

-- All springs are released and the motion stops. 

This is a toy model for model 

for molecular translocation 



Q: Can the small load be lifted if T1 =T2 =T ?

A: May look quite possible, but 2nd law of thermodynamics:

(Heat cannot be converted to work spontaneously) prohibits this.

Pawl

φ T1

T
2

Ratchet

Load

Spring

Feynman’s ratchet and pawl

φ

total ratchetU U MR 

MR

ratchetU





• load = 0:

• But also

 no net rotations.

• Q: what if load > 0?

• A: work  heat

1

pawl pulled over tooth
=exp

by vanes
B

P
Tk

  
  

   
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=exp
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pawl is up and wheel enough energy 
Rate Rate 

can turn backwards freely to turn wheel forward

   
   

   
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Ratchet can be made reversible if T1 >T2

• Forward rotation: 

– Heat from bath 1:

• Backward rotation:

– Heat from bath 2:

• Reversibility requires detailed balance

• The efficiency is 
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Ratchet is irreversible if T1=T2=T

• Forward rotation: 

• Backward rotation:

 Ratchet moves backward 

forward 0
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Summary: necessary conditions for directional motion

• Asymmetric potential:

• Break detailed balance:

U



Pawl

φ

Ratchet

Load

Spring 1T

2T

1 2T T

forward backwardR R



Low load:     

forward 

High load: 

backward

Modeling molecular machines: 

qualitative picture

x

L

/f L /f L



Modeling molecular machines: 

qualitative picture

• To move right need a thermal fluctuation of

• If                then the leftwards motion is negligible. 

• If           rod diffuses freely between steps with 

• What happens when 

x

L

E f L  

Bk T

0f 

2
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step

  and velocity   
L L L

t v
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Mathematical framework: Smoluchowski equation

• Think of large set of identical rods:

• What is the P(x,t) = prob. ratchet is in (x,x+dx)?

• Ratchet diffuse according to Fick’s law:

• Rods drift in the force field:

• The total current is:
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x
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Fokker-Planck and Smoluchowski equations

• Number conservation (continuity equation):

• With current :

 Fokker-Planck equation 

• At steady-state this is Smoluchowski’s equation
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Steady-state is solution to Smoluchowski equation

• No net current: 

• Gives equilibrium Boltzmann distribution:

0
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The general steady state solution 

• Steady-state
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Solving the molecular ratchet 

• Steady-state

• Sawtooth potential

• “Perfect” ratchet – because S-S bond strong

• Therefore:  (1) 0  protein moves rightwards.

(2)   ( ) 0 because it cannot jump back.
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Solving the molecular ratchet 

• Let’s scale the variables:

• Boundary condition 

; ; ;
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• Normalization in [0,L]

• Time to move on bolt

• Average speed  
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III. Molecular implementation of 

mechanical principles



What’s missing for molecular machines?

• How can we apply these macroscopic  ideas to single 

molecules?

• What is the cyclic machine that eats chemical energy?

• Where are the experiments?



Reaction coordinate simplifies 

description of a chemical reactions 

• Chemical reactions can be regarded as transitions between 

different molecular configurations. To move between 

configurations atoms rearrange their relative positions.

• The “states” are locally stable points in a   multi-dimensional 

configuration space (local minima of free energy).

• Thermal motion can push molecules to transit between states.



Chemical reactions are random walks on free energy 

landscape in space of molecular configurations

• There exists a path in configuration space that joins two minimums 

while climbing the free energy landscape as little as possible.

• Chemical reaction is  approximately 1D walk along this path, which is 

called  the reaction coordinate.

2 2H H H H 



Even big macromolecules can be described 

by one or two reaction coordinates

• Rate of transition through a barrier
‡ ‡
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Enzyme catalysis: Conceptual model of 

enzyme activity (Haldane 1930)

(1) Binding site of enzyme E matches substrate S.

(2) E and S deform to match perfectly and form ES state. 

One bond in S (“spring” in S) is easily broken by deformation.

(3) Thermal fluctuation break bond and get EP state. 

A new bond forms (“upper spring”), stabilizing product P.

(4): P does not perfectly fit to binding site, so it readily unbinds, 

returning E to its original state.



Enzymes reduce activation energy by binding

tightly to the substrate's transition state. 

• Interaction free energy with large 

binding free energy (dip) with 

entropic cost aligning S and E.

• Binding free energy partly offset 

by deformation of E, but net 

effect is to reduce the barrier 

• Net free energy landscape (sum of  

three curves):  Enzyme reduced 

∆G‡ but not total ∆G



Enzymes are simple cyclic machines

• Enzyme work by random-walking 

down 1D free energy landscape. 

‡

Barrier:

Net descent each work cycle:

G f L

G f L 

  

   



Mechanochemical motors move by random 

walking on a 2D landscape 

• E catalyzes the reaction S at high chemical 

potential μS into P with low μP .

• E has another binding site which can attach to a 

periodic “track”. e.g., kinesin which converts 

ATP to ADP+Pi and can bind to a microtubule.

• 2D free energy landscape with 2 variables: 

– Reaction coordinate: # of remaining S.

– location of machine on track. 



• tilted along chemical axis by free energy of 

reaction. 

• load force tilts of the surface along position. 

• Furrow couples chemical energy to mechanical 

motion. System random walks in furrow.

• Correspondence between potential energy 

surface and kinetic mechanism of motor. 

Potential energy is periodic in reaction coordinate 

and position, reflecting cyclic nature of enzymatic 

turnovers and motor cycles.



Breaking the symmetry induces motion 

• Mechanochemical cycle: landscape with 2 directions, 

reaction coordinate and displacement. 

• Landscape asymmetric in displacement +

concentrations of S and  P out of equilibrium 

=   directed net motion.

• Deterministic  free  energy  landscape: coupling  of  

variables is tight and we can follow a single reaction 

coordinate one valley.



VI. Kinetics of enzymes and 

molecular machines



Michaelis-Menten rule describes 

the kinetics of simple enzymes

𝑉 =
[𝑆]

[𝑆] + 𝐾𝑀
𝑉max
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• low P: EP→E+P is quick process.

 neglect shortly lived state EP. 

• ∆G' >> other barriers and kBT

 ES→EP is irreversible.

MM kinetics originate from the energy 

landscape of the enzyme

• Different Initial and final states starting but enzyme returns to initial state.
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Experimental test: Lineweaver-Burk graph 
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Two-headed kinesin is a tightly coupled, perfect ratchet

• tightly coupled molecular motor ~ enzyme: 

1D random walk along a valley, a step per reaction.

• P kept low motion is irreversible.

• A tightly coupled molecular motor with an irreversible step

move at a speed determined by MM kinetics. 

• Kinesin is bound to microtubule ~ 100% duty ratio.

• Kinesin is highly processive: makes many steps before falling 



Kinesin is highly processive, even with load 

• kinesin motility assay: optical tweezers 

apparatus pulls a bead backwards.

• Feedback circuit continuously moves the 

trap following the kinesin at constant 

force 6.5 pN, with 2 mM ATP.

[Viscscher et al. 1999]



Kinesin obeys MM kinetics 

with load-dependent parameters

• Kinesin rarely moves backward  “perfect ratchet” limit.

• Kinesin is tightly coupled: 

exactly one step per one ATP molecule (even under load).

[Data from Visscher et al. 1999]



Structural clues for kinesin as perfect ratchet

• Microtubule:

– β-subunit has a binding site for kinesin.

– Regular space at 8 nm intervals.

– Microtubule is polar (+/- ends).

• Kinesin binding is stereospecific:

 bound kinesin points in one direction.

+ -

Kinesin heads:

neck

Nucleotide binding site

neck 

linker

motor 
domain

• ADP at nucleotide-binding site: neck linker 

flops between two different conformations. 

• ATP at site: neck linker binds tightly to kinesin 

head and points to the + end.



Structural clues for kinesin as perfect ratchet

• Kinesin binds ADP strongly.

• Kinesin without bound nucleotide binds microtubules strongly.

• Complex Microtubule·Kinesin·ADP is only weakly bound.

• Complex Microtubule·Kinesin·ATP is strongly bound; Only one head could 

bind microtubule when only ADP exists;

• Binding ATP to one head stimulates another head to release its ADP



Cyclic model for kinesin stepping 



Summary



• Necessary conditions for directional motion:

• Break spatial inversion symmetry

• Break thermal equilibrium.

• Smoluchowski equation for micro-machines:

• Enzymes are simple cyclic machines; 

work by random walking on 1D free energy landscape.

• Saturation kinetics: Michaelis-Menten rule

• Mechanochemical motors move by random-walking on 2D 

landscape reaction coordinate vs. spatial displacement.

• Two-headed kinesin is a tightly coupled motor.
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