Lecture IV -A

Shannon’s theory of noisy
channels and molecular codes



Noisy molecular codes: Rate-Distortion theory

Mapping

Channel/Code = mapping between two molecular spaces.

Two functionals determine the “fitness” of the code:
Fitness = Rate(map) + Distortion(map).

Mapping becomes non-random at a coding transition.

Topological aspects.



Geometry of molecular information channels

“Marble packing”

(A) Max colors.

(B) Same\similar color of neighbors.



The genetic code is main info channel of life
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DNA — 4 letters
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Genetic Code

Protein — 20 letters

® Genetic code: translates 3-letter words in 4-letter DNA language
(43 = 64 codons) to protein language of 20 amino acids.

e Proteins are amino acid polymers.

e Diversity of amino-acids is essential to protein functionality.



The genetic code maps codons to amino-acids

e Molecular code = map relating two sets of molecules
(spaces, “languages”) via molecular recognition.

e Spaces defined by similarity of molecules (size, polarity etc.)

20 amino-acids
64 codons
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Aspartate Glutamate Tryptophan Serine Threonine Phenylalanine Methionine



The genetic code is a smooth mapping

Amino-acid polarity
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e Degenerate (20 out of 64).
e Compactness of amino-acid regions.

e Smooth (similar “color” of neighbors).

Generic properties of molecular codes?



Challenges of molecular codes: rate and distortion

Distortion

e Noise, crowded milieu.

e Competing lookalikes.

e Weak recognition interactions ~ k,T.

e Need diverse meanings.

“Synthesis of reliable organisms from unreliable components” 2
(von Neumann, Automata Studies 1956) o

Rate

e How to construct the low-rate molecular codes
e S

at minimal cost of resources?

Rate-distortion theory (Shannon 1956)



Fitter codes have minimal distortion

Amino-acids
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Distortion of noisy channel, Q = average distortion of AA.

R defines topology of codon space.

C defines topology of amino-acid space.

(TT, J Theo Bio 2007, PRL 2008, PNAS 2008)



Smooth codes minimize distortion

Noise confuses close codons.

Smooth code:

amino-acid

close codons = close amino-acids.

— minimal distortion.

Max smoothness Min smoothness

Max diversity

Min diversity

64

20 # amino-acids

Marble game (TT, Bio Phys 2008)



Channel rate is code’s cost

e Diverse codes require high specificity = high binding energies &.

e (Cost ~ average binding energy < € >.
e/T

e Binding prob. ~ Boltzmann: E~e

e Cost/=Channel Rate (bits/message)



Code’s fitness combines rate and distortion of map

Fitness = Gain x Distortion + Rate H =50+l

e @Gain [ increases with organism complexity and environment richness.
e Fitness H is “free energy” with inverse “temperature” f.

e Evolution varies the gain f.

e Population of self-replicators evolving according

to code fitness H: mutation, selection, random drift.



Code emerges at a critical coding transition

e Low gain f : Cost too high

—> no specificity = no code.
e Code emerges when f increases:

channel starts to convey information (/ # 0).

e Continuous phase transition.

e Emergent code is smooth, low mode of R.
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Rate-distortion theory (Shannon 1956)



Emergent code is a smooth mode of error-Laplacian

e Lowest excited modes of graph-Laplacian R . W M

e Single maximum for lowest excited modes (Courant).
e Every mode corresponds to amino-acid :
# low modes = # amino-acids.
— single contiguous domain for each amino-acid.

— Smoothness.




Probable errors define the graph
and the topology of the genetic code

e Codon graph = codon vertices + 1-letter difference edges (mutations).

* Non-planar graph (many crossings).
* Genus y = # holes of embedding manifold.
* Graph is holey : embedded in y =41

(lower limitis y =25)




Coloring number limits number of amino-acids

e Q: Minimal # colors suffices to color a map where neighboring

countries have different colors?

e A:Coloring number, a topological invariant (function of genus):

30

25 g==Chr(41) =25

chr(») :E(7+«/1+487/)J.

(Ringel & Youngs 1968) E’ s
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From Courant ‘s theorem + “convexity” (tightness).

Genetic code: y = 25-41 - coloring number = 20-25 amino-acids

20 €=chr(25) =20 __ ee4
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(TT J Lin Alg 2008)



The genetic code coevolves with accuracy

e A path for evolution of codes: from early codes with higher codon

degeneracy and fewer amino acids to lower degeneracy codes with more

amino acids.
1st | 2nd | 3rd | | chr#
1 4 1 0 4
2 4 1 1 7
4 4 1 5 11
4 4 2 13 16
- 4 4 3 25 20
_ % 4 4 4 | 41 25
b




Lecture IV —-B

Growth rate as entropy rate:
Kelly’s horse race

A New Interpretation of Information Rate

reproduced with permission of ATLT

By J. I.. KELLY, JR.

i Manuseript received Mareh 21, 1956




Horse race basics

Lucky Star: White light: Sea biscuit
Odds: 2:1 Odds: 3:1 Odds: 6:1



Horse race basics (cont.)

e Problem: You dedicate 100S for gambling, you intend to
reinvest the money over and over again, what is the

optimal strategy?

e Kelly’s idea: try to optimize asymptotic growth rate.



Asymptotic growth

Let W(n) be your wealth after n bets.

Let W(O) be you initial wealth

W (n)

A=
Growth rate o 09, W (0)
Asymptotic growth rate — lim = |ng W(n)

n—oo N (O)




Constant rebalancing

Each race has a random outcome X drawn from the
distribution P(X) assumed constant (0,P=0).

The percentage of money placed on the i-th horse of the n-th
round is W(n-1)*b(i).

The amount gained :

W(n)=0(x) W(n-1) b(x)



Constant rebalancing

e After N such trials (with rebalancing) :

W (n)=W (0)x O(X,)b(X,) x..O(X \ )b(X )

Io%%= 100, 0(X,)b(X,) +... +10g, 0(X )b(X )

e Since X is memoryless and P(X) is constant we obtain for N>>1

log, (O(X1)b(X,)) +...+10g, (O(Xy )b(X ) =
N[ P(X,)10g, (O(X,)b(X;)) + ...+ P(X ) 1og, (O(X y )b(X )]



Conclusion so far

Asymptotic growth rate

A:1|092W(”) =
n W (0)

%[Iogz(o<xl>b(x1))+---+Iogz(O(Xn)b(Xn»]=

— Z p; 109, (O;ly)

Nn—oo



Optimal strategy if P(X) is known

e Suppose we know the probability of winning for all the
horses p..

e What is the optimal bet-hedging strategy?

A = Z p; log, (Oibi)_ﬂ“zbi

ON
ob. b

-A=0 = b =p

e This strategy is termed proportional betting.



Example: Two horses

* Odds: 2:1 (double or nothing), i.e. 0,=0, = 2.

* Let p, be the probability the 15t horse will win and

b, the portion of the wealth that placed on this 15t horse.

* Let’s plot the asymptotic growth rate:



Example : a race with 2 horses
double or nothing

Min-max saddle point

0.1 0.2 o= 04 05 O 0.7 08 049



The saddle point is A zero-sum game against “nature”

The asymptotic growth rate A = A(b, p)
* Thegameis: |choose b/ nature choosep

* What is the minimal growth A = A(b, p) | can assure if nature is “evil”?

-1
Oi
mamx — Pmnmx = N A-1
2.0,
j

e Answer: min-max solution b

* Intheexampleshown b . =p . =

E
2



Growth rate in horse race

A(b, p) = D(P || Prnmi) = Db p) +V

D(p| | q) — relative (KL) entropy
15t term - pessimists surprise (free lunch).
2" term - “distance’” from optimum (note the sign).

34 term - game value.



Side information

Race at LA, bookie in NY and | have a friend in the telegraph
company...

Perfect side information = exponential growth.

What about partial information?



Side information (cont.)

e |Informer says horse j will win.

e The probability for i-th to win given the side information that

the j-th horse will win is pij;

* The adjusted portfolio is b;;



Optimal betting with side information

A(b, p) = Z P; Py 109, (Oiby;) =
i ]

DCP || Prnmx) + I(X;Y)_ijD(p“ Iby;) +Vv
1]

| (X;Y) is the mutual information between the informer and us

(X - horse, Y - side information).

Kelly's famous result retrieved at optimality:

Optimal gain of capital = Channel Capacity



So why study horse races? Biology

Only manifestation of channel capacity without an explicit code.
Cells ¥ money,

Phenotype ~ betting,

nature’s state ~ winning horse,

Portfolio = phenotype distribution

side Info. = sensing

BUT: (i) Suboptimal phenotype # immediate ruin.

(ii) P=P(t) (non-stationary).



Generalized Kelly (Main result)

A(b p) Z p pl|j IOQZ(Zolkbk“) —

Given that the sum of O columns is positive, /\ decomposes to a sum of entropies:

new game value

D(p | )+ 1(X;Y)=> p;D(py; IS 7"0y;) "
\ P pmnmx/ \ ! / \i,j P;DLP,; .|j/
f | |

Free lunch
term

Side info. ChannelPenalty term: “distance’” between actual p(]|j)
rate to the p(|j) you happen to be optimal for.



Generalized Kelly (Main result) cont.

* Iff b,.(p) > 0 then b, (p) =S p.

-1 |
° Sij = 1 is a stochastic matrix.
2.0;

. S'lb(,m is the conditional environment probability that b,.; is optimal for in the
adjusted game.

So the penalty term :

= average loss due to the sub-optimal response to the side information.

Z ij(p-|j | S_lb.“-)
]



Environment is non-stationary
Slow changes: A(p(t),b(t)) is meaningful
Problem:

given K phenotypic switchings allowed within [0,T] find
optimum switching strategy (when and to what)



When P=P(t)

Our solution:

when ? : equipartition of loss criterion

Zjij(p’iU(tl)Hﬁi\j(tl)) —
2 i D (i (t)|[Digj (L))

,/

to what ?: adjusted time average

2k Sz';:lbk\j — tug1—t, ftiH dtpi);(t)




Monte-Carlo (binary symmetric channel)
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Conclusion:

If there is a dilemma — an increase of 1 bit in the side
information rate can potentially increase the doubling
rate by 1 bit/generation.



