
Lecture IV – A 

 
Shannon’s theory of noisy 

channels and molecular codes 



Noisy molecular codes: Rate-Distortion theory 
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• Channel/Code = mapping between two molecular spaces. 

• Two functionals determine the “fitness” of the code: 

                  Fitness = Rate(map) + Distortion(map). 

• Mapping becomes non-random at a coding transition. 

• Topological aspects.  

 

Mapping 



Geometry of molecular information channels 

 “Marble packing”  

(A) Max colors. 

(B) Same\similar color of neighbors. 
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The genetic code is main info channel of life 

• Genetic code:   translates 3-letter words in 4-letter DNA language  

                            (43 = 64 codons) to protein language of 20 amino acids.  
 

• Proteins are amino acid polymers. 
 

• Diversity of amino-acids is essential to protein functionality. 

DNA – 4 letters          ………..ACGGAGGUACCC………. 

 Protein – 20 letters Thr Glu Val Pro 
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The genetic code maps codons to amino-acids 

• Molecular code  =  map relating two sets of molecules  

                                 (spaces, “languages”) via molecular recognition.  

• Spaces defined by similarity of molecules (size, polarity etc.) 

64 codons 
20 amino-acids 

Genetic Code 

GGG GGC GAG GAC GCG GCC GUG GUC 

GGA GGU GAA GAU GCA GCU GUA GUU 

AGG AGC AAG AAC ACG ACC AUG AUC 

AGA AGU AAA AAU ACA ACU AUA AUU 

CGG CGC CAG CAC CCG CCC CUG CUC  

CGA CGU CAA CAU CCA   CCU 

UCA UCU 

UGG UGC UAG UAC UCG UCC UUG UUC 

UGA UGU UAA UAU 

CUA CUU 

UUA UUU 

tRNA 

amino 

acid 

codon 



• Degenerate (20 out of 64). 

• Compactness of amino-acid regions. 

• Smooth (similar “color” of neighbors). 

 

Generic properties of  molecular codes?  

The genetic code is a smooth mapping 

Amino-acid polarity 
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Challenges of molecular codes: rate and distortion 

Distortion 

• Noise, crowded milieu.  

• Competing lookalikes. 

• Weak recognition interactions ~ kBT. 

• Need diverse meanings.  

  

“Synthesis of reliable organisms from unreliable components” 

(von Neumann, Automata Studies 1956) 

 

Rate 

• How to construct the low-rate molecular codes 

at minimal cost of resources? 

 

              Rate-distortion theory (Shannon 1956) D Goodsell 



• Distortion of noisy channel, Q = average distortion of AA.  

• R defines topology of codon space.  

• C defines topology of amino-acid space. 

Fitter codes have minimal distortion 
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• Optimal code must balance contradicting needs for smoothness and diversity. 

Smooth codes minimize distortion 
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• Noise confuses close codons. 

• Smooth code: 

        close codons =  close amino-acids.   

          →  minimal distortion.  

 

20 # amino-acids 

1 64 

Max smoothness 

Min diversity 

Min smoothness 

Max diversity 

(TT, Bio Phys 2008) Marble game 



• Diverse codes require high specificity  = high binding energies ε. 

• Cost ~ average binding energy  < ε >. 

• Binding prob. ~ Boltzmann:   E ~ e ε/T  . 

 

 

 

 

 

 

• Cost I = Channel Rate   (bits/message) 

Channel rate is code’s cost 
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Code’s fitness combines rate and distortion of map 

• Gain β increases with organism complexity and environment richness. 

• Fitness H  is “free energy” with inverse “temperature” β. 

• Evolution varies the gain β. 

 

• Population of self-replicators evolving according  

  to code fitness H: mutation, selection, random drift. 

H Q I Fitness = Gain x Distortion + Rate   



• Low gain β :  Cost too high  

                   →  no specificity → no code. 

• Code emerges when β increases: 

 channel starts to convey  information (I ≠ 0).  

 

• Continuous phase transition. 

• Emergent code is smooth, low mode of R. 

 

 

  

Code emerges at a critical coding transition 

Distortion Q 

Rate I 

Coding 
 transition 

codes 

no-code code 

Rate-distortion theory (Shannon 1956) 



Emergent code is a smooth mode of error-Laplacian 

• Lowest excited modes of graph-Laplacian R . 

• Single maximum for lowest excited modes (Courant). 

• Every mode corresponds to amino-acid : 

                        # low modes = # amino-acids. 

    → single contiguous domain for each amino-acid. 

    → Smoothness. 
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Probable errors define the graph  
and the topology of the genetic code 

• Codon  graph = codon vertices +  1-letter difference edges (mutations). 

T 

A 

G 

C 

T 

A 

G 

C X X 

T 

A 

G 

C K4 X K4 X K4 

• Non-planar graph (many crossings). 

• Genus γ = #  holes of embedding manifold. 

• Graph is holey : embedded in γ = 41  

                           (lower limit is γ  = 25)  
 



    Coloring number limits number of amino-acids 

• Q: Minimal # colors suffices to color a map where neighboring 

countries have different colors? 

• A: Coloring number, a topological invariant  (function of genus): 
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• From Courant ‘s theorem + “convexity” (tightness). 

• Genetic code: γ = 25-41 → coloring number = 20-25 amino-acids 

(41) 25chr 

(25) 20chr 

 (Ringel & Youngs 1968) 

 (TT J Lin Alg 2008) 



The genetic code coevolves with accuracy 

• A path for evolution of codes:  from early codes with higher codon 

degeneracy and fewer amino acids to lower degeneracy codes with more 

amino acids. 

1st  2nd  3rd  chr # 

1 4 1 0 4 

2 4 1 1 7 

4 4 1 5 11 

4 4 2 13 16 

4 4 3 25 20 

4 4 4 41 25 





Lecture IV – B  

 
Growth rate as entropy rate: 

Kelly’s horse race 



Horse race basics 

Sea biscuit 
Odds: 6:1 

Lucky Star:  
Odds: 2:1 

White light:  
Odds: 3:1 



 

• Problem: You dedicate 100$ for gambling, you intend to 

reinvest the money over and over again, what is the 

optimal strategy? 

 

• Kelly’s idea: try to optimize asymptotic growth rate.  

Horse race basics (cont.) 



Asymptotic growth  

 

 

• Let W(n) be your wealth after n bets. 

 

• Let W(0) be you initial wealth 

 

• Growth rate 

  

• Asymptotic growth rate 
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Constant rebalancing  

 

• Each race has a random outcome X drawn from the 

distribution P(X) assumed constant (∂tP=0). 

 

• The percentage of money placed on the i-th horse of the n-th 

round is                   W(n-1)*b(i). 

 

• The amount gained :  

 

                                W(n)=O(x) W(n-1) b(x) 



Constant rebalancing  

 

• After N such trials (with rebalancing) : 

 

 

• So 

 

 

 

• Since X is memoryless and P(X) is constant we obtain for N>>1  
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Asymptotic growth rate 

             

Conclusion so far 
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Optimal strategy if P(X) is known 

• Suppose we know the probability of winning for all the 

horses pi. 

• What is the optimal bet-hedging strategy? 

 

 

 

 

 

• This strategy is termed proportional betting. 
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Example: Two horses 

• Odds: 2:1 (double or nothing), i.e. O1 = O2 = 2. 

 

• Let p1 be the probability the 1st horse will win and 

b1 the portion of the wealth that placed on this 1st  
 horse. 

 

• Let’s plot the asymptotic growth rate: 



Example : a race with 2 horses  
double or nothing 

Min-max saddle point 



The saddle point is  A zero-sum game against “nature” 

• The asymptotic growth rate  

 

• The game is:     I choose b / nature choose p 

 

• What is the minimal growth                                  I can assure if nature is “evil”? 

 

• Answer:  min-max solution 

 

 

• In the example shown 
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            Growth rate in horse race 

 

• D(p||q) – relative (KL) entropy  

• 1st term - pessimists surprise (free lunch). 

• 2nd term  - ‘’distance’’ from optimum (note the sign). 

• 3rd  term - game value. 

mnmx( , ) ( || ) ( || )b p D p p D b p v   



Side information 

• What about partial information? 

• Perfect side information = exponential growth.  

• Race at LA, bookie in NY and I have a friend in the telegraph 
company… 



Side information (cont.) 

• Informer says horse j will win.  

 

• The probability for i-th to win given the side information that 

the j-th horse will win is pi|j 

 

• The adjusted portfolio is bi|j  

 

 



Optimal betting with side information 

 

 

 

 

                is  the mutual information between the informer and us  

       (X – horse, Y – side information).  

  

Kelly’s famous result retrieved at optimality:  

Optimal gain of capital = Channel Capacity 
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So why study horse races? Biology 

• Only manifestation of channel capacity without an explicit code. 

• Cells ~ money,  

• Phenotype ~ betting, 

• nature’s state ~ winning horse, 

• Portfolio = phenotype distribution  

• side Info. = sensing  

 

• BUT: (i) Suboptimal phenotype ≠ immediate ruin. 

•           (ii) P=P(t) (non-stationary). 



Generalized Kelly (Main result)  

Given that the sum of O-1 columns is positive,        Λ decomposes to a sum of entropies:  

Free lunch 
term  

Side info. Channel 
rate 

new game value 

Penalty term: ‘’distance’’ between actual p(|j) 
to the p(|j) you happen to be optimal for.  
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Generalized Kelly (Main result) cont.  

• Iff bopt(p) > 0 then bopt(p) =S p.  
 
 

 
•                                         is a stochastic matrix. 
 

 
 
•   S-1b(∙|j)   is the conditional environment probability that b(∙|j) is optimal for in the 
adjusted game.  
 
So the penalty term : 
 
= average loss due to the sub-optimal response to the side information. 
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Environment is non-stationary 

Slow changes: Λ(p(t),b(t)) is meaningful 
 
Problem:  
 
given K phenotypic switchings allowed within [0,T] find 
optimum switching strategy (when and to what) 

 
 
 



When P=P(t) 

Our solution:  
 
when ? : equipartition of loss criterion 

 
 

to what ?: adjusted time average 



Monte-Carlo (binary symmetric channel)  
 

 
Optimal sol. with Perror=1/3 
P(t)=cos(2πt/35) 
2O11=O22=1 
O21=0,O12=1 

    



Conclusion: 
 

If there is a dilemma – an increase of 1 bit in the side 
information rate can potentially increase the doubling 
rate by 1 bit/generation. 


