
Lecture III 

 
Source coding, channel capacity  

and neuronal systems 



Nerve Cells 

Cell body (soma) Dendrites 

Axon (1mm – 1m) 

Terminal branches 
of the Axon 

Synaptic connection 

Integrate (over inputs) 
and fire (action potential\spike) 



The action potential of neurons 

• Action potential  = large sharp fluctuation of membrane potential propagating along the 

axon and which carries information. 

• Generation and propagation enabled by ion channels. 

 
•  Threshold for generating  action potential. 

• All-or-none law ensures full size . 

• frequency coding of  strength and latency 

of initial stimulus. Amplitude almost 

independent of stimulus 

• Impossible to fire just after previous firing. 



The problem 

- Human brain: 1011 neurons (~Milky Way), >1014 connections.  
 
 What should we aim to measure? How many neurons to record from? 
How should we look at the data? 
 
One possible point of view: The brain is an information gathering and processing device. 
To understand its function we should measure not heat, or spike velocities but… 
information gathering is measurable and the currency is bits. 
                    (info processing may be viewed as feature extraction also measurable in bits).   



The “archetype” neuronal  
information channel 

Outside  
Stimuli 

(s) 

Neuronal 
response 

(r) 

p(s,r): 
 
 From the “researcher’s point of view”: 

 Given an outside stimuli, what neuronal responses could it elicit?  p(r|s)*p(s) 
 
Conversely, taking the “man\animal point of view”: 

Given a neuronal response, what can we tell about outside world? p(s|r)*p(r) 
 

noise 



maximizing information between source and response  

The point of view we take:  

We live an environment where p(s) is given  

(for example: a monkey raised in an environment with horizontal stripes only 

will grow to be blind to perpendicular stripes). 

 

• What could be a optimal design for a neuron? 

• How would it convey a maximal amount of information regarding this given 

environment?  

 

We want to choose a function r = f (s) – What would be a good choice? 

 

Assumption (for this 1st example): Our channel is not noisy. 

 

 

 



Histogram flattening 

• We would like to maximize the mutual information between the 

environment and the response of the Neuron: 

 

 

 

• For a noiseless channel (H(r|s) = 0) this is just: 

 

 

• Which is maximized for constant probability 
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Histogram flattening 
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Without loss of generality: 
f(s)  is continuous  
and monotone increasing. 

We would choose f(s) to be  
the cumulative distribution of p(s).  
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Example: Fly LMC – large monopolar cell 

• Photoreceptors and an LMC of the blowfly 
retina code light level in a single pixel of the 
compound eye. 
 

•  Six photoreceptors (two shown)  carrying the 
same signal converge on a single LMC and 
drive it via multiple parallel synapses. 
 

• The signals are intracellular recordings of the 
graded changes (not spikes!) of membrane 
potential induced by fast changes in contrast. 

 

synapse 

 Simon B. Laughlin, Rob R. de Ruyter van Steveninck & John C. Anderson, 1998 

EXPERIMENT 



Example: Fly LMC 

• Simon Laughlin (1981) measured the cumulative contrast distribution in the flies’ 

natural environment (lakeside vegetation): p(s) 

• He then measured the response of the cell to 
contrast steps (inset). 
 

• And averaged over trials (data points): 
                                                       this is f(s). 
 

He found that: 
 

f(s) is very close to the cumulative 
distribution associated with p(s)! 

EXPERIMENT 



Channel Capacity 

p(y|x) 
X Y 

Definition 1: 
 

C = max I(X,Y) 
p(x) 

Definition 2: 
 

Maximum number of bits 
transferred per use of channel 

Shannon proved equivalence of these two definitions (sketched below). 

Discrete memory-less channel 

Properties of capacity 
• C≥0  (reasonable, if we think of capacity in the water-pipe analog) 

• C ≤ H(X),H(Y) ≤ log|X|,log|Y| 
(channel capacity is limited by size of alphabet it can handle) 



Example: Binary symmetric Channel 

0 0 

1 1 

p 

p 

1-p 

1-p 

I(X,Y)= H(Y) - H(Y|X) 
         = H(Y) -  𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥) 

= H(Y) -  𝑝 𝑥 𝐻(𝑝) 
= H(Y) – H(p) 
≤   1  - H(p) 

H (Y|X=x) = -p logp  – (1-p) log(1-p) 
                  = H (p) 

Equality is obtained by choosing p(x)=(½ , ½) which makes p(y)=(½ , ½) as well.  

Hence: 

                                   C = 1-H(p)       (Note, p=½ gives C=0 ) 
 



Simple example: noisy typewriter 

The channel:    

A->{A,B} ;  B->{B,C} ….. Z->{Z,A}  (all errors are probability ½). 

 

C = max  I(X,Y) = max H(Y)-H(Y|X) 

    = log 26 – log 2 =log 13 

 

On the other hand if we use a code of block length n=1 consisting of every 

other letter we get an error free channel with 13 possible messages. 

Choosing the messages equi-probably  

We can achieve transmission of log 13  per transmission. 

 

 

  



Channel coding theorem 
(intuitive explanation) 

A communication channel is defined by p(y|x). 
 
We can choose p(x) as we wish to try and achieve optimal information transfer. 
 
Once we choose p(x) this also sets p(y)=p(y|x)*p(x) 
 
 

p(y|x) 
X Y 



Channel coding theorem 
(intuitive explanation cont.) 

We use code words of length n: 𝑋𝑖    𝑖 = 1…𝑘. 
Each transmission uses  the channel n times.  

How much information can we pass per use? 
 
 

→ 

→ 
Due to the noise in the channel  
each time 𝑋𝑖 is transmitted a different message will be received.  
Call these groups of messages { Yj }i   

→ 

 
The idea is:  
If we choose good Xi’s + take n to be very large all the { Yj }i     i=1…k will be disjoint. 
This means that all messages 𝑋𝑖 can be passed reliably (no channel noise).  
The  maximal number of bits we can pass using n transmissions is log (k)  
Per transmission the rate is R = log(k)/n  bits/channel use. 
 

→ 
→ 

The question becomes:  
How many disjoint sets { Yj }i  can we fit in the space Yn? 
 

→ 

(achieved by using 
codewords equiprobably). 
 

→ 



What is the maximal number of disjoint output messages ? 

X Y 

Remember, for a particular choice of p(x), p(y) is completely determined: 

The total number of typical vectors in Yn is:  2𝑛𝐻(𝑌) 

Using the same argument, the size of each set of vectors {Y j}i :  2
𝑛𝐻(𝑌|𝑋=𝑋𝑖)  

We divide these total available “area” by mean message area. 

to see how many disjoint sets fit in the entire space:  𝑘 = 2𝑛(𝐻 𝑌 −𝐻 𝑌 𝑋 ) = 2𝑛𝐼(𝑋,𝑌)  

(the probability to get one of these vectors after a transmission is ~1) 
 

So the average size of these output sets is just :  2𝑛𝐻(𝑌|𝑋=𝑋𝑖)  

→ 



Channel coding theorem 
(intuitive explanation cont.) 

Disjoint outputs means we pass these messages without error to achieve a rate of: 
 

                                        R= 1/n * log k = 1/n * log 2𝑛𝐼(𝑋,𝑌) = 𝐼(𝑋, 𝑌)    bits/channel use 

If we want to transmit messages at a rate R ≤ C  
we can do this with arbitrarily small errors! 

To get the most bits across we choose p(x) that maximizes  
I(X,Y), but this is the original definition of capacity: 
 
                                                        R = max I(X,Y) = C 

Therefore given p(x) we can hope to find (upper bound) k messages, Xi , with disjoint outputs. 
    

 𝑘 = 2𝑛(𝐻 𝑌 −𝐻 𝑌 𝑋 ) = 2𝑛𝐼(𝑋,𝑌)  

→ 

p(x) 



Back to neuroscience 

A small comment for intuition: 

We saw that for some information channels  

              capacity is reached by using the input alphabet equi-probably. 

 

 

Going back to the fly LMC: 

 

 

 

 

 

The graded potential is: 
1.  in volts (a message that can be transmitted between neurons). 
2. idealy, no info loss as the message passes the LMC.  
3. distributed equiprobably. 

LMC 

Natural 
contrasts 

Graded 
potential Info 

channel 

3  it may be a good encoder since 
it may help to achieve high information rates in the downstream communication channel.  
 

1,2  We can think of the LMC as a source encoder. 



Capacity of neuronal link 

D.M. MacKay and W.S. McCulloh (1952) 

 

 

Looked at spiking neurons and wanted to compare estimates for channel 

capacity between two different scenarios: 

 

 

1. Information is encoded by spike sequences {1000100110…} 

 

2. Information is encoded by exact time until next spike.  {τ1, τ2, τ2,  …} 

EXPERIMENT 



1. Spike sequences 

After each spike there is a refractory period of TR. 

To obtain their estimate they divide time into bins of duration TR , each bin 

can have at most one spike. 

 

The maximal rate of information is when the probability for a spike is ½. 

 

The number of bits per msec is then 1/ TR bits/msec. 

For spike frequencies around 250Hz. TR=4 msec and the bit rate is C~1/4 

bit/msec. 

 

C= max [H(X)-H(X|Y)] ≤ max H(X) 
p(x) p(x) 

What is X depends on the model. 
Here it all possible spike sequences. 

EXPERIMENT 



2. Spike timings 

The time until next spike, TS is somewhere between the refractory time TR and some 
maximal time TM  (to be determined below). Neurons can measure spikes to within  a 
window of dT. 
 

Number of possible messages 
𝑇
𝑀
−𝑇𝑅

𝑑𝑇
.   They estimate dT at 0.05msec.   

      Average number of messages per msec: 
2

𝑇
𝑀
+𝑇

𝑅

.  

 

So that the bit rate is: 
2

𝑇
𝑀
+𝑇𝑅 

 * log 
𝑇
𝑀
−𝑇𝑅

𝑑𝑇
            where p(x) is the uniform probability over all possible timings 

 

For TR=4 msec we get a maximal value for TM=6.7 msec. 
The rate of information is now:    C ~ 1.1 bit/msec                                                                                              
 
                                                           (about 4 times higher than previous coding procedure). 
 

EXPERIMENT 



And back to theory…  
Channel capacity of the Gaussian information 

channel 

Gaussian 
channel 

Real number: X Y=X+N 

N (Gaussian noise, very common useful) 

Start by calculating the mutual information between input and output. 
 
I(X,Y) = H(Y)+H(X)-H(Y,X)                          definition of mutual information 
          =H(Y)+H(X)-H(X,X+N)                     Gaussian channel definition 
          = H(Y)+H(X)-H(X,N)                         p(X,X+N)=p(X,N) 
          = H(Y)+H(X)-H(X)-H(N)                   X and N are independent  
          = H(Y)-H(N)          
 
 The answer is intuitive: 
 Not all output states are distinguishable , this is due to the noise. 

Y 

N N N N 



And back to theory…  
Channel capacity of the Gaussian information channel 

C=max I(X,Y) = max (H(Y))-H(N)     
The maximum is taken only over p(Y) with set variance. 
As we have seen the answer is that p(Y) is a Gaussian  
                                          since noise is Gaussian this happens when X is also Gaussian. 

C  = 1/2log2πe (var(X)+var(N))-1/2log2πe (var(N))  
    = 1/2log (1+SNR) 

We can now calculate the channel capacity, of course if we choose very far apart X values the 
 noise can be made negligible. 
But what if we have limited average power at the input how much can we send? 
 
Mean power=E(X2) =const,    
This is the same as limiting the input variance since: var(X)=E(X2)-E(X)2 

 

And this is equivalent to limiting output variance since var(Y)=var(X)+var(N). So…. 
 
 
 

The entropy of a Gaussian is        H(X) = 1/2log(2πe (var(X))) 

The higher the SNR 
the more info that 
can be passed. 



Time dependent signals 



Gaussian random time dependent functions. 

f(t) =  𝑓𝑛 exp(−𝑖𝜔𝑛𝑡)
∞
𝑛=−∞  

The fn coefficients are chose from Normal distributions. Such that: 
 

<fnf-m>=0                          n≠m 
<fnf-n>=σ2(ωn) { 

The variance of f can now be easily computed: 
<f(t)2>= < 𝑓𝑛𝑓

− 𝑛
> exp (−𝑖 𝜔𝑛 + 𝜔 − 𝑛

𝑡) 
           
            =  σ2(𝜔𝑛)        
             
             

By construction,  
each frequency is associated with its own variance. 
 We can look at each frequency as carrying a separate 
piece of information through a separate channel with its 
own specified noise. 



How much information each independent variable 

If we assume Gaussian random noise that is frequency dependent: N(𝜔𝑛). 
So each channel passes: 

I (𝜔𝑛)=1/2 log (1 +  
𝜎2(𝜔

𝑛
)

𝑁2(𝜔
𝑛
)
) 

               I =  𝐼(𝜔𝑛) =
1

2
 log(1 + 

𝜎2(𝜔
𝑛
)

𝑁2(𝜔
𝑛
)
) 

We have moved back to what we know (scalar channels): 
 
Transmitting the function f(t) is equivalent to transmitting the list of independent, random 
Gaussian variables fn! 

Total mutual  
information 



Taking the continuous limit 

<f(t)2>=  σ2(𝜔𝑛)  
 

=  
𝜔
𝑛+1
−𝜔

𝑛

𝜔
𝑛+1
−𝜔

𝑛

σ2(𝜔𝑛)= 
Δ𝜔

2π
𝑇σ2(𝜔𝑛) ->  

𝑑𝜔

2𝜋

∞

−∞
T 𝜎2 𝜔  

 

           = 
𝑑𝜔

2𝜋

∞

−∞
S 𝜔        ,          S 𝜔    = lim

T−> ∞ 
T 𝜎2 𝜔  

Power spectrum 
units: [variance/Hz] 

I→
𝑇

2
 
𝑑𝑤

2𝜋
log(1 + 

𝑆2(𝜔)

𝑁2(𝜔)
) bits Total information per period T: 

Rate of information transfer: R=
1

2
 
𝑑𝑤

2𝜋
log(1 + 

𝑆2(𝜔)

𝑁2(𝜔)
) bits/second 

T->∞ 



How to maximize information transfer using f(t)  

In the discrete Gaussian channel we reach channel capacity by choosing the inputs 

from a Gaussian distribution. What should we do now? 

 

Q: Given limited power, how should we distribute it among the different frequencies? 

Remember we have frequency dependent Gaussian noise N(𝜔).  

A: (proof by Lagrange multipliers - but not now): 

                                                                                         Noise whitening or water filling. 
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1 10 100 1000 

Similar to our first example on LMC: 
To transfer much information 
we want to make the signal (+noise)  
look as random (surprising) as possible! 

EXPERIMENT 



Channel capacity of fly neurons 
for continuous signals 

synapse 

 Simon B. Laughlin, Rob R. de Ruyter van Steveninck & John C. Anderson, 1998 

Question: 
What is the channel capacity of 

channels A and B? 

A 

B 

Answer: 
In the next we follow 
Ruyter van Steveninck and Laughlin (1996) 

EXPERIMENT 



Channel capacity of fly  
photoreceptor and LMC 

Step 1: measure the noise: 

• Present stimulus c(t) multiple times. 

• For each time measure cells’ response ν(t). 
• Calculate < ν(t)> (mean over trials). 
• For each trial the noise is defined by: 
                      n(t)=  ν(t) - < ν(t)>  

 

To calculate capacity we need, 
SNR(ω)=S(ω)/N(ω)  so we should: 
• Fourier transform signals and noises 
• Make sure S and N have the same units 
                                               (they don’t now!) 

 

EXPERIMENT 



Channel capacity of fly  
photoreceptor and LMC 

Step 2: calculate the signal to noise ratio: 

To calculate capacity we need, 
SNR(ω)=S(ω)/N(ω)  so we should: 
• Fourier transform signals and noises 
• Make sure S and N have the same units 
                                               (they don’t now!) 

 

S 𝜔    = 
𝑓(𝜔)2

2𝜋
 

f(ω)=
1

2𝜋
 𝑓 𝑡 exp −𝑖𝜔𝑡 𝑑𝑡 

We have multiple measurements of the noise n(t): 
• Fourier transform each one. 
• N(ω) The variance of the noise at frequency ω is taken over all f(ω) measurements.  

At low contrast these cells have a linear response function. 

𝑣 𝑡 =  𝑑𝑡′𝑚 𝑡′ 𝑐(𝑡 − 𝑡′) 

Fourier transforming this we get:   V(ω)=M(ω)*C(ω).             M is called the transfer function  
In our case:  <V(ω)>=M(ω)*C(ω).      From this we find M(ω) and can now move noise to correct units: 

𝑁𝑒𝑓𝑓 𝜔 =
𝑁(𝜔)

|𝑀 𝜔 |2
 

EXPERIMENT 



Channel capacity of fly  
photoreceptor and LMC 

Step 3: experimental measurements of the signal to noise ratio:  (two cell types, two different intensities) 

C(ω) 

N(ω):  note the noise depends 
 on light intensity (due to physical limits) 
 SNR grows nonlinearly with intensity. 

Neff(ω) 

 SNR(ω)= S(ω)/Neff(ω) 
 

EXPERIMENT 



Channel capacity of fly  
photoreceptor and LMC 

Step 3: compute channel capacity 

• Assume some total signal power (here, 0.1 is natural variance of contrast in natural scenes). 

• For a given cell and light intensity we calculate Neff(ω). 
• Use the water filling analogy to calculate the input signal Cmax(ω) the maximizes 

mutual information in a channel with this given noise. 
• Calculate the power spectrum of the optimal 
signal: Smax(ω)  and the resulting SNRmax(ω)  
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1 1000 
• Use the formula to calculate the maximal mutual  
information: 
 

𝑅𝑚𝑎𝑥 =
1

2
 
𝑑𝜔

2𝜋
log 1 + 𝑆𝑁𝑅𝑚𝑎𝑥 𝜔 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐 

 
 

EXPERIMENT 



Channel capacity of fly  
photoreceptor and LMC 

LMC has higher capacity  
Reasonable since it has 6 photoreceptors as 
inputs. 

Goes up to 1,500 bits/sec! 
 
(They measured that with  
natural (suboptimal) input signals  
the information rate 
 is not much lower than this capacity.) 

The higher the light intensity the less the noise 
plays a role and the higher the channel capacity. 

photoreceptor 
LMC 

information transfer rate in the channel 
environment photoreceptor/LMC. 

light intensity 

EXPERIMENT 


