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A UNIVERSAL TURING MACHINE WITH TWO INTERNAL STATES

Claude E. Shannon

INTRODUCTION

In a well-known paper1, A. M. Turing defined a class of computing
machines now lmown as Turing machines. We may think of a Turing machine as
composed of three parts -- a control element, a reading and writing head I

and an infinite tape. The tape is divided into a sequence of squares,
each of which can carry any symbol from a finite alphabet. The reading head
will at a given time scan one square of the tape. It can read the symbol
written there and, under directions from the control element , can write a
new symbol and also move one square to the right or left. The control ele
ment is a device with a finite number of internal "states." At a given time ,
the next operation of the machine is determined by the current state of the
control element and the symbol that is being read by the reading head. This
operation will consist of three parts; first the printing of a new symbol in
th~ present square (which may, of course , be the same as the symbol just
read); second, the passage of the control element to a new state (which may
also be the same as the previous state); and third I movement of the reading
head one square to the right or left.

In operation, some finite portion of the tape is prepared with a
starting sequence of symbols , the remainder of the tape being left blank
(1. e OJ registering a particular "blank" symbol). The reading head is placed
at a. particular starting square and the machine proceeds to compute in ac
cordance with its rules of operation. In Turing'S original formulation

Turing I A. M., "On Computable Numbers, with an Application to the
Entscheidungsproblem," Proc. of the London Math. Soc. 2 - 42 (1936),
pp. 230 - 265.
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alternate sQuares were reserved for the final answer, the others being used
for intermediate calculations. This and other details of the original defi
nition have been varied in later formulations of the theory.

Turing showed that it is possible to design a universal machine

which will be able to act like any particular Turing machine when supplied
with a description of that machine. The description is placed on the tape
of the universal machine in accordance with a certain code, as is also the
starting sequence of the particular machine. The universal machine then

imitates the operation of the particular machine.
Our main result is to show that a universal Turing machine can be

constructed using one tape and having only two internal states. It will also
be shown that it is impossible to do this with one internal state. Finally
a construction is given for a universal Turing machine with only two tape

symbols.
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The method of construction is roughly as follows. Given an arbi
trary Turing machine A with an alphabet of m letters (symbols used on
the tape, inclUding the blank) and n internal states, we design a machine
B with two internal states and an alphabet of at most ~mn + ill symbols.
Machine B will act essentially like machine A. At all points of too tape,
except in the position opposite the reading head and one adjacent position,
the tape of B will read the same as the tape of' A at oorrespondingtimes
in the calculation of the two machines. If A is chosen to be a universal
Turing machine, then B will be a universal Turing machine.

Machine B models the behavior of machine A, but oarries the
information of the internal state of A via the symbols printed on the tape
under the reading head and in the cell of the tape that the reading head of
A will next visit. The main problem is that of keeping this state informa
tion up to date and under the reading head. When the reading head moves,
the state information must be transferred to the next cell of the tape to
be visited using only two internal states in machine B. If the next state
inmachine A is to be (say) state 17 (according to some arbitrary number
ing system) this is transferred in machine B by "bouncing" the reading
head back and forth between the old cell and the new one 17 times (actually
18 trips to the new cell and 17 back to the old one). During this process
the symbol printed in the new cell works through a kind of counting sequence
ending on a symbol corresponding to state 17, but also retaining information
BSto the symbol that was printed previously in this cell. The bouncing
process also returns the old cell back to one of thr;! elementary symbols
(Which correspond one-to-one with the symbols used by maohine A), and in
fact returns it to the particular elementary symbol that should be printed
in that cell when the operation is complete.
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symbol; state- symbol; state; direction

Bi ; ex ---- B . 0:; R (i .. 1, 2, ·... , m) (1 )i,l,-,R'

Bli f3 B . 0:. L (i 1, 2, ·... , m) (2 )i,l,-,L'
(i .. 1, 2, ·, ., m

1 ~Bi · ; f3 -- Bi , (j+l ),- ,xi CX. x
~~

.. 1, 2, '" ,. n - (3), J, - ,x = R, L

(1 .. 1, 2, I " ,

m}Bi · i 0: or f3 -- Bi (. 1) ; 13; x ( j = 2, '" J
n (4 ), J, +,x , J- ,+,x (x = R, L

B . ex or f3 -- Bi ; CX' x
~i

.. 1, 2, ·., , m~ (5)i,l,+,X' ,
= R, L

The formal construction of machine B is as follows: Let the
symbol alphabet of machine A be A1, A2, ... , Am' and let the states be
Sl' S2' ... , Sn' In machine B we have m elementary symbols corresponding
to the alphabet of the A machine, B1, B2 , ... , Bm. We further define
4mn new s;ymbols corresponding to state symbol pairs of machine A together
with two new two-valued indices. These symbols we denote by Bi , j ,x,y where
i = 1,2, ... , m (corresponding to the symbols), j = 1, 2, ... , n (cor
responding to the states), x = + or (relating to whether the cell of
the tape is transniitting or receiving information in the bouncing operation)
and y = R or L (relating to whether the cell bounces the control to the
right or left).

The two states of machine B will be called ex and 13 . These
two states are used for two purposes: First, on the initial step of the
bouncing operation they carry information to the next cell being visited as
to whether the old cell is to the right (0: ) or left ( j3 ) of the new one.
This is necessary for the new cell to bounce the control back in the proper
direction. After the initial step this information is retained in the new
cell by the s;ymbol printed there (the last index y). Second, the states 0:

and f3 are used to signal from the old cell to the new one as to when the
bouncing operation is complete. Except for the initial step of bouncing,
state f3 will be carried to the new cell until the end of the bouncing opera
tion when an ex is carried over. This signifies the end of this operation
and the new cell then starts acting as a transmitter and controlling the
next step of the calculation.

Machine B is described by telling what it does when it reads an
arbitrary symbol and is in an arbitrary state. What it doss consists of three
parts: printing a new s;ymbol, changing to a new state, and moving the reading
head to right or left. This operation table for machine B is as follows.
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Ai; Sj _Ak ;

is defined to have

(6 )

So far, these operations do not depend (except for the number of

symbols involved) on the operation table for machine A. The next and last
type of operation is formulated in terms of the operation table of the ma~

chine being modeled. Suppose that machine A has the operation formula

S ·R
2' L

Then machine B

where if the upper letter (R) occurs in (6) the upper letter s are used in

(7) and conversely.
To see how this system works, let us go through a cycle consisting

of one operation of machine A and the corresponding series of operations

of machine B.

Suppose that machine A is reading symbol A3 and is in state
and suppose its operation table reQuires that it print AS' go into state
S4 and move to the right. Machine B will be reading (by inductive as-
sumption) symbol B

3
7 _ (whether x is R or L depends on preceding, , ,x

operations and is irrelevant to those which follow). Machine B will be

in state 0:. By relation (7), machine B will print BS,4,+,R' go into
state ~, and move to the right. Suppose the cellon the right contains
A13 in machine Aj in machine B the corresponding cell will contain B13 .

On entering this cell in state ~, by relation (2) it prints B13 ,1,-,1'
goes into state Cf., and moves back to the left. This is the beginning of
the transfer of state information by the bouncing process. On entering the

left cell, it reads B8 ,4,+,R and by relation (4) prints BS,3,+,R' goes
to state ~ and moves back to the right. There, by relation (3), it prints

B13,2,-,1' goes into state 0: and returns to. the left. Continuing in this
manner, the process is summarized in Table I.

The operations indicated complete the transfer of state
to the right cell and execution of the order started in the left cell. The
left cell bas symbol BS registered (corresponding to AS in machine A)

and the right cell has symbol B'3,4,-,L registered, with the reading head
coming into that cell with internal state 0:. This brings us back to a
ation s:iJnilar to that assumed at the start, and arguing by induction we see
that machine B models the behavior of machine A.

To get machine B started in a manner corresponding to machine
its initial tape is set up corresponding to the initial tape of A (with
replaced by Bi ) except f'orthe cell initially occupied by the reading
If' the initial state of' machine A is Sj and the initial symbol in this

cell is Ai' the corresponding cell of the B tape has Bi · R( L), J,-, or
registered and its internal state is set at 0:.



IMPOSSIBTIoITY OF A ONE-STATE UNIVERSAL TURING MACHINE

It will now be shown that it is impossible to construct a universal
Turing machine using one tape and only one internal state.

Suppose we have a machine satisfying these conditions. By regi.ster
ing a suitable "descripti'On number" of fini.te length on part of the tape
(leaving the rest of the tape blank), and starting the reading head at a suit
able point, the machine should compute any computable number I in particular
the computable irrational numbers, e. g. I ..[2. We will show that this is
impossible.

According to Turing'S original conception, .[2 would be computed
in a machine by the machine printing the successive digits of .[2 (say, in
binary notation) on a specified sequence of cells of the tape (say, on alter
nate cells , leaving the others for intermediate calculations). The follOWing
proof assumes .[2 to be calculated in such a form as this I although it will
be evident that modifications would take care of other reasonable interpreta
tions of "calculating ..[2."

Since ..[2 is irrational, its binary digits do not, after any finite
point I become periodic. Hence if we can show that with a one-state machine
either (1 ) all but a finite number of the cells eventually have the same symbol
registered, or (2) all but a finite number of the cells change indefinitely,
we will have proved the desired result.
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or OQ.

Now consider placing the reading head at its appropriate start for
the description number to compute .[2. After a. certain amount of computation

the reading head Will, perhaps emerge from the description number part of the
tape. Replace it bn the last cell of the description number. Again after a

time it will possibly emerge. Continue this prooess as long as possible. The

number of times it emerges will either be an integer 0, 1, 2, 3, ... , or "'.
This number, S, we call the reflection number f'or the .[2 description.

If S is finite and R (possibly OQ) > 5, the reading head after
a finite time will be trapped in the part of the taPe that originally con
tained the description number. Only a finite amount of the blank tape will
have been changed and the machine will not have oalculated .[2.

If both Rand S are infinite, the reading head will return in
definitely to the description number part of the tape. The excursions into

the originally blank parts will eit~r be bounded or not. If they are POUlIJ.(l6IJ'i

only a finite amount of the blank tape will have been changed as in the pre
ceding case . If the excUrsions are unbounded, all but a f'inite sef!9llent of
tape will be operated on by the reading head an unlimited number of times.

Assume first a doubly infinite tape - an inf'inite number of blanks
each side of the desoription number for .[2. When the reading head enters a '
blank cell it must either stay there indefinitely or eventually move out eitoo!'!
to right or left. Since there is only one state, this behavior does not de- I
pend on previous history of the computation. In the first case, the reading !

head will never get more than one removed from the description number and all I
the tape except for a finite segment will be constant at the blank s-ymbol. I
If it moves out of a blank symbol to the left, either the left singly infinite i
section of blank tape is not entered in the calculation and therefore need not I
be considered, or if it is entered, the reading head from that time onward con. I
tinues moving to the left leaving all these previously blank cells register- I
ing the same symbol. Thus the tape becomes constant to the left of a finite I
segment and blank to the right of this segment and could not carry .[2. A I
similar situation arises if it emerges to the right from an originally blank I

I

cell. Hence the doubly infinite tape is no better than the singly infinite
tape and we may assume from symmetry a singly infinite tape to the right of

the description number.
Now consider the follOWing operation. Place the reading head on

the first cell of this infinite blank strip. The machine will then compute I
for a time and perhaps the reading head will be transferred back out of this .

strip toward the description number. If so, replace it on the first cell of I
the now somewhat processed blank tape. If it returns again off' the tape,
again replace it on the first cell, etc. The number of' times it can be placed I
on the first cell in this fashion will be called the reflection number of the II

machine and denoted by R. This will be either an integer 1, 2, 3, ... ,
I

i
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Since there is only one state and a ~inite alphabet of tape symbols, the
s-ymbol registered in a cell visited an unlimited number of times lUUst either
come to a constant (the same for all these cells) or else change cyclically
an infinite number of times. In the first case, all the originally blank
tape becomes constant and cannot represent .[2. In the second case all the
blank tape is continually changing and cannot be the computation of anything.

If R ~ S, the reading head eventually moves into the original
blank part of the tape and stays there. In this case it can be shown that
the ssmbols in the originally blank part become constant. For either it moves
to the right out o~ the ~ir,st blank cell into the second blank cell at least
R times, or not. If' not the reading head is trapped in what was the f"irst
blank cell after a ~inite time, and all but a ~inite amount o~ tape remains
constant at the blank symbol. IT it does move out R times it will not re
turn to the ~irst originally blank cell since R is the re~lection number
~or blank tape. This ~irst cell will then have registered the result o~ op
erating on a blank 2R times (R coming in fiom the le~t and R from the
right) . The second originally blank cell will eventually register the same
constant symbol, since the same argument applies to it as to the ~ir8t. In
each case the machine works into the same tape (an infinite series o~ blanks)
and enters the same number of times (R) . This exhausts the cases and com
pletes the proof.
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MODELING A TURING MACHINE WITH ONLY TWO TAPE SYMBOLS

It is also possible, as we will now show, to construct a maohine.,
C, which will act like any given Turing machine A and use only two s'91llbols
1 and 0 on its tape, one o~ which, 0 say, is the symbol ~or a blank
square. Suppose, as before, a given machine A has m tape symbols and n
internal states. Let B be the smallest integer such that m is les8 than

tor equal to :2. Then we may set 'UP an arbitrary association o~ the m sym-
bols used by machine A with binary sequences of length t, letting however
the blank symbol of machine A correspond to the sequence of B zeroes,
Basically, the machine 0 will operate With binary sequenoes; an elementary
operation in machine A will correspond in machine C to stepping the read
ing head to the right Jl - 1 squares (storing the read information in its
internal state) then stepping back to the left t - 1 squares, wr1ting the
proper new symbol as it goes, and finally moving e1theI' to the right or to
the left Jl squares to correspond to the motion of the reading head of
machine A. During this process, the state of machine A is also, of course,
carried in machine C. The change ~rom the old state to the new state oc
curs at the end of the reading operation.

The formal construction o~ machine 0 is as ;rollows. Corresponding

tostates 81 , 3 2, .•. , Sn of machine A we define states '1'1' '1'2' .. " Tn in



If' the machine is in one of' these states (s < p, - 1) and reads 0 or 1 ~

the machine moves to the right and the 0 or 1 appears as a further index
on the state. When s = £ - 1, however, it is reading the last binary symbol
in the group of' p,. The rules of' operation now depend on the specif'ic rules
of machine A. Two new sets of' states somewhat s'imilar to the T states
above are defined, which correspond to writing rather than reading:

machine C (these will occur when machine C is at the beginning of' an op
eration, reading the f'irst symbol in a binary sequence of' length p,). For
each of' these Ti we def'ine two states TiO and Ti l' If' machine C is
in state Ti and reads symbol 0, it moves to the right and goes into
state TiO ' If' it reads a 1, it moves to the right and goes into state
Til' Thus, af'ter reading the first symbol of' a binary sequence, these two
states remember what that symbol was. For each of these there are again two

states TiOO ' Ti01 and Ti10 and Till' If' the machine is in the state
TiC f'or example and reads the symbol 0 it goes to the state TiDD and
similarlyf'or the other cases. Thus these states remember the initial state
and the f'irst two symbols read in the reading process. This process of con
struct~g states is continued for p, - 1 stages, giving a total of (2£ - l}n
states. These states may be symbolized by

s = 0,1, .•. , l, - 1.

and L i .
,Xl 'X2 ' ••. 'Xs
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i=1,2, ... ,nj X j =O,1 j
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A sequence Xl' X2 ' .•• , Xl,_l' Xl, corresponds to a f-ymbol of machine A.
Suppose that when machine A is reading this corresponding symbol and is in
state i it prints the symbol corresponding to the binary sequence

Y1J Y2' .. " Y2-1' Y2' goes to state j and moves (say) right, Then we de-
f'ine maohine 0 such that when in state Ti X x x' and reading

'1'2""'£_1
symbol x p it goes into state R. , prints Y2 and moves

J,y"Y2'" "Yp,-l
to the lef't. In any of the states R (or L ) J

i'Y1'Y2 '" ·'Ys i'Y1'Y2'" "Ys
machine 0 writes Ys ' moving to the left and changes to state

Ri y Y Y (or Li y Y '\T)' By this prooess the binary S8-
, l' 2'"'' s-1 ' l' 2 J ''''Js_1

quence corresponding to the new symbol is written in place of the old binary
sequence, For the case s= 1, the writing of Yl completes the writing
operation of the binary sequence. The remaining steps are concerned with
moving the reading head 2 steps to the right or left aocording as the ma
chine is in an R state or an L state. This is carried out by means or
a set of UiS and Vis (i = 1 I 2, ,." nj s = 1, 2, , .. ,2 - 1). In state
Rix the machine writes Xl.' moves to the right, and goes into state Uil •

1
In each of' the U states it continues to the right, printing nothing and
going into the next higher indexed U state until the last one is reached.
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Thus Uis produces motion to the right and state Uis+1 (s < 1, - 1).
Finally UH _1 leads, after motion to the right, to Ti , completing the
cycle. In a similar f'ashion, Lix leads to motion to the lef't and state

i
Vis gives motion to the left and Vis+ 1 (s < .t - 1); finally,

gives motion to the lef't and Ti .
The initial tape f'or machine C is, of' course, that for machine A

with each sJ'll1bol replaced by its corresponding binary sequence. If machine
A is started on a Particular sJ'll1bol, machine C will be started on the
left-most binary symbol of the corresponding group; if machine A is

started in state Si' C will be started in state Ti .
Machine C has at most n(l + 2 + 4 ... +2.8- 1 ) = n(21, - 1) T

states, similarly at most n(2.t - 2) R states and n(2,t - 2) L states,
and finally 2n(,t - 1) U and V states. Thus altogether not more than
3n2.t + n(2.t - 7) states are required. Since 2,t < 2m, this upper bound

on the number of states is less than 6mn + n(2£ - 7), which in turn is
certainly less than 8mu.

The results we have obtained, together with other intuitive con
siderations, suggest that it is possible to exchange symbols for states and
vice versa (Within certain limits) without much change in the product. In
going to two states, the product in the model given Was increased by a factor

of about 8. In going to two symbols, the product was increased by a factor
of about 6, not more than 8. These "loss" factors of 6 and 8 are probably

in part due to our method of microscopic modeling - i. e ., each elementary
operation of machine A is modeled into machine B. If machine B were
designed merely to have the same calculating ability as A in the large,
its state-sJ'll1bol product might be much more nearly the same. At any rate

the number of logical elements such as relays required for physical realiza
tion will be a small constant (about 2 for relays) times the base two logar
itbm of the state-symbol product, and the factor of 6 or 8 therefore implies
only a few more relays in such a realization.

An interesting unsolved problem is to find the minimum possible

state-sJ'll1bol product for a universal Turing machine.


