TUS



A UNIVERSAL TURING MACHINE WITH TWO INTERNAL STATES

Claude E. Shannon

INTRODUCTION

In a well-known paper1 , Ao M. Turing defined a class of computing
machines now known as Turing machines. We may think of a Turing machine as
compoged of three parts — a control element, a reading and writing head,
and an infinite tape. The tape is divided into a sequence of squares,
each of which can carry any symbol from a finite alphsbet. The reading head
wlll at a glven tilme scan one square of the tape. It can read the symbol
written there and, under directions from the control slement, can write a
new symbol and also move one agquare to the right or left. The control ele-
ment is a device with a finite number of internal "states." At a given time,
the next operation of the machine 1s determined by the current state of the
control element and the symbol that 1ls being read by the reeding head. This
operation will consist of three parts; first the printing of a new symbol in
the present square (which mey, of course, be the same as the symbol just
read); second, the passage of the control element to a new state (which may
also be the same as the previous state); and third, movement of the reading
head one square to the right or left.

In operation, some finite portion of the tape is prepared with a
starting sequence of symbols, the remsinder of the tape beilng left blank
(i.e., reglstering a particular "blank" symbol). The reading head is placed
at a particular starting square and the machine proceeds to compute in ac-
cordance with its rules of operation. In Turing's original formulstion

1 Turing, A. M., "On Computable Numbers, with an Application to the

Entscheidungsproblem,” Proc. of the London Math, Soc. 2 - k2 (1936),
PO. 230 - 265,

157




158 SHANNON

alternate squares were reserved for the filnal answer, the others being useq
for intermediste cslculations. This and other detalls of the original defi.
nition heve been varied in later formulations of the theory.

Turing showed that it 18 posaible to design a unlversal machine
which will be sble to act like any particular Turing machine when supplied
with a description of that machine. The description 1s placed on the tape
of the universal machine in accordance wlth a certaln code, as is also the
starting sequence of the particular machine. The universal machine then
imitates the operation of the particular machine.

Our main result is to show that a universal Turing machine can be
constructed using one tape and having only two internal states. It will glgg
be shown that it 1s impossible to do this with one internal state. Finally
a construction is given for a universal Turing machine with only two tape

symbols.

THE TWO-STATE UNIVERSAL TURING MACHLNE

The method of construction is roughly as follows. Given an arbi-
trery Turing machine A with an alphabet of m letters (symbols used on
the tape, including the blank) eand n internal states, we design a machine
B with two internal states and an alphsbet of at most 4mn + m symbols.

Machine B will act essentially like machine A. At all polnts of the tape,

except in the position opposite the reading head and one adjacent position,
the tape of B will read the same as the tape of A at corresponding times
in the calculatlon of the two machines. If A 18 chosen to be a universal
Turing machine, then B will be a universal Turing machine,

Machine B models the behavior of machine A, bubt carrles the
information of the internal state of A vla the aymbols printed on the tape
under the reading head and in the cell of the tape that the reading head of
A will next visit. The main problem is that of keeping this state informa-
tion up to date and under the reading head. When the reading head moves,
the state information must be transferred to the next cell of the tape to
be vislted using only two internal states in machine B. If the next state
in machine A 1s to be (say) state 17 (according to some arbitrary mmber-
ing system) this is transferred in machine B by "pouncing" the reading
head back and forth between the o0ld cell and the new one 17 times (actually
18 trips to the new cell and 17 back to the old one). During this process
the symbol printed in the new cell works through a kind of counting sequence
ending on a symbol corresponding to state 17, but also retalnling information
as to the symbol that was printed previously in this csll. - The bouncing
Process alsc returns the old cell back to one of the elementary symbols
(which correspond one-to-one with the symbols used by machine A), and in
fact returns it to the particular elementary gymbol that should be printed
in that cell when the operation is complete.

L=

o= BT

A




A UNIVERSAL TURING MACHINE WITH TWO INTERNAL STATES 159

The formal construction of machine B 1is as follows: ILet the
symbol alphabet of machine A be A1, Aoy vne, Am’ and let the states be '
B1s Sps ey S, In machine B we have m elementary symbols corresponding '
to the alphabet of the A machine, By, Bys v B,. We further define '
hmn new symbols corresponding to state symbol pairs of machine A together
with two new two-valued indices. These symbols we denote by Bi, i,% where

vy
i =1,2, ..., m (corresponding to the symbols), j =1, 2, ..., n )(cor—
responding to the states), x =+ or - (relating to whether the cell of

the tape 1s transmitting or receiving information in the bouncing operation)
and y =R or L (relating to whether the cell bounces the control to the
right or left).

The two states of machine B will be called o and 8. These
two states are used for two purposes: First, on the initial step of the
bouncing operation they carry information to the next cell being visited as
to whether the o0ld cell is to the right (@) or left (p) of the new one.
This is necessary for the new cell to bounce the control back in the proper
direction. After the initial step this information is retained in the new
cell by the symbol printed there (the last index y). Second, the states «
and p are used to signal from the o0ld cell to the new one as to when the
bouncing operation is complete. Except for the initial step of bouncing,
state B will be carried to the new cell until the end of the bouncing opera-
tion when an o 1s carried over. This signifies the end of this operation
and the new cell then starts acting as a transmitter and controliing the
next step of the calculation.

, Mschine B 1s described by telling what it does when 1t reads an
arbltrary symbol and is In an arbltrary state. What 1t does consists of three
parts: printing a new symbol, changing to a new state, and moving the reading
head to right or left, This operation table for machine B 1s as follows,

symbol; state — symbol; state; directlon
Bys a — Bi,1,-,R5 o R (1 =1, 2, ...,
Bi; ﬂ — Bi;],",L; a; L (1 = 1, 2, .y
(L =1, 2, .4,
Bi:j)";X’ B - Bi,(j+1),—,x’ a5 X Z;'j(l :}1{; 2, ‘e
B Ei = 1, 2, . )
1,3,+,% @orp — 1,(3-1),+,x’ Bs * (}:2'_ 2172{: ]':,.” &




160 SHANNON

8c far, these operations do not depend (except for the number of
symbolg involved) on the operation table for machine A. The next and last
type of operaticon is formulated in terms of the operation table of the ma-
chine being modeled. Suppose that machine A has the operation formula

(6) Bys 8y —=Byi 8y 3.
Then machine B 1s defined to have

. . B .R
(7) Bi’j)")x’ a—*Bklzj""]li’ e’ L

where if the upper letter (R) occurs in (6) the upper letters are used in
(7) and conversely.

To see how this system works, let us go through a cycle conslsting
of one operation of machine A and the corresponding series of operations
of machine B.

Suppose that machine A 1s reading symbdl AE and is In state §,
and suppose 1ts operation table requires that it print AS’ go into state
Sh and move to the right. Machine B will be reading (by inductive as-
sumption) symbol B5,7, (whether x 1is R or L depends on preceding
operaticns and is irreleva.nt to those which follow). Machine B will be
in state «¢. By relation (7), machine B will print BB 4,+,R’ go into
state B, and move to the right. BSuppose the cell on the right contains
A13 in machine A; in machine B the corresponding cell will contain B
On entering this cell in state p, by relation (2) it prints B15,1 -1
goes inte state «, and moves back to the left. This is the beginning of
the transfer of state information by the bouncing process. On entering the |
left cell, it reads B'3 4, +,R and by relation (4) prints BB 5,4 p) 8088 W
to state p and moves back to the right. There, by relation ( 5), it prints:
B13’ 2,-,1’ B8oes into state o and returns to the left. Continulng in this
manner, the process is summarized in Table TI.

The operations indicated complete the transfer of state 1nformation
to the right cell and execution of the order started in the left cell. The
left cell has symbol By reglstered (corresponding to Ay in machine A)
and the right cell has symbol B 13,4, ~,L registered, with the reading head
coming into that cell with internal state a. This brings us back to a sltu-
ation similar to that assumed at the start, and argulng by inductlon we see
that machine B models the behavior of machine A.

To get machine B started in a mammer corresponding to machine A,
its initial tape is set up corresponding to the Inltlal tape of A (with A
replaced by Bi) except for the cell initially occupled by the reading head.
If the initial state of machine A 1s § j end the initial symbol in this
gell is Ai’ the corresponding cell of the B tape has B
reglstered and its internal state is set at «o.

135"

1:j.!")R(OI' L)




A UNIVERSAL TURING MACHINE WITH TWO INTERNAL STATES 161

Symbol in left cell State Synbol in right cell

B5:7:"‘JX \“M—-—.

Y

Bg,3,+,R

_______,——é""" B1 3,2,~,L

BB1ZJ+JR —

p —

e 13,51

Bg 1,4+,R

Biz u,-,1

Table I

R

IMPOSSIBILITY OF A ONE-STATE UNIVERSAL TURING MACHINE

It will now be shown that it is lmpossible to construct a universal
Turing machine using one tape and only one internal state.

Suppose we have a machine satisfying these conditions. By reglster-
ing a sultable "descriptlon number" of finilte length on part of the tape
(leaving the rest of the tape blank), and starting the reading head at a sult-
able point, the machine should compute any computable number, in particular
the computable irratlonal nmumbers, e.g., V2. We will show that this is
impossible.

According to Turing's original conception, J2  would be computed
in a machine by the machine printing the successive digits of J2 (say, in
binary notation) on a specified sequence of cells of the tape (say, on alter-
nate cells, leaving the others for intermediate calculations). The following
proof assumes ~2 to be calculated in such a form as this, although it will
he evident that modiflcations would teke care of other reasonable interpreta-
tions of "calculating v2."

Since <2 1s irrational , 1ts binary diglts do not, after any finlte
point, become periodic. Hence if we can show that with a one-state machine
either (1) all but a finilte number of the cells eventually have the same symbol
registered, or (2) all but a finite number of the cells change indeflnitely,
we willl have proved the desired result.




162 SHANNON

Assume first a doubly infinite tape — an infinite number of bl&nks |
each side of the description number for J2. When the reading head enters 4 ‘
blank cell it must either stay there indefinitely or eventually move oug e:Lt,hep‘j
to right or left. Since there 1s only one state, this behavior does not ge.
pend on previous history of the computation. In the flrst case, the reading
head will never get more than one removed from the description number and ay)
the tape except for a finite segment will be constant at the blank symbol,

Tf it moves out of a blank symbol to the left, elther the left singly infinite,
section of blaenk tape is not entered in the calculation and therefore need notii
be considered, or if it is entered, the reading head from that time onwarg con-
tinues moving to the left leaving all these previously blank cells register-
ing the same symbol. Thus the tape becomes constant to the lef't of a finite
segment and blank to the right of this segment and could not carry 2. 4
gimiler situation arises if it emerges to the right from an originally blank
cell. Hence the doubly infinite tape 1s no better than the singly infinite
tape and we may assume from symmetry & singly infiinite tape to the right of
the description number.

Now consider the following operstion. Place the reading head on
the first cell of this infinite blank strip. The machine will then compute
for a time and perhaps the reading head will be transferred back out of this
strip toward the description mumber. If 80, replace 1t on the flrst cell of
the now somewhat processed blank tepe. If it returns again off the tape,
again replace 1t on the first cell, etc. The number of tlmes 1t can be placed
on the Ffirst cell in thils fashion will be called the reflection number of the
machine and denoted by R. This will be eilther an integer 1, 2, 3, ...,
or o,

Now consider placing the reading head at 1ts appropriate start for
the deseription number to compute 2. After & certaln amount of computation
the reading head will perhaps emerge from the descriptilon number part of the
tape. Replace 1t on ’Ehe last cell of the description number. Again after a
time 1t will possibly emerge. Contlnue this process as long as possible. The
number of times it emerges wlll elther be an integer o, 1, 2, 3, ..., or =,
This number, 8, we call the reflection mumber for the e description.

If 8 1s finite and R (possibly «) > 8, the reading head after
a finilte time will be trapped in the part of the tape that originally con-
tained the description number. Only a finlte amount of the blank tape will
have been changed and the machine will not have calculated W2.

If beth R and § are infinite, the reading head will return in-
definitely to the description number part of the tape. The excursions into
the originally blank parts will either be bounded or not. If they are bounded,
only a finite amount of the blank tape will have been changed as in the pre-
ceding case. I the excursions are unbounded, all but a finlte segment of
tape wlll be operated on by the reading head an unlimited murber of times.

B R S SN NS



A UNIVERSAL TURING MACHINE WITH TWO INTERNAL STATES 163

3ince there 1s only one state and a finite alphabet of tape symbols, the
gymbol registered in a cell visited an unlimited number of times must either
come to a constant (the same for all these cells) or else change cycllcally
an infinite number of times. In the first case, all the originally blank
tape becomes constant and camnot represent 2. In the second case all the
blank tape 1s continually changing and cannot be the computation of anything.

If R < S, the reading head eventually moves into the originsel
blank part of the tape and stays there. In this case 1t can be shown that
the symbols in the originally blank part become constant. For elther it moves
to the right out of the first blank cell into the second blank cell at least
R times, or not. If not the reading head i1s trapped in what was the first
blank cell after a finite time, and all but a finite amount of tape remains
constant at the blank symbol. If it does move out R +times it will not re-
turn to the flrst originally blank cell since R 1s the reflection number
for blank tape. This first cell will then have reglstered the result of op-
erating on a blank 2R times (R coming in from the left and R from the
right). The second originally blank cell will eventually register the same
constant symbol, since the same argument applies to it as to the first. In
each case the machine works into the same tape (an infinite series of blanks)
and enters the same number of times (R). This exhausts the cases and com~
pletes the proof.

MODELING A TURING MACHINE WITH ONLY TWO TAPE SYMBOLS

It is also possible, as we will now show, to construct a machine,
¢, which will act like any given Turing machine A and use only two symbols
1 and 0 on its tape, one of which, 0 say, is the symbol for a blank
square. Suppose, as before, a glven machine A has m tape symbols and n
internal states. ILet £ be the smallest integer such that m is less than
or equal to 22. Then we may set up en arbltrary asscclation of the m sym-
bols used by machine A with binery sequences of length £, letting however
the blank symbol of machine A correspond to the sequence of £ zeroes.
Basically, the machine C will operate with binary sequences; an elementary
operation in machine A wlll correspond in machine C +to atepping the read-
ing head to the right £ - 1 squares (storing the read Information in lts
internal state) then stepping back to the left £ - 1 squares, writing the
proper new symbol as 1t goes, and finally moving either to the right or to
the left £ squares to correspond to the motion of the reading head of
machine A. During this procsss, the state of machine A 18 also, of course,
carried in machine €. The change from the old state to the new state oc-
curs at the end of the reading operation.

The formal construction of machine C d1s as follows. Corresponding
to states S1, 32, ceay Sn of machine A we define states ‘.1‘1, EL‘E, Vg Tn in




164 SHANNON

machine C (these will occur when machine C 1s at the beglnning of an op-
eration, reading the first symbol in a binary sequence of length £). For

each of these Ti we define two states Tio and T:U . If machine (¢ . 4is

in state Tj_ and reads symbol 0, it moves to the right and goes into

state Tio' If it reads & 1, 1t moves to the right and goes into state

Tyq- Thus, after reading the first symbol of a binary sequence, these two
states remember what that symbol was. For each of these there are again two
states Tioo’ Tim and T:Uo and TiH' If the machine is in the state

Tio for example and reads the symbol 0 1t goes to the state Tioo and
gimilarly for the other cases. Thus these states remember the initial state
and the first two symbols read in the reading process. This process of con- .
structing states 1s continued for £ - 1 stages, glving a total of (2’g - 1) :
states. These states may be symbolized by :

Ti)X.I;XE:-c-,XS i=1,2 ...,m; Xj=ol 15 8 =0, 10, ...y £ -1,
If the machine 1s in one of these states (s < 24 - 1) and reads 0 or 1,
the machine moves to the right and the 0 or 1 appears as a further index

on the state. When s = £ -1, however, 1t is reading the last binary symbol
in the group of £. The rules of operation now depend on the specific rules
of machine A. Two new sets of states somewhat similar to the T states

above are defined, which correspond to writing raether than reading:

and Li,x

R
i,x1 1Xpgyee X 19%

s SRR

A mequence Ko Xy wnns Xg_ g0 Xy corresponds to a symbol of machine A.
Suppose that when machine A 1s reading this corresponding symbol and is in
state 1 it prints the symbol corresponding to the binary sedquence

Y5 Yoo =ves ¥g_qs Vs G008 to state ] and moves (say) right. Then we de-
fine machine ¢ such that when in state T and reading

i,x1 3 Xps e Xy g ’
B tab .
synbol Xy, it goes Into state RJ’y1’y2""’y£—1, prints ¥, &and moves
to the left. In any of the states Ri,y1,y2,...,ys (or Li'ywya'“"ys)’

machine C wrltes ¥g, moving to the left and changes to state

. thi the b -
R:L,y1 are Ty (or Lj_,y1 Tpse Vg ). By 8 process inary se

duence corresponding to the new symbol 1s written in place of the old binary
sequence., For the case 8= 1, the wrlting of ¥, completes the writing
operation of the binary sequence. The remaining steps are concerned with
moving the reading head ¢ steps to the right or left according as the ma-
chine is in an R state or an L state. This 1s carrlied out by means of
a set of U:Ls and Vig (L =1, 2, ..., n; 8=1,2, ...,2 ~ 1), In gtate
ij1 - the machine writes X,, moves to the right, and goes into state U11 .

i

In each of the U states 1t contlnues to the right, printing nothing and
going into the next higher indexed U state until the last one 1s reached.




A UNIVERSAL TURING MACHTNE WITH TWO INTERNAL STATES 165

Thus Uy, produces motion to the right and state Uyar (s <% - 1).

Finally Uj_z..1 leads, after motion to the right, to Ti’ completing the

cycle. In a similar fashion, L:Lx leads to motion to the left and state
1

Vi Vi gives motion to the left and V,_ , (s < £ - 1); finally,
gives motion to the left and Ty

The inltial tape for machine C 1s, of course, that for machine A
with each symbol replaced by its corresponding binary sequence. If machine
A 1s started on a particular symbol, machine C wlll be started on the
left-most binary symbol of the corresponding group; if machine A is
started in state Si, C will be started in state Ti'

Machine C has at most n(1 + 2 + 4 ... +2L1) =n(2‘e - 1)T
states, similarly at most n(ez - 2)R states and n(2£ - 2) L states,
and finally 2n(f - 1) U and V states. Thus altogether not more than
3n2’l + n(2% - 7) states are required. Since 2" < 2m, this upper bound
on the number of states ls less than 6mn + n(22 - 7), which in turn is
certalnly less then 8mn.

The results we have obtalned, together with other intuitive con-
giderations, suggest that 1t is possible to exchasnge symbols for states and
vice versa (within certain limits) without much change in the product. In
going to two states, the product in the model given was increased by a factor
of about 8. In going to two symbols, the product was increased by a factor
of about 6, not more than 8. These "loss" factors of 6 and 8 are probably
in part due to our method of microscoplc modeling — 1.e., each elementary
operation of machine A 1s modeled into machine B. If machine B were
designed merely to have the same calculating ablility as A 1n the large,
1ts state-symbol product might be much more nearly the same. At any rate
the number of logical elements such as relays required for physical realiza-
tion will be a small constant (about 2 for relays) times the base two logar-
ithm of the state-symbol product, and the factor of 6 or 8 therefore lmplies
only a few more relays in such a realization.

An interesting unsolved problem 1z to find the minimum possible
state-symbol product for a universal Turing machine.

Vi

HLTLOONE BNt




