Status and Phenomenology of the Standard Model

- The new standard model
- Experimental tests, unique features, anomalies, hints of new physics
 - Precision tests
 - Higgs
 - Heavy quarks
 - Neutrinos
 - FCNC and EDMs
 - Astrophysics and cosmology
- Theoretical problems
- Perspective

Physics at LHC (July 16, 2004) Paul Langacker (Penn)
The New Standard Model

- Standard model, supplemented with neutrino mass (Dirac or Majorana):

 \[SU(3) \times SU(2) \times U(1) \times \text{classical relativity} \]

 focus of talk

- Mathematically consistent field theory of strong, weak, electromagnetic interactions

- Correct to first approximation down to \(10^{-16}\) cm

- Complicated, free parameters, fine tunings \(\Rightarrow\) must be new physics
Many special features *usually not* maintained in BSM

- $m_\nu = 0$ in *old* standard model (need to add singlet fermion and/or triplet Higgs and/or higher dimensional operator (HDO))
- Yukawa coupling $h \propto gm/M_W \Rightarrow$ flavor conserving and small for light fermions (partially maintained in MSSM and simple 2HDM)
- No FCNC at tree level (Z or h); suppressed at loop level (SUSY loops; Z' from strings, DSB)
- Suppressed off-diagonal CP; highly suppressed diagonal (EDMs) (SUSY loops, soft parameters, exotics)
- B, L conserved perturbatively ($B - L$ non-perturbatively) (GUT (string) interactions, R_p)
- New TeV scale interactions suggested by top-down (Z', exotics, extended Higgs)
Fermi Theory incorporated in SM and made renormalizable

CKM matrix for $F = 3$ involves 3 angles and 1 CP-violating phase (after removing unobservable q_L phases) (new interactions involving q_R could make observable)

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{td} & V_{td} \end{pmatrix}$$

Extensive studies, especially in B decays, to test unitarity of V as probe of new physics and test origin of CP violation

Need additional source of CP breaking for baryogenesis
- Overconstrain unitarity triangle as test of SM

- Babar, Belle: \(\sin 2\beta = 0.736 \pm 0.049 \) from \(B^0_d(t) \rightarrow J/\psi K_S \) (little theory error)

- \(\alpha, \gamma \) harder

- Anomalies in electroweak penguins?
Δm_d
Δm_s \& Δm_d

$|V_{ub}/V_{cb}|$

$\sin 2\beta$

ϵ_K

ϵ_K

α

β

Δm_d

$B \rightarrow \rho \rho$

$B \rightarrow \rho \rho$

$\sin 2\beta$

α

β

Δm_d

Δm_s \& Δm_d

ϵ_K

excluded area has $\text{CL} < 0.05$

Winter 2004
The Weak Neutral Current

Prediction of $SU(2) \times U(1)$

WNC discovered 1973: Gargamelle at CERN, HPW at FNAL

Tested in many processes: $\nu e \rightarrow \nu e$, $\nu N \rightarrow \nu N$, $\nu N \rightarrow \nu X$; $e^+ \downarrow D \rightarrow eX$; atomic parity violation; $e^+ e^-$, Z-pole reactions

WNC, W, and Z are primary test/prediction of electroweak model
The LEP/SLC Era

- **Z Pole:** $e^+e^- \rightarrow Z \rightarrow \ell^+\ell^-$, $q\bar{q}$, $\nu\bar{\nu}$
 - LEP (CERN), $2 \times 10^7 Z'$s, unpolarized (ALEPH, DELPHI, L3, OPAL);
 SLC (SLAC), 5×10^5, $P_{e^-} \sim 75\%$ (SLD)

- **Z pole observables**
 - lineshape: M_Z, Γ_Z, σ
 - branching ratios
 - $e^+e^-, \mu^+\mu^-, \tau^+\tau^-$
 - $q\bar{q}, c\bar{c}, b\bar{b}, s\bar{s}$
 - $\nu\bar{\nu} \Rightarrow N_\nu = 2.9841 \pm 0.0083$ if $m_\nu < M_Z/2$
 - asymmetries: FB, polarization, P_τ, mixed
 - lepton family universality
\[\nu = 2.9841(83) \]

(2 \sigma, cf \sigma_{\text{had}})
LEP averages of leptonic widths

\[\Gamma_e = 83.92 \pm 0.12 \text{ MeV} \]

\[\Gamma_\mu = 83.99 \pm 0.18 \text{ MeV} \]

\[\Gamma_\tau = 84.08 \pm 0.22 \text{ MeV} \]

\[\Gamma_1 = 83.98 \pm 0.09 \text{ MeV} \]

\[m_Z = 91.188 \pm 0.002 \text{ GeV} \]

\[m_t = 174.3 \pm 0.5 \text{ GeV} \]
Winter 2004

Measurement Fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (uncertainty)</th>
<th>Value (uncertainty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \alpha_{\text{had}}^{(5)}(m_Z)$</td>
<td>0.02761 ± 0.00036</td>
<td>0.02768</td>
</tr>
<tr>
<td>m_Z [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>91.1873</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>2.4965</td>
</tr>
<tr>
<td>σ_0^had [nb]</td>
<td>41.540 ± 0.037</td>
<td>41.481</td>
</tr>
<tr>
<td>R_l</td>
<td>20.767 ± 0.025</td>
<td>20.739</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,l}$</td>
<td>0.01714 ± 0.00095</td>
<td>0.01642</td>
</tr>
<tr>
<td>$A_l(P_{\tau})$</td>
<td>0.1465 ± 0.0032</td>
<td>0.1480</td>
</tr>
<tr>
<td>R_b</td>
<td>0.21638 ± 0.00066</td>
<td>0.21566</td>
</tr>
<tr>
<td>R_c</td>
<td>0.1720 ± 0.0030</td>
<td>0.1723</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,b}$</td>
<td>0.0997 ± 0.0016</td>
<td>0.1037</td>
</tr>
<tr>
<td>$A_{\text{fb}}^{0,c}$</td>
<td>0.0706 ± 0.0035</td>
<td>0.0742</td>
</tr>
<tr>
<td>A_b</td>
<td>0.925 ± 0.020</td>
<td>0.935</td>
</tr>
<tr>
<td>A_c</td>
<td>0.670 ± 0.026</td>
<td>0.668</td>
</tr>
<tr>
<td>A_l(SLD)</td>
<td>0.1513 ± 0.0021</td>
<td>0.1480</td>
</tr>
<tr>
<td>$\sin^2 \theta_{\text{eff}}^{\text{lept}}(Q_{\text{fb}})$</td>
<td>0.2324 ± 0.0012</td>
<td>0.2314</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.425 ± 0.034</td>
<td>80.398</td>
</tr>
<tr>
<td>Γ_W [GeV]</td>
<td>2.133 ± 0.069</td>
<td>2.094</td>
</tr>
<tr>
<td>m_t [GeV]</td>
<td>178.0 ± 4.3</td>
<td>178.1</td>
</tr>
</tbody>
</table>
Gauge Self-Interactions

Three and four-point interactions predicted by gauge invariance

Indirectly verified by radiative corrections, \(\alpha_s \) running in QCD, etc.

Strong cancellations in high energy amplitudes would be upset by anomalous couplings

Tree-level diagrams contributing to \(e^+e^- \rightarrow W^+W^- \)
The Precision Program

- WNC, Z, Z-pole, W, m_t

- Implications
 - SM correct and unique to zeroth approx. (gauge principle, group, representations)
 - SM correct at loop level (renorm gauge theory; m_t, α_s, M_H)
 - TeV physics severely constrained (unification vs compositeness)
 - Precise gauge couplings (gauge unification)
Problems with the Standard Model

Lagrangian after symmetry breaking:

\[
\mathcal{L} = L_{\text{gauge}} + L_{\text{Higgs}} + \sum_{i} \bar{\psi}_{i} \left(i \varphi - m_{i} - \frac{m_{i} H}{\nu} \right) \psi_{i} - \frac{g}{2\sqrt{2}} \left(J_{W}^{\mu} W_{\mu}^{\nu} + J_{W}^{\mu\nu} W_{\mu}^{\nu} \right) - eJ_{Q}^{\mu} A_{\mu} - \frac{g}{2\cos \theta_{W}} J_{Z}^{\mu} Z_{\mu}
\]

Standard model: \(SU(2) \times U(1)\) (extended to include \(\nu\) masses) + QCD + general relativity

Mathematically consistent, renormalizable theory

Correct to \(10^{-16}\) cm
However, too much arbitrariness and fine-tuning: $O(27)$ parameters (+ 2 for Majorana ν), and electric charges

- **Gauge Problem**
 - complicated gauge group with 3 couplings
 - charge quantization ($|q_e| = |q_p|$) unexplained
 - Possible solutions: strings; grand unification; magnetic monopoles (partial); anomaly constraints (partial)

- **Fermion problem**
 - Fermion masses, mixings, families unexplained
 - Neutrino masses, nature?
 - CP violation inadequate to explain baryon asymmetry
 - Possible solutions: strings; brane worlds; family symmetries; compositeness; radiative hierarchies. New sources of CP violation.
• Higgs/hierarchy problem
 – Expect $M_H^2 = O(M_W^2)$
 – higher order corrections:
 $$\delta M_H^2 / M_W^2 \sim 10^{34}$$

Possible solutions: supersymmetry; dynamical symmetry breaking; large extra dimensions; Little Higgs

• Strong CP problem
 – Can add $\frac{\theta}{32\pi^2} g_s^2 F \tilde{F}$ to QCD (breaks, P, T, CP)
 – $d_N \Rightarrow \theta < 10^{-9}$
 – but $\delta \theta |_{\text{weak}} \sim 10^{-3}$
 – Possible solutions: spontaneously broken global $U(1)$ (Peccei-Quinn) \Rightarrow axion; unbroken global $U(1)$ (massless u quark); spontaneously broken CP + other symmetries
• Graviton problem
 – gravity not unified
 – quantum gravity not renormalizable
 – cosmological constant: \(\Lambda_{SSB} = 8\pi G_N \langle V \rangle > 10^{50} \Lambda_{obs} \) (\(10^{124} \) for GUTs, strings)
 – Possible solutions:
 * supergravity and Kaluza Klein unify
 * strings yield finite gravity.
 * \(\Lambda \)?
(Nearly) Unique Features of the old Standard Model

\(m_\nu = 0 \) in old standard model (need to add singlet fermion and/or triplet Higgs and/or higher dimensional operator (HDO))

- Oscillation experiments confirm non-zero masses, LMA, SSM (also helioseismology)
 - Excluded sterile, RSPF, new interactions as dominant
 - Oscillation dip observed (further constrains/excludes alternatives)
3 ν Patterns

- **Solar:** LMA (SNO, Kamland)

- $\Delta m^2_{\odot} \sim 8 \times 10^{-5}$ eV2 for LMA

- **Atmospheric:** $\Delta m^2_{\text{Atm}} \sim 3 \times 10^{-3}$ eV2, near-maximal mixing

- **Reactor:** U_{e3} small
Physics at LHC (July 16, 2004)

Paul Langacker (Penn)
Mixings: let $\nu_{\pm} \equiv \frac{1}{\sqrt{2}} (\nu_{\mu} \pm \nu_{\tau})$:

\[
\begin{align*}
\nu_3 & \sim \nu_+ \\
\nu_2 & \sim \cos \theta \nu_- - \sin \theta \nu_e \\
\nu_1 & \sim \sin \theta \nu_- + \cos \theta \nu_e
\end{align*}
\]

Hierarchical pattern

- Analogous to quarks, charged leptons
- $\beta\beta_{0\nu}$ rate very small

Inverted quasi-degenerate pattern

- $\beta\beta_{0\nu}$ if Majorana
- May be radiative unstable
Outstanding issues

- Dirac or Majorana

- Distinguish by $\beta\beta_{0\nu}$, at least for inverted, degenerate. Observation?

Dirac Mass

- Connects distinct Weyl spinors (usually active to sterile):
 $$(m_D \bar{\nu}_L N_R + h.c.)$$

- 4 components, $\Delta L = 0$

- $\Delta I = \frac{1}{2} \rightarrow$ Higgs doublet

- Why small? LED? HDO?

\[\nu_L \quad v = \langle \phi \rangle \]
\[h \quad m_D = h v \]

Physics at LHC (July 16, 2004) Paul Langacker (Penn)
Majorana Mass

- Connects Weyl spinor with itself:
 \[\frac{1}{2}(m_T \bar{\nu}_L \nu_R^c + h.c.) \] (active);
 \[\frac{1}{2}(m_S \bar{N}_L^c N_R + h.c.) \] (sterile)

- 2 components, \(\Delta L = \pm 2 \)

- Active: \(\Delta I = 1 \rightarrow \text{triplet or seesaw} \)

- Sterile: \(\Delta I = 0 \rightarrow \text{singlet or bare mass} \)
• Scale of neutrino masses: $0.05 \text{ eV} < m_\nu < O(0.3 \text{ eV})$. Probe by β decay (KATRIN), cosmology, $\beta\beta_{0\nu}$

• Type of hierarchy: $\beta\beta_{0\nu}$

• U_{e3}, leptonic CP

• LSND? \Rightarrow Additional (sterile) neutrino(s) which mix with ordinary. MiniBooNE.

• Leptogenesis?
Flavor Changing Neutral Currents

- In SM: Yukawa coupling $h \propto gm/M_W \Rightarrow$ flavor conserving and small for light fermions (partially maintained in MSSM and simple 2HDM)

- In SM: no FCNC at tree level (Z or h); suppressed at loop level

- Violated in almost all extensions, including SUSY loops; Z' from strings, DSB

- Hard to give precise expectations, but critical to search

- Third family transitions (rare B, τ) often largest, but small induced effects in first two families (μ, K decays) may be more sensitive (MEG at PSI, MECO at BNL, PRIME at JHF)
History of Lepton Flavor Violation Searches

- $\mu^+ \rightarrow e^+\gamma$
- $\mu^- \rightarrow e^-N$
- $K^0 \rightarrow \mu^+ e^-$
- $K^+ \rightarrow \pi^+ \mu^+ e^-$

MECO Goal

SINDRUMII
What might we expect?

Supersymmetry

Predictions at 10^{-15}

Compositeness

$\Lambda_c = 3000 \text{ TeV}$

Heavy Neutrinos

$$\left| U_{\mu N} U_{eN} \right|^2 = 8 \times 10^{-13}$$

Second Higgs

$g_{H\mu\mu} = 10^{-4} \times g_{H\mu\mu}$

Leptoquarks

$$M_L = 3000 \sqrt{\lambda_{\mu d} \lambda_{ed}} \text{ TeV/c}^2$$

Heavy Z', Anomalous Z coupling

$$M_Z = 3000 \text{ TeV/c}^2$$

$$B(Z \to \mu e) < 10^{-17}$$

After W. Marciano
- SM: suppressed off-diagonal \mathcal{CP}; highly suppressed diagonal (EDMs)

- Larger in SUSY (loops, soft parameters) unless tuning or cancellations

- Larger in other extensions, e.g., singlet scalars in Z' models (but may be hidden)

- B decays, leptonic \mathcal{CP}, EDMs

- Need additional \mathcal{CP} for baryogenesis
Electron EDM in various SM extensions

\[\mathcal{L}_d = \frac{d_e}{2} \bar{\psi} \gamma_5 \sigma_{\mu\nu} \psi F_{\mu\nu} \]

not renormalizable

⇒ loop diagrams

| Physics model | $|d_e|$ |
|-----------------------------------|------------|
| Standard Model | \(\sim 10^{-41} \text{ e}\cdot\text{cm}\) |
| Left-right symmetric | \(10^{-26}-10^{-28} \text{ e}\cdot\text{cm}\) |
| Lepton flavor-changing | \(10^{-26}-10^{-29} \text{ e}\cdot\text{cm}\) |
| Multi-Higgs | \(10^{-27}-10^{-28} \text{ e}\cdot\text{cm}\) |
| Technicolor | \(10^{-27}-10^{-29} \text{ e}\cdot\text{cm}\) |
| Supersymmetry | \(< 10^{-25} \text{ e}\cdot\text{cm}\) |

Experimental limit:

$|d_e| < 1.6 \times 10^{-27} \text{ e}\cdot\text{cm}$

B. Regan, E. Commins, C. Schmidt, D. DeMille, PRL 88, 071805 (2002)

Models assume new physics at \(\sim 100 \text{ GeV}\) & CP-violating phases \(\sim 1\)
(D. DeMille)
Baryon and Lepton Number Violation

- **SM**: B, L conserved perturbatively ($B - L$ non-perturbatively)

- Violated in BSM, e.g., by GUT (string) interactions or \mathcal{R}_p

- Proton decay expected at some level in many extensions, especially Planck scale

- \mathcal{L} needed for Majorana neutrino masses $\Rightarrow \beta\beta_{0\nu}$

- New B and/or L invoked in some baryogenesis schemes
<table>
<thead>
<tr>
<th>mode</th>
<th>exposure (kt\cdot yr)</th>
<th>εBm (%)</th>
<th>observed</th>
<th>B.G. event</th>
</tr>
</thead>
<tbody>
<tr>
<td>p \rightarrow e^+ + π^0</td>
<td>92</td>
<td>40</td>
<td>0.2</td>
<td>54</td>
</tr>
<tr>
<td>p \rightarrow μ^+ + π^0</td>
<td>92</td>
<td>32</td>
<td>0.2</td>
<td>43</td>
</tr>
<tr>
<td>p \rightarrow e^+ + η</td>
<td>92</td>
<td>17</td>
<td>0.2</td>
<td>23</td>
</tr>
<tr>
<td>p \rightarrow μ^+ + η</td>
<td>92</td>
<td>9</td>
<td>0.2</td>
<td>13</td>
</tr>
<tr>
<td>n \rightarrow \bar{ν} + η</td>
<td>45</td>
<td>21</td>
<td>5</td>
<td>5.6</td>
</tr>
<tr>
<td>p \rightarrow e^+ + ρ</td>
<td>92</td>
<td>4.2</td>
<td>0.4</td>
<td>5.6</td>
</tr>
<tr>
<td>p \rightarrow e^+ + ω</td>
<td>92</td>
<td>2.9</td>
<td>0.5</td>
<td>3.8</td>
</tr>
<tr>
<td>p \rightarrow e^+ + γ</td>
<td>92</td>
<td>73</td>
<td>0.1</td>
<td>98</td>
</tr>
<tr>
<td>p \rightarrow μ^+ + γ</td>
<td>92</td>
<td>61</td>
<td>0.2</td>
<td>82</td>
</tr>
<tr>
<td>n \rightarrow \bar{ν} + K^0</td>
<td>92</td>
<td>34</td>
<td>--</td>
<td>4.2</td>
</tr>
<tr>
<td>K^0 \rightarrow π^+ μ^+ (spectrum)</td>
<td>6.6</td>
<td>0</td>
<td>0.7</td>
<td>11</td>
</tr>
<tr>
<td>K^0 \rightarrow π^0 μ^+</td>
<td>6.0</td>
<td>0</td>
<td>0.6</td>
<td>7.9</td>
</tr>
<tr>
<td>n \rightarrow e^+ + π^-</td>
<td>92</td>
<td>6.9</td>
<td>14</td>
<td>19.2</td>
</tr>
<tr>
<td>n \rightarrow e^+ + K^0</td>
<td>92</td>
<td>5.5</td>
<td>20</td>
<td>11.2</td>
</tr>
<tr>
<td>p \rightarrow e^+ + K^0</td>
<td>92</td>
<td>9.2</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>K^0 \rightarrow π^0 π^+</td>
<td>7.9</td>
<td>5</td>
<td>3.6</td>
<td>4.0</td>
</tr>
<tr>
<td>2-ring</td>
<td>1.3</td>
<td>0</td>
<td>0.1</td>
<td>1.7</td>
</tr>
<tr>
<td>p \rightarrow μ^+ + K^0</td>
<td>92</td>
<td>5.4</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>K^0 \rightarrow π^0 μ^+</td>
<td>7.0</td>
<td>3</td>
<td>3.2</td>
<td>4.9</td>
</tr>
<tr>
<td>3-ring</td>
<td>2.8</td>
<td>0</td>
<td>0.3</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Diagram:

The diagram shows the lifetime limit for different decay modes. The axes represent the lifetime limit in years, with ranges from 10^2 to 10^4 years. The decay modes are color-coded, with each mode represented by a different symbol (e.g., stars, squares, circles) to distinguish between SK, IMB3, KAM, and Soudan2 experiments.
• New TeV scale interactions suggested by top-down

• \(Z' \) or other new interactions
 – Implications for highly non-standard Higgs, FCNC, CDM, baryogenesis

• Exotics
 – Extra Higgs doublets and singlets
 – Exotic quarks and leptons
 – Fractional charges

• Quasi-hidden sectors
Hints and Anomalies

- Gauge unification in supersymmetric extension
 - If not accident or compensation, severely limits new TeV scale physics

- Precision data suggests light Higgs
• Precision data suggests light Higgs

• $M_H = 113^{+56}_{-40} \text{ GeV}$ (< 246 GeV at 95% including indirect)

• Consistent with SUSY (but does not prove)

• Has increased due to new D0 m_t value and lower M_W

• A_{FB}^b pulls up, A_L down

$\Delta \chi^2$

Excluded Preliminary

$\Delta \alpha_{\text{had}} = \Delta \alpha_{\text{had}}^{(5)}$

0.02761 ± 0.00036

0.02747 ± 0.00012

incl. low Q^2 data

Theory uncertainty

Physics at LHC (July 16, 2004)

Paul Langacker (Penn)
- Tension between lepton and quark asymmetries
- $A_{FB}(b)$ and A_l
- New physics in 3rd family?
• Atomic parity violation? Now in agreement after complete radiative corrections.

• NuTeV? Unresolved. Likely QCD or structure function issue.

• Electroweak penguins in $B \rightarrow \phi K_S, K\pi$?
 – Experimental situation uncertain
 – SUSY loops for large $\tan \beta$ or tree effects, e.g. FCNC Z'

Physics at LHC (July 16, 2004) Paul Langacker (Penn)
• Anomalous magnetic moment of muon

 – Hadronic vacuum polarization \((e^+e^- \text{ vs } \tau \text{ decay}); \text{ light by light}\)
 – If real, then SUSY with large \(\tan \beta\) and low masses is possibility

\[
\Delta a_\mu(ee) = (23.9 \pm 9.9) \times 10^{-10} \quad 2.4 \text{ s.d.}
\]

\[
\Delta a_\mu(\tau) = (7.6 \pm 8.9) \times 10^{-10} \quad 0.9 \text{ s.d.}
\]

Physics at LHC (July 16, 2004)
Paul Langacker (Penn)
CKM Universality

- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 = 1 - \Delta$

 - PDG 2002: $\Delta = 0.0042 \pm 0.0019$
 - New physics? Constrains $\nu - \nu_{\text{heavy}}$ explanations of NuTeV
 - Problem in V_{ud}?
 - Superallowed: $|V_{ud}| = 0.9740(5)$, many checks
 - Neutron: 0.9745 (16) (common structure-independent rad corr)
 - Pion beta decay: $0.9716(39)$ (new)
 - Problem in V_{us}?
 - BNL E685, KTEV, KLOE but not CERN NA 48
• Dark Matter
 - $\sim 30\%$ matter, mainly dark
 - No SM candidates; SUSY LSP if R_P conserved (MSSM tightly constrained); axions

• $\sim 70\%$ dark energy
 - Higgs VeV, QCD vacuum energy in SM, but too large by $\sim 10^{50}$; new fields? quintessence?
 - JDEM (SNAP)
Physics at LHC (July 16, 2004)

Paul Langacker (Penn)
• Baryogenesis

- Baryon asymmetry $n_B/n_\gamma \sim 6 \times 10^{-10}$

• Possible mechanisms

 – GUT baryogenesis (wiped out by sphalerons for $B - L = 0$)
 – Leptogenesis (for heavy right-handed Majorana neutrino in seesaw)
 – Electroweak baryogenesis
EB requires strong first order transition, $v(T_c)/T_c \gtrsim 1 - 1.3$ and adequate CP violation in expanding bubble wall

- Absent in SM
- Narrow parameter range in MSSM
- Possible in Z'

(W. Bernreuther, hep-ph/0205279)
Conclusions

- Standard Model is spectacularly successful, but has many parameters, tunings, and unexplained features
- Must be new physics

- Theoretical ideas
 - Strings
 - Grand Unification (canonical or modified)
 - Supersymmetry
 - Top-down remnants (Z', exotics)
 - Large extra dimensions, deconstruction
 - Dynamical symmetry breaking, compositeness, Little Higgs
• **Experimental probes**

 – Hadron colliders: Tevatron, LHC
 – Linear collider/CLIC
 – FCNC, EDM, heavy quark, precision, neutrino, p decay
 – Cosmology/astrophysics

• **Tremendous opportunities in particle physics, to develop standard theory valid to the Planck scale**