Why the Top Quark?

• Did it have to be there?
• Did it have to be heavy?
• Why is it important?
• What is its role?
A Model of Leptons (1967)

- Group $SU(2) \times U(1)$; gauge bosons (W^\pm, W^0), B

- Gauge couplings g, g': $\tan \theta_W \equiv g'/g$; $e = g \sin \theta_W$

\[
\left(\begin{array}{c}
\nu_e \\
\nu_\mu
\end{array} \right)_L \left(\begin{array}{c}
\nu_\mu \\
\nu_e
\end{array} \right)_L \quad \left(\begin{array}{c}
e^- \\
\mu^-
\end{array} \right)_L \quad \left(\begin{array}{c}
e_R^- \\
\mu_R^-
\end{array} \right)_L
\]

doublets

singlets

\[
W^i_\mu \rightarrow -ig_2 \sigma^i \gamma_\mu \left(\frac{1-\gamma_5}{2} \right)
\]

\[
B_\mu \rightarrow -ig' y_\gamma \gamma_\mu \left(\frac{1+\gamma_5}{2} \right)
\]
• Cabibbo mixing of $d_L - s_L$ needed by charged current

$$
\begin{pmatrix}
 u \\
 d' \equiv d \cos \theta_c + s \sin \theta_c
\end{pmatrix}_L \quad s'_L = -d_L \sin \theta_c + s_L \cos \theta_c
$$

$$u_R \quad d_R \quad s_R$$

• Flavor changing neutral current transitions predicted, not observed

$$J^\mu_Z = \bar{u}_L \gamma^\mu u_L - \bar{d}'_L \gamma^\mu d'_L - 2\sin^2 \theta_W J^\mu_\bar{Q}
$$

$$= \bar{u}_L \gamma^\mu u_L - \cos^2 \theta_c \ \bar{d}_L \gamma^\mu d_L - \sin^2 \theta_c \ \bar{s}_L \gamma^\mu s_L
$$

$$- \cos \theta_c \sin \theta_c \left(\bar{d}_L \gamma^\mu s_L + \bar{s}_L \gamma^\mu d_L \right) - 2\sin^2 \theta_W J^\mu_Q$$
• **GIM (1970): Introduce fourth \((c)\) quark**

 - Quarks and leptons treated symmetrically (up to \(\nu_R\))
 - \(d_L\) and \(s_L\) both in doublets \(\rightarrow\) no tree-level FCNC
 - FCNC loops calculable: \(m_{K_L} - m_{K_S} \rightarrow m_c \sim \) few GeV
 - No triangle anomalies
 - *But*, strong resistance to introducing new particle (cf. Pauli)
The J/ψ

- J/ψ ($c\bar{c}$) discovered 1974 at Brookhaven and SLAC
 ($m_c \sim 1.5$ GeV)

- Role of hadron, e^+e^-, precision, theory
The Third Generation

τ lepton, SLAC (1975)
$(m_\tau \sim 1.8 \text{ GeV})$

$\Upsilon(b\bar{b})$, Fermilab (1976)
$(m_b \sim 5 \text{ GeV})$
Sequential or Alternative?

- Simplest interpretation: sequential family

\[
\begin{pmatrix}
\nu_	au \\
\tau^-
\end{pmatrix}_L \quad \begin{pmatrix}
t \\
b
\end{pmatrix}_L \quad \tau^-_R \quad t_R \quad b_R
\]

- This is the obvious generalization
- Anomaly cancellation preserved
- Allows CP violation
Other Possibilities

- However, third family could be different (e.g., string constructions)

- Many other ways to cancel anomalies

 - Mirror family: \(\tau^-_L \ t_L \ b_L \ \left(\begin{array}{c} \nu_\tau \\ \tau^- \end{array} \right)_R \ \left(\begin{array}{c} t \\ b \end{array} \right)_R \)

 - Singlet vector: \(\tau^-_L \ b_L \ \tau^-_R \ b_R \) (topless)

 - Doublet vector: \(\left(\begin{array}{c} \nu_\tau \\ \tau^- \end{array} \right)_L \ \left(\begin{array}{c} t \\ b \end{array} \right)_L \ \left(\begin{array}{c} \nu_\tau \\ \tau^- \end{array} \right)_R \ \left(\begin{array}{c} t \\ b \end{array} \right)_R \)

 - Other, more complicated, possibilities
The ν_τ

- Weak interactions of τ (lifetime, decay distribution, A_{FB}^{τ}, absence of FCNC $\tau \rightarrow l_1 l_2 \bar{l}_2$) established sequential $\begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \tau_R$

- DONUT experiment (Fermilab, 2000) observed ν_τ directly

Top Turns Ten (October 21, 2005)
Paul Langacker (FNAL/Penn)
The Weak Interactions of the b

- $e^+e^- \rightarrow b\,\bar{b}$ (full strength interaction)
 - Jade (DESY, 1988): $A_{FB}^b(35 \text{ GeV}) \rightarrow t_{3L}^b - t_{3R}^b = -0.54 \pm 0.15$
 (sequential: $-\frac{1}{2}$; mirror: $+\frac{1}{2}$; singlet or doublet vector: 0)
 - LEP (1992): Γ_b/Γ_{had} and $A_{FB}^b(M_Z)$; LEP + SLC (2005)

- CLEO (1987): absence of FCNC $B \rightarrow l^+l^-X$ (but reduced strength)

Top Turns Ten (October 21, 2005)
Paul Langacker (FNAL/Penn)
Top Loops

- Quadratic $G_F m_t^2$ dependence in gauge self-energies breaks $SU(2)$
 (M_W, Z, widths, NC/CC)

- Also $Z \rightarrow b\bar{b}$ vertex
 (Γ_Z^b, A_{FB}^b)
Precision Constraints on m_t

- **Theory, 1977**

- **1980 global analysis**: $m_L < 500$ GeV ($\rightarrow m_t < 290$ GeV)

- **1987**: $m_t < (175, 180, 200)$ GeV at 90% cl (for $M_H = (10, 100, 1000)$ GeV)

- **1989**: Precise M_Z (Mark II at SLC) and $M_{W,Z}$ (CDF): $m_t = 140^{+43}_{-52}$ GeV for $M_H = 100$ ($\rightarrow 128$ (165) for $M_H = 10$ (1000) GeV)
The LEP, SLD Era, and the Tevatron

- Two loop $m_t - M_H$ and $m_t - \alpha_s$ effects

Top Turns Ten (October 21, 2005)

Paul Langacker (FNAL/Penn)
A House of Cards?

- Possible weak links in indirect precision predictions
 - Global analysis; unexpected systematics/correlations
 - Gauge principle, group, representations
 (well tested by W, Z; fermion couplings)
 - Renormalization of spontaneously broken non-abelian gauge theories, including anomalies and mixed QCD-electroweak (μ, β decay)
 - A heavy Higgs (but $Z \to b\bar{b}$)
 - New $SU(2)$-breaking physics to compensate m_t
 ($Z - Z'$ mixing, Higgs triplets)
 - Physics beyond the standard model affecting observables
The lynchpin of the standard theory!

Top Turns Ten (October 21, 2005) Paul Langacker (FNAL/Penn)
Why is the t Important?

- Established standard theory at loop level
- Signal and background for new physics
- Top properties, decays as probe of new physics
- **Higgs machine** (gg fusion, $t\bar{t}H$, etc.)
- **Critical parameter** (unitarity triangle, Higgs expectation in MSSM, precision constraint on Higgs mass)
The Standard Model (or decoupled MSSM) Higgs

Present

Future

Top Turns Ten (October 21, 2005) Paul Langacker (FNAL/Penn)
Expectation in MSSM

- **Bound weakened in extensions of MSSM**

Top Turns Ten (October 21, 2005) Paul Langacker (FNAL/Penn)
What is the Role of Top?

- CP violation allowed in CKM matrix
- The top may be the only normal fermion
- The third family may be different (e.g., strings, top-color)
- May drive electroweak symmetry breaking (e.g., radiative breaking in MSSM, top-color)
Radiative Electroweak Symmetry Breaking

- $m_H^2 > 0$ at Planck scale driven negative by large top Yukawa
Conclusions

- Discovery was splendid achievement (experiments and accelerator)
- Critical for establishment of standard theory at quantum level
- Cooperation of discovery machines, precision, theory
- On to the Higgs (or alternative) and beyond
Conclusions

• Discovery was splendid achievement (experiments and accelerator)

• Critical for establishment of standard theory at quantum level

• Cooperation of discovery machines, precision, theory

• On to the Higgs (or alternative) and beyond

Congratulations!