Global Fits to Precision Electroweak Data

- Precision Experiments: Historical Perspective
- LEP/SLC Physics
- Probing the Standard Model
- Beyond the Standard Model
The Z, the W, and the Weak Neutral Current

- Primary prediction and test of electroweak unification
- WNC discovered 1973 (Gargamelle, HPW)
- 70's, 80's: weak neutral current experiments (few %)
 - Pure weak: $\nu N, \nu e$ scattering
 - Weak-elm interference in eD, e^+e^-, atomic parity violation
 - $SU(2) \times U(1)$ group/representations; t and ν_τ exist; hint for SUSY unification; limits on TeV scale physics
- W, Z discovered directly 1983 (UA1, UA2)
● 90's: Z pole (LEP, SLD), 0.1%; lineshape, modes, asymmetries

● LEP 2: M_W, Higgs, gauge self-interactions

● Tevatron: m_t, M_W

● 4th generation weak neutral current experiments

● Implications
 – SM correct and unique to zeroth approx. (gauge principle, group, representations)
 – SM correct at loop level (renorm gauge theory; m_t, α_s, M_H)
 – TeV physics severely constrained (unification vs compositeness)
 – Precise gauge couplings (gauge unification)
The LEP/SLC Era

- **Z Pole:** $e^+e^- \rightarrow Z \rightarrow \ell^+\ell^-, \; q\bar{q}, \; \nu\bar{\nu}$
 - LEP (CERN), $2 \times 10^7 Z'$s, unpolarized (ALEPH, DELPHI, L3, OPAL);
 SLC (SLAC), 5×10^5, $P_{e^-} \sim 75\%$ (SLD)

- **Z pole observables**
 - lineshape: M_Z, Γ_Z, σ
 - branching ratios
 * $e^+e^-, \mu^+\mu^-, \tau^+\tau^-$
 * $q\bar{q}, c\bar{c}, b\bar{b}, s\bar{s}$
 * $\nu\bar{\nu} \Rightarrow N_\nu = 2.983 \pm 0.009$ if $m_\nu < M_Z/2$
 - asymmetries: FB, polarization, P_τ, mixed
 - lepton family universality
The Z Lineshape

Basic Observables: $e^+ e^- \rightarrow f \bar{f}$ \hspace{1em} (f = e, \mu, \tau, s, b, c, hadrons) \hspace{1em} (s = \notE_{CM}^2)

$$\sigma_f(s) \sim \sigma_f \frac{s \Gamma_Z^2}{(s - M_Z^2)^2 + \frac{s^2 \Gamma_Z^2}{M_Z^2}}$$

(plus initial state rad. corrections)

Peak Cross Section:

$$\sigma_f = \frac{12\pi}{M_Z^2} \frac{\Gamma(e^+ e^-) \Gamma(f \bar{f})}{\Gamma_Z^2}$$
Partial Widths:

\[
\Gamma(f\bar{f}) \sim \frac{C_f G_F M_Z^3}{6\sqrt{2}\pi} \left[|\bar{g}_{Vf}|^2 + |\bar{g}_{Af}|^2\right]
\]

(plus mass, QED, QCD corrections; \(C_\ell = 1\), \(C_q = 3\); \(\bar{g}_{V,Af} = \) effective coupling (includes ew)).

At tree level:

\[
\bar{g}_{Af} = \pm \frac{1}{2}, \quad \bar{g}_{Vf} = \pm \frac{1}{2} - 2\sin^2 \theta_W q_f
\]

where \(\sin^2 \theta_W \equiv 1 - \frac{M_W^2}{M_Z^2}\) is the weak angle, \(\pm \frac{1}{2}\) is the weak isospin (\(+\) for \((u, \nu)\), \(-\) for \((d, e^-)\)), and \(q_f\) is the electric charge.
Ratio of Hadronic to Leptonic Width

Experiment

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td>20.729 ± 0.039</td>
</tr>
<tr>
<td>DELPHI</td>
<td>20.730 ± 0.060</td>
</tr>
<tr>
<td>L3</td>
<td>20.809 ± 0.060</td>
</tr>
<tr>
<td>OPAL</td>
<td>20.822 ± 0.044</td>
</tr>
<tr>
<td>LEP</td>
<td>20.767 ± 0.025</td>
</tr>
</tbody>
</table>

$\chi^2 / \text{dof} = 3.5 / 3$

$\alpha_S = 0.118 \pm 0.003$

Linearly added to

$M_t = 178.0 \pm 4.3 \text{ GeV}$

Common error 0.007
Z-Pole Asymmetries

- Effective axial and vector couplings of Z to fermion f

$$
\bar{g}_{A_f} = \sqrt{\rho_f} t_{3_f} \\
\bar{g}_{V_f} = \sqrt{\rho_f} \left[t_{3_f} - 2 \bar{s}_f^2 q_f \right]
$$

where \bar{s}_f^2 the effective weak angle,

$$
\bar{s}_f^2 = \kappa_f s^2_W \quad \text{(on-shell)} \\
= \hat{\kappa}_f \hat{s}_Z^2 \sim \hat{s}_Z^2 + 0.00029 \quad (f = e) \quad \text{(MS)},
$$

$\rho_f, \kappa_f, \text{ and } \hat{\kappa}_f$ are electroweak corrections, $q_f = \text{electric charge}$, $t_{3_f} = \text{weak isospin}$

WIN 05 (June 10, 2005) Paul Langacker (Penn)
• $A^0 = \text{Born asymmetry}$ (after removing γ, off-pole, box (small), P_{e-})

forward – backward: $A_{FB}^{0f} \simeq \frac{3}{4} A_e A_f$

($A_{FB}^{0e} = A_{FB}^{0\mu} = A_{FB}^{0\tau} \equiv A_{FB}^{0\ell} \rightarrow \text{universality}$)

τ polarization: $P_{\tau}^0 = -\frac{A_\tau + A_e \frac{2z}{1+z^2}}{1 + A_\tau A_e \frac{2z}{1+z^2}}$

($z = \cos \theta$, $\theta = \text{scattering angle}$)

e$^-\text{polarization (SLD)} : A_{LR}^0 = A_e$

mixed (SLD): $A_{LR}^{0FB} = \frac{3}{4} A_f$

$A_f \equiv \frac{2 g_{VF} \bar{g}_{Af}}{\bar{g}_{VF}^2 + \bar{g}_{AF}^2}$
The Z Pole Observables: LEP and SLC (01/03)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Group(s)</th>
<th>Value</th>
<th>Standard Model</th>
<th>pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Z [GeV]</td>
<td>LEP</td>
<td>91.1876 ± 0.0021</td>
<td>91.1874 ± 0.0021</td>
<td>0.1</td>
</tr>
<tr>
<td>Γ_Z [GeV]</td>
<td>LEP</td>
<td>2.4952 ± 0.0023</td>
<td>2.4972 ± 0.0011</td>
<td>−0.9</td>
</tr>
<tr>
<td>$\Gamma(had)$ [GeV]</td>
<td>LEP</td>
<td>1.7444 ± 0.0020</td>
<td>1.7436 ± 0.0011</td>
<td>—</td>
</tr>
<tr>
<td>$\Gamma(inv)$ [MeV]</td>
<td>LEP</td>
<td>499.0 ± 1.5</td>
<td>501.74 ± 0.15</td>
<td>—</td>
</tr>
<tr>
<td>$\Gamma(\ell^+\ell^-)$ [MeV]</td>
<td>LEP</td>
<td>83.984 ± 0.086</td>
<td>84.015 ± 0.027</td>
<td>—</td>
</tr>
<tr>
<td>σ_{had} [nb]</td>
<td>LEP</td>
<td>41.541 ± 0.037</td>
<td>41.470 ± 0.010</td>
<td>1.9</td>
</tr>
<tr>
<td>R_e</td>
<td>LEP</td>
<td>20.804 ± 0.050</td>
<td>20.753 ± 0.012</td>
<td>1.0</td>
</tr>
<tr>
<td>R_μ</td>
<td>LEP</td>
<td>20.785 ± 0.033</td>
<td>20.753 ± 0.012</td>
<td>1.0</td>
</tr>
<tr>
<td>R_τ</td>
<td>LEP</td>
<td>20.764 ± 0.045</td>
<td>20.799 ± 0.012</td>
<td>−0.8</td>
</tr>
<tr>
<td>$A_{FB}(e)$</td>
<td>LEP</td>
<td>0.0145 ± 0.0025</td>
<td>0.01639 ± 0.00026</td>
<td>−0.8</td>
</tr>
<tr>
<td>$A_{FB}(\mu)$</td>
<td>LEP</td>
<td>0.0169 ± 0.0013</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>$A_{FB}(\tau)$</td>
<td>LEP</td>
<td>0.0188 ± 0.0017</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>Quantity</td>
<td>Group(s)</td>
<td>Value</td>
<td>Standard Model</td>
<td>pull</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>R_b</td>
<td>LEP/SLD</td>
<td>0.21664 ± 0.00065</td>
<td>0.21572 ± 0.00015</td>
<td>1.1</td>
</tr>
<tr>
<td>R_c</td>
<td>LEP/SLD</td>
<td>0.1718 ± 0.0031</td>
<td>0.17231 ± 0.00006</td>
<td>−0.2</td>
</tr>
<tr>
<td>$R_{s,d}/R_{(d+u+s)}$</td>
<td>OPAL</td>
<td>0.371 ± 0.023</td>
<td>0.35918 ± 0.00004</td>
<td>0.5</td>
</tr>
<tr>
<td>$A_{FB}(b)$</td>
<td>LEP</td>
<td>0.0995 ± 0.0017</td>
<td>0.1036 ± 0.0008</td>
<td>−2.4</td>
</tr>
<tr>
<td>$A_{FB}(c)$</td>
<td>LEP</td>
<td>0.0713 ± 0.0036</td>
<td>0.0741 ± 0.0007</td>
<td>−0.8</td>
</tr>
<tr>
<td>$A_{FB}(s)$</td>
<td>DELPHI/OPAL</td>
<td>0.0976 ± 0.0114</td>
<td>0.1037 ± 0.0008</td>
<td>−0.5</td>
</tr>
<tr>
<td>A_b</td>
<td>SLD</td>
<td>0.922 ± 0.020</td>
<td>0.93476 ± 0.00012</td>
<td>−0.6</td>
</tr>
<tr>
<td>A_c</td>
<td>SLD</td>
<td>0.670 ± 0.026</td>
<td>0.6681 ± 0.0005</td>
<td>0.1</td>
</tr>
<tr>
<td>A_s</td>
<td>SLD</td>
<td>0.895 ± 0.091</td>
<td>0.93571 ± 0.00010</td>
<td>−0.4</td>
</tr>
<tr>
<td>A_{LR} (hadrons)</td>
<td>SLD</td>
<td>0.15138 ± 0.00216</td>
<td>0.1478 ± 0.0012</td>
<td>1.7</td>
</tr>
<tr>
<td>A_{LR} (leptons)</td>
<td>SLD</td>
<td>0.1544 ± 0.0060</td>
<td>0.1478 ± 0.0012</td>
<td>1.1</td>
</tr>
<tr>
<td>A_μ</td>
<td>SLD</td>
<td>0.142 ± 0.015</td>
<td>0.142 ± 0.015</td>
<td>−0.4</td>
</tr>
<tr>
<td>A_τ</td>
<td>SLD</td>
<td>0.136 ± 0.015</td>
<td>0.136 ± 0.015</td>
<td>−0.8</td>
</tr>
<tr>
<td>$A_e(Q_{LR})$</td>
<td>SLD</td>
<td>0.162 ± 0.043</td>
<td>0.162 ± 0.043</td>
<td>0.3</td>
</tr>
<tr>
<td>$A_\tau(P_{\tau})$</td>
<td>LEP</td>
<td>0.1439 ± 0.0043</td>
<td>0.1439 ± 0.0043</td>
<td>−0.9</td>
</tr>
<tr>
<td>$A_e(P_{\tau})$</td>
<td>LEP</td>
<td>0.1498 ± 0.0048</td>
<td>0.1498 ± 0.0048</td>
<td>0.4</td>
</tr>
<tr>
<td>Q_{FB}</td>
<td>LEP</td>
<td>0.0403 ± 0.0026</td>
<td>0.0424 ± 0.0003</td>
<td>−0.8</td>
</tr>
</tbody>
</table>
LEP 2

- M_W, Γ_W, B (also hadron colliders)
- M_H limits (hint?)
- WW production (triple gauge vertex)
- Quartic vertex
- SUSY/exotics searches
Other: atomic parity (Boulder); νe; νN (NuTeV); polarized Møller asymmetry (SLAC E158); M_W, m_t (Tevatron)
Non-Z Pole Precision Observables (1/03)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Group(s)</th>
<th>Value</th>
<th>Standard Model</th>
<th>pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_t [GeV]</td>
<td>Tevatron</td>
<td>174.3 ± 5.1</td>
<td>174.4 ± 4.4</td>
<td>0.0</td>
</tr>
<tr>
<td>M_W [GeV]</td>
<td>LEP</td>
<td>80.447 ± 0.042</td>
<td>80.391 ± 0.018</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Tevatron /UA2</td>
<td>80.454 ± 0.059</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>g_L^2</td>
<td>NuTeV</td>
<td>0.30005 ± 0.00137</td>
<td>0.30396 ± 0.00023</td>
<td>-2.9</td>
</tr>
<tr>
<td>g_R^2</td>
<td>NuTeV</td>
<td>0.03076 ± 0.00110</td>
<td>0.03005 ± 0.00004</td>
<td>0.6</td>
</tr>
<tr>
<td>R^ν</td>
<td>CCFR</td>
<td>$0.5820 \pm 0.0027 \pm 0.0031$</td>
<td>0.5833 ± 0.0004</td>
<td>-0.3</td>
</tr>
<tr>
<td>R^ν</td>
<td>CDHS</td>
<td>$0.3096 \pm 0.0033 \pm 0.0028$</td>
<td>0.3092 ± 0.0002</td>
<td>0.1</td>
</tr>
<tr>
<td>R^ν</td>
<td>CHARM</td>
<td>$0.3021 \pm 0.0031 \pm 0.0026$</td>
<td></td>
<td>-1.7</td>
</tr>
<tr>
<td>R^ν</td>
<td>CDHS</td>
<td>$0.384 \pm 0.016 \pm 0.007$</td>
<td>0.3862 ± 0.0002</td>
<td>-0.1</td>
</tr>
<tr>
<td>R^ν</td>
<td>CHARM</td>
<td>$0.403 \pm 0.014 \pm 0.007$</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>$R^\bar{\nu}$</td>
<td>CDHS 1979</td>
<td>$0.365 \pm 0.015 \pm 0.007$</td>
<td>0.3816 ± 0.0002</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

WIN 05 (June 10, 2005) Paul Langacker (Penn)
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Group(s)</th>
<th>Value</th>
<th>Standard Model</th>
<th>pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g^\nu e_V$</td>
<td>CHARM II</td>
<td>-0.035 ± 0.017</td>
<td>-0.0398 ± 0.0003</td>
<td>—</td>
</tr>
<tr>
<td>$g^\nu e_V$</td>
<td>all</td>
<td>-0.041 ± 0.015</td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>$g^\nu e_V$</td>
<td>CHARM II</td>
<td>-0.503 ± 0.017</td>
<td>-0.5065 ± 0.0001</td>
<td>—</td>
</tr>
<tr>
<td>$g_A^\nu e_V$</td>
<td>all</td>
<td>-0.507 ± 0.014</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>$Q_W(Cs)$</td>
<td>Boulder</td>
<td>-72.69 ± 0.44</td>
<td>-73.10 ± 0.04</td>
<td>0.8</td>
</tr>
<tr>
<td>$Q_W(Tl)$</td>
<td>Oxford/Seattle</td>
<td>-116.6 ± 3.7</td>
<td>-116.7 ± 0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>$10^3 \frac{\Gamma(b\to s\gamma)}{\Gamma_{SL}}$</td>
<td>BaBar/Belle/CLEO</td>
<td>$3.48^{+0.65}_{-0.54}$</td>
<td>3.20 ± 0.09</td>
<td>0.5</td>
</tr>
<tr>
<td>τ_τ [fs]</td>
<td>direct/B_e/B_μ</td>
<td>$290.96 \pm 0.59 \pm 5.66$</td>
<td>291.90 ± 1.81</td>
<td>-0.4</td>
</tr>
<tr>
<td>$10^4 \Delta\alpha^{(3)}_{\text{had}}$</td>
<td>e^+e^-/τ decays</td>
<td>$56.53 \pm 0.83 \pm 0.64$</td>
<td>57.52 ± 1.31</td>
<td>-0.9</td>
</tr>
<tr>
<td>$10^9 (\alpha_\mu - \frac{\alpha}{2\pi})$</td>
<td>BNL/CERN</td>
<td>$4510.64 \pm 0.79 \pm 0.51$</td>
<td>4508.30 ± 0.33</td>
<td>2.5</td>
</tr>
</tbody>
</table>
New Inputs, Anomalies, Things to Watch

- New CDF m_t from Run II (lepton + jets)
 - $m_t = 173.5^{+4.1}_{-4.0}$ GeV, lower than previous Tevatron average
 - 178.0 ± 4.3 GeV (dominated by reanalysis of D$\bar{0}$ Run)
 - More precise than previous average
 - Will lower the M_H prediction
• $A_{FB}^b = 0.0995(17)$ is 2.4σ below expectation of $0.1032(8)$ for $M_H = 114$ GeV

 – Favors large M_H. New physics or fluctuation/systematics lead to smaller M_H

 – $A_{FB}^b = \frac{3}{4} A_l A_b$; A_b agrees with SM, A_l (SLC) is 1.9σ high

 – New physics in A_{FB}^b would require compensation of L and R couplings (to preserve R_b)

 – 5% effect, but $\sim 25\%$ in $\kappa \rightarrow$ probably tree level affecting third family

 – New physics possibilities include Z' with non-universal couplings, or b_R mixing with B_R in doublet with charge $-4/3$
\[\langle A_{0, b\bar{b}}^{0, b\bar{b}} \rangle_{FB} = 0.0992 \pm 0.0016 \]

\[m_t = 178.0 \pm 4.3 \text{ GeV} \]

\[\Delta\alpha_{\text{had}} = 0.02761 \pm 0.00036 \]

\[m_H = 150 \text{ to } 200 \text{ GeV} \]

\[A_b = 0.0978 \pm 0.0030 \pm 0.0015 \]

\[A_{l} = 18.3 \text{ to } 95.5 \% \text{ CL} \]

\[A_{l} = 0.8 \text{ to } 0.9 \]

\[A_{l} = 0.14 \text{ to } 0.145 \]

\[A_{l} = 0.15 \text{ to } 0.155 \]

\[\text{SM} \]

\[\text{WIN 05 (June 10, 2005) Paul Langacker (Penn)} \]
\(a_\mu = (g_\mu - 2)/2 \)

- More sensitive than \(a_e \) to new physics
- BNL (2004) + other: \(a_\mu^{\text{exp}} = 11659208(6) \times 10^{-10} \)
- Hadronic light by light has settled down, but considerable uncertainty from \(a_\mu^{\text{Had}} \)
- \(a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = (24 \pm 10) \times 10^{-10} \) (2.4\(\sigma \)) (using \(e^+e^- \) data for \(a_\mu^{\text{Had}} \)) \(\rightarrow 0.9\sigma \) (using \(\tau \) decay data. Theory uncertainties?)

- New physics? Supersymmetry: \((\tilde{m} \sim 70 \text{ GeV} \sqrt{\tan \beta}) \)
NuTeV

\[
\begin{align*}
\bar{\nu}_\mu N &\rightarrow \bar{\nu}_\mu X \\
\nu_\mu N &\rightarrow \mu^+ X
\end{align*}
\]

- Little c threshold uncertainty
- \(s_W^2 = 0.2277(16) \), 3.0\(\sigma \) above SM value 0.2228(4)
- Possible QCD effects: large \(\bar{s} - s \) asymmetry (CTEQ); large isospin breaking in sea (MRST; Glück, Jimenez-Delgado, Reya)
- Need new analysis
- Future NOMAD
SLAC E158 Polarized Møller Asymmetry

- e^-e^- asymmetry, $P \sim 90\%$
- $\sin^2 \theta_W^{eff}(Q) = 0.2397 \pm 0.0013$ at $Q^2 = 0.026$ GeV2
• Atomic Parity Violation

 – Very precise measurement (0.4%) in cesium (single electron outside tightly bound core)

 – Previous hint (2.2σ) of discrepancy, but theory-dominated error

 – Surprisingly large (O(1%)) radiative corrections: Breit, vacuum polarization, vertex, self-energy have now stabilized

 – Now excellent agreement:
 \[Q_W(Cs) = -72.69(48) \text{ (SM: } -73.19(3) \text{)} \]

• CKM Unitarity

 – Expect \(\Delta \equiv 1 - |V_{ud}|^2 - |V_{us}|^2 - |V_{ub}|^2 = 0 \)

 – PDG 2002: \(\Delta = 0.0042 \pm 0.0019 \)

 – Superallowed (0\(^+\)→0\(^+\)): \(|V_{ud}| = 0.9740(5) \) under control

 – Recent BNL865 \(K^+ \), KTEV \(K_L \), KLOE, NA48 give higher \(|V_{us}| \), consistent with unitarity
Global Standard Model Fit Results

- **PDG 2004 (12/93)** (Erler, PL)
 - Fully \overline{MS}
 - Good agreement with LEPEWWG up to known effects
 - Update for PDG 2006 in progress

\[
\begin{align*}
M_H &= 113^{+56}_{-40} \text{ GeV}, \\
m_t &= 176.9 \pm 4.0 \text{ GeV}, \\
\alpha_s &= 0.1213 \pm 0.0018, \\
\hat{\alpha}(M_Z)^{-1} &= 127.906 \pm 0.019 \\
\hat{s}_Z^2 &= 0.23120 \pm 0.00015, \\
\hat{s}_W^2 &= 0.22280 \pm 0.00035 \\
\Delta \alpha_{\text{had}}^{(5)}(M_Z) &= 0.02801 \pm 0.00015
\end{align*}
\]
• $m_t = 176.9 \pm 4.0$ GeV

- $172.4^{+9.8}_{-7.3}$ GeV from indirect (loops) only (direct: 178.0 ± 4.3)
- New CDF Run II, $m_t = 173.5^{+4.1}_{-4.0}$ GeV, not included
• $\alpha_s = 0.1213 \pm 0.0018$

 - Higher than $\alpha_s = 0.1187(20)$ (Hinchliffe (PDG) 2004), because of τ lifetime

 - insensitive to oblique new physics

 - very sensitive to non-universal new physics (e.g., $Zb\bar{b}$ vertex)
• Higgs mass $M_H = 113^{+56}_{-40} \text{ GeV}$
 - LEPEWWG (12/94): 114^{+69}_{-45}
 - direct limit (LEP 2): $M_H \gtrsim 114.4 (95\%) \text{ GeV}$
 - SM: $115 (\text{vac. stab.}) \lesssim M_H \lesssim 750 (\text{triviality})$
 - MSSM: $M_H \lesssim 130 \text{ GeV} (150 \text{ in extensions})$
 - indirect: ln M_H but significant
 * fairly robust to new physics (except $S < 0, T > 0$)
 * however, strong $A_{FB}(b)$ effect
 * $M_H < 246 \text{ GeV at 95\%}, \text{ including direct}$
WIN 05 (June 10, 2005) Paul Langacker (Penn)
WIN 05 (June 10, 2005) Paul Langacker (Penn)
\begin{align*}
\Delta \chi^2 &= \text{Theory uncertainty} \\
M_t &= \text{Run-1 average} \\
\text{CDF-II preliminary}
\end{align*}

\begin{align*}
\text{LEP1, SLD data} \\
\text{LEP2 (prel.), pp data (CDF-II m_t)} \\
68\% \text{ CL}
\end{align*}

\begin{align*}
m_H \ [\text{GeV}] &= 114, 300, 1000 \\
m_t \ [\text{GeV}] &= 150, 175, 200
\end{align*}

\text{WIN 05 (June 10, 2005)}

Paul Langacker (Penn)
Beyond the standard model

- $\rho_0; \ S, T, U$: Higgs triplets, nondegenerate fermions or scalars; chiral families (ETC)

$$S = -0.13 \pm 0.10(-0.08)$$
$$T = -0.17 \pm 0.12(+0.09)$$
$$U = 0.22 \pm 0.13(+0.01)$$

for $M_H = 117 (300)$ GeV

- $\rho_0 = 1 + \alpha T = 0.9998^{+0.0008}_{-0.0005}$ and $114.4 \text{ GeV} < M_H < 193$ GeV (for $S = U = 0$)

- Can evade Higgs mass limit for $S < 0, \ T > 0$ (Higgs doublet/triplet loops, Majorana fermions)
Oblique Parameters

constraints on gauge boson self-energies

\[M_H = 117 \text{ GeV} \]
\[M_H = 340 \text{ GeV} \]
\[M_H = 1000 \text{ GeV} \]
- Supersymmetry
 - decoupling limit ($M_{new} \gtrsim 200 - 300$ GeV): only precision effect is light SM-like Higgs
 - little improvement on SM fit

- SUSY parameters constrained
• A TeV scale Z'?

 – Expected in many string theories, grand unification, dynamical symmetry breaking, little Higgs

 – Natural solution to μ problem

 – Implications
 * Exotics
 * FCNC (especially in string models)
 * Non-standard Higgs masses, couplings (doublet-singlet mixing)

 * Non-standard sparticle spectrum
 * Neutrino mass, BBN, structure
 * Enhanced possibility of EW baryogenesis

 – Typically $M_{Z'} > 500 - 800$ GeV (Tevatron, LEP 2, WNC), $|\theta_{Z-Z'}| < \text{few} \times 10^{-3}$ (Z-pole)
• Other
 – Exotic fermion mixings
 – Large extra dimensions
 – New four-fermi operator
 – Leptoquark bosons

• Gauge unification: GUTs, string theories
 – \(\alpha + \hat{s}^2_Z \rightarrow \alpha_s = 0.130 \pm 0.010 \)
 – \(M_G \sim 3 \times 10^{16} \text{ GeV} \)
 – Perturbative string: \(\sim 5 \times 10^{17} \text{ GeV (10\% in } \ln M_G) \). Exotics: \(O(1) \) corrections.
M unification
M_Z, m_b, μ, e

$\alpha_1(\alpha, \sin^2 \theta_W)$

$\alpha_2(G_F, M_W)$

α_3
Conclusions

- WNC, Z, W are primary predictions and test of electroweak unification

- SM correct and unique to first approx. (gauge principle, group, representations)

- SM correct at loop level (renorm gauge theory; m_t, α_s, M_H)

- Watershed: TeV physics severely constrained (unification vs compositeness)
 - unification (decoupling): expect 0.1%
 - TeV compositeness: expect several % unless decoupling

- Precise gauge couplings (gauge unification)