Massive Neutrinos and (Heterotic) String Theory

- Introduction
- Neutrino preliminaries
- The GUT seesaw
- A string primer
- The Z_3 heterotic orbifold

(In collaboration with J. Giedt, G. Kane, B. Nelson.)
Neutrino mass

- Nonzero mass may be first break with standard model
- Enormous theoretical effort: GUT, family symmetries, bottom up
 - Majorana masses may be favored because not forbidden by SM gauge symmetries
 - GUT seesaw (heavy Majorana singlet). Usually ordinary hierarchy.
 - Higgs triplets ("type II seesaw"), often assuming GUT, Left-Right relations
• Very little work from string constructions, even though probably Planck scale

- J. Giedt, G. Kane, PL, B. Nelson, this work. (Systematic study of heterotic \(Z_3 \) orbifolds.)
• Key ingredients of most bottom up models forbidden in known constructions (heterotic or intersecting brane) (Due to string symmetries or constraints, not simplicity or elegance)

 – “Right-handed” neutrinos may not be gauge singlets
 – Large representations difficult to achieve (bifundamentals, singlets, or adjoints)
 – GUT Yukawa relations broken
 – String symmetries/constraints severely restrict couplings, e.g., Majorana masses, or simultaneous Dirac and Majorana masses
 – Small Dirac masses from HDO, extended (TeV-scale) seesaw, or triplet seesaw (with inverted hierarchy) may be more likely
• Weyl fermion
 - Minimal (two-component) fermionic degree of freedom
 - $\psi_L \leftrightarrow \psi_R^c$ by CPT

• Active Neutrino (a.k.a. ordinary, doublet)
 - in $SU(2)$ doublet with charged lepton \rightarrow normal weak interactions
 - $\nu_L \leftrightarrow \nu_R^c$ by CPT

• Sterile Neutrino (a.k.a. singlet, right-handed)
 - $SU(2)$ singlet; no interactions except by mixing, Higgs, or BSM
 - $N_R \leftrightarrow N_L^c$ by CPT
 - Almost always present: Are they light? Do they mix?
- **Dirac Mass**

 - Connects distinct Weyl spinors (usually active to sterile):
 \[(m_D \tilde{\nu}_L N_R + h.c.) \]
 - 4 components, \(\Delta L = 0 \)
 - \(\Delta I = \frac{1}{2} \rightarrow \) Higgs doublet
 - Why small? HDO? LED?
 - Variant: couple active to anti-active, e.g., \(m_D \tilde{\nu}_e L \nu^c_{\mu R} \Rightarrow L_e - L_\mu \) conserved; \(\Delta I = 1 \)

\[\nu_L \begin{array}{c} v = \langle \phi \rangle \end{array} \begin{array}{c} h \end{array} \begin{array}{c} \ldots \ldots \circ \end{array} \begin{array}{c} N_R \end{array} \begin{array}{c} m_D = hv \end{array} \]
• **Majorana Mass**

 - Connects Weyl spinor with itself:
 \[\frac{1}{2}(m_T \bar{\nu}_L \nu^c_R + h.c.) \text{ (active)}; \]
 \[\frac{1}{2}(m_S \bar{N}^c_L N_R + h.c.) \text{ (sterile)} \]
 - 2 components, \(\Delta L = \pm 2 \)
 - Active: \(\Delta I = 1 \rightarrow \text{triplet or seesaw} \)
 - Sterile: \(\Delta I = 0 \rightarrow \text{singlet or bare mass} \)

• **Mixed Masses**

 - Majorana and Dirac mass terms
 - Seesaw for \(m_S \gg m_D \)
 - Ordinary-sterile mixing for \(m_S \) and \(m_D \) both small and comparable (or \(m_S \ll m_d \) (pseudo-Dirac))
3 ν Patterns

- **Solar:** LMA (SNO, Kamland)

- $\Delta m^2_{\odot} \sim 8 \times 10^{-5}$ eV2, nonmaximal

- **Atmospheric:**
 \[|\Delta m^2_{\text{Atm}}| \sim 2 \times 10^{-3} \text{ eV}^2, \text{ near-maximal mixing} \]

- **Reactor:** U_{e3} small
− Mixings: let $\nu_{\pm} \equiv \frac{1}{\sqrt{2}} (\nu_\mu \pm \nu_\tau)$:

\[
\begin{align*}
\nu_3 & \sim \nu_+ \\
\nu_2 & \sim \cos \theta \nu_- - \sin \theta \nu_e \\
\nu_1 & \sim \sin \theta \nu_- + \cos \theta \nu_e
\end{align*}
\]

− Hierarchical pattern

* Analogous to quarks, charged leptons

* $\beta\beta_{0\nu}$ rate very small

− Inverted quasi-degenerate pattern

* $\beta\beta_{0\nu}$ if Majorana

* SN1987A energetics (if $U_{e3} \neq 0$)?

* May be radiative unstable
– Degenerate patterns
 * Motivated by CHDM (no longer needed)
 * Strong cancellations needed for $\beta\beta_{0\nu}$ if Majorana
 * May be radiative unstable
4 ν Patterns

- LSND: $\Delta m^2_{\text{LSND}} \sim 1 \text{ eV}^2$
- Z lineshape: $2.986(7)$ active ν's lighter than $M_Z/2 \rightarrow$ fourth sterile ν_S

- $2 + 2$ patterns
- $3 + 1$ patterns

$2 + 2 \quad 3 + 1$

- Pure $(\nu_\mu - \nu_s)$ excluded for atmospheric by SuperK, MACRO
- Pure $(\nu_e - \nu_s)$ excluded for solar by SNO, SuperK
- More general admixtures possible, but very poor global fits
- Additional sterile (e.g., $3 + 2$) fit better but may have cosmological difficulties
The minimal seesaw

- Active (sterile) neutrinos $\nu_L (\bar{N}_R)$ (3 flavors each)

\[
L = \frac{1}{2} (\bar{\nu}_L \bar{N}_{L}^c) \begin{pmatrix} m_T & m_D \\ m_D^* & m_S \end{pmatrix} \begin{pmatrix} \nu^c_R \\ \bar{N}_R \end{pmatrix} + \text{hc}
\]

- $m_T = m_{T}^T$ = triplet Majorana mass matrix (Higgs triplet)
- m_D = Dirac mass matrix (Higgs doublet)
- $m_S = m_{S}^T$ = singlet Majorana mass matrix (Higgs singlet)
• Ordinary (type I) seesaw: $m_T = 0$ and (eigenvalues) $m_S \gg m_D$:

$$m_{\nu}^{\text{eff}} = -m_D m_S^{-1} m_D$$

with

$$U_{PMNS} = U_e^\dagger U_\nu$$
Implementation in GUTs

- Elegant mechanism for small Majorana masses
- Leptogenesis
- Expect small mixings in simplest versions (can evade by lopsided e/d, Majorana textures, etc.)
- Most models require large Higgs representations, e.g., 126 of $SO(10)$ (alternative: higher dimensional operators)
- Large Majorana often forbidden, e.g., by extra $U(1)$’s
- LSND: active-sterile difficult in simple versions
Neutrinos in string constructions

Key ingredients of most GUT/bottom up models forbidden or different in known constructions (heterotic or intersecting brane)

- Bifundamentals, singlets, or adjoints; not large representations
- L may be conserved, or extra $U(1)'$ charge for N_R
- String constraints may forbid couplings allowed by 4d symmetries
- Superpotential terms leading to Majorana masses, or diagonal (same family or same flavor) Majorana usually absent
- GUT Yukawa relations broken
- Non-zero superpotential terms may be equal (gauge couplings)
- Hierarchies from HDO (heterotic), intersection triangles (intersecting brane)
Dirac masses

- Can achieve small Dirac masses (neutrino or other) by higher dimensional operators or by large intersection areas

\[L_\nu \sim \left(\frac{S}{M_{Pl}} \right)^p LN^c_L H_2, \quad \langle S \rangle \ll M_{Pl} \]

\[\Rightarrow m_D \sim \left(\frac{\langle S \rangle}{M_{Pl}} \right)^p \langle H_2 \rangle \]

- Large \(p \Rightarrow \langle S \rangle \) close to \(M_{Pl} \) (e.g., anomalous \(U(1)_A \))

- Small \(p \Rightarrow \) intermediate scale \(\ll M_{Pl} \)

- Similar HDO may give light steriles and ordinary/sterile mixing
Can one generate large effective m_S from

$$W_\nu \sim c_{ij} \frac{S^{q+1}}{M_{Pl}^q} N_i N_j \Rightarrow (m_S)_{ij} \sim c_{ij} \frac{\langle S \rangle^{q+1}}{M_{Pl}^q},$$

consistent with D and F flatness?

Can one have such terms simultaneously with Dirac couplings, consistent with flatness and other constraints?

Are bottom-up model assumptions for relations to quark, charged lepton masses maintained?
No completely realistic constructions

Existing constructions usually focus on quark sector
- Neutrino masses rarely considered, and then as afterthought
- No construction has yielded GUT-like seesaw

Analyze Z_3 heterotic orbifolds (semi-realistic 3-family models) in detail, focussing on neutrino sector (Joel Giedt, G. Kane, PL, Brent Nelson)

Large number of possible vacua:
- Is the minimal seesaw generic?
- Is some subclass of vacua favored?
- Any clue about hierarchies, mixings, etc?
A String Primer

- Two classes of quasi-realistic: intersecting D-brane, heterotic

- Intersecting D-brane
 - Closed strings (gravitons) and open strings ending on D-branes
 - D6-branes: fill ordinary space and 3 of the 6 extra dimensions
 - Stringy implementation of “brane world” ideas
– Gauge interactions from strings beginning/ending on stack of parallel branes (one for each group factor)
– Chiral matter: strings at intersection of branes, e.g., $SU(N) \times SU(M) \rightarrow$ bifundamental (N, \bar{M})
– Family replication from multiple intersections on compactified geometry
– Yukawa interactions \(\sim \exp(-A_{ijk})\) → hierarchies
– Existing models: conserved \(L\); no diagonal (Majorana) triangles
The Z_3 Heterotic Orbifold

- $E_8 \times E_8$ closed strings
 $SU(3) \times SU(2) \times U(1)^5$ hidden

- Three families automatic

- Tremendous symmetry, stringy selection rules \rightarrow restricted couplings

- Chiral fermions, $N = 1$ supersymmetry \rightarrow orbifold

- Anomalous $U(1)_A$; F and D flatness; vacuum, restabilization

Madison (March 11, 2005) Paul Langacker (Penn)
The \mathbb{Z}_3 Orbifold

- Compactify on three two-tori T^2
• $n = 0$ strings closed on R^2; winding states $n = 1, 2$ closed on T^2 (not R^2)

• Z_2 orbifold: identify \vec{x} and $-\vec{x} \rightarrow$ two fixed points; twisted states closed on orbifold
- Z_3 orbifold: identify $2\pi/3$ rotations \rightarrow three fixed points
Anomalous $U(1)_A$; F and D flatness; vacuum restabilization

- One linear combination of the $U(1)^5$ may be anomalous
- Green-Schwarz mechanism cancels anomaly in 4d

$$\begin{align*}
\text{SU}(N)
\uparrow & \text{SU}(N) \\
\text{U}(1) & \text{SU}(N) \\
\text{SU}(N) & \text{U}(1) \\
\uparrow & \text{SU}(N) \\
\text{SU}(N) & \text{SU}(N) \\
\text{B}_2 & = 0
\end{align*}$$

- Fayet-Iliopoulos term added to the D-term of $U(1)_A$

$$\xi_{FI} = \frac{g^2_{\text{STR}} \text{Tr} \ Q^A}{192\pi^2} M_{\text{PL}}^2$$

Madison (March 11, 2005)
Paul Langacker (Penn)
Supersymmetry is restored when certain scalar fields acquire VEV’s such that D- and F flatness conditions are satisfied:

$$D_A \equiv \sum_i Q_i^{(A)} |S_i|^2 + \xi_{FI} = 0$$

$$D_a \equiv \sum_i Q_i^{(a)} |S_i|^2 = 0$$

$$F_i \equiv \frac{\partial W}{\partial S_i} = 0; \quad W = 0$$

VEVs $|S_i|$ reduce gauge symmetries, give masses (restabilization)

Other S_i VEVs can acquire intermediate scale masses by radiative breaking
Search for Minimal Seesaw

- Look for structure in Z_3 heterotic orbifold:

$$W_{\text{eff}} = (\nu_i, N_i) \begin{pmatrix} 0 & (m_D)_{ij} \\ (m_D)_{ji} & (m_M)_{ij} \end{pmatrix} \begin{pmatrix} \nu_j \\ N_j \end{pmatrix}$$

- Require simultaneous Majorana and Dirac couplings, and appropriate hypercharge

- *Don’t* insist on realistic quark sector

- Majorana mass from $\langle S_1 \cdots S_{n-2} \rangle N N / M_{\text{PL}}^{n-3}$

- Dirac mass from $\langle S'_1 \cdots S'_{d-3} \rangle N L H_u / M_{\text{PL}}^{d-3}$

- Only 5 embeddings into $E_8 \times E_8$, 4 realistic hidden sector groups

 \rightarrow 175 models in 20 patterns with same ξ_{FI} (Giedt)
<table>
<thead>
<tr>
<th>Pattern</th>
<th>No.</th>
<th>G_{hid}</th>
<th>r_{FI}</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>7</td>
<td>$SO(10) \times U(1)^3$</td>
<td>No $U(1)_A$</td>
<td>51</td>
</tr>
<tr>
<td>1.2</td>
<td>7</td>
<td>$SO(10) \times U(1)^3$</td>
<td>0.15</td>
<td>76</td>
</tr>
<tr>
<td>2.1</td>
<td>10</td>
<td>$SU(5) \times SU(2) \times U(1)^3$</td>
<td>0.09</td>
<td>64</td>
</tr>
<tr>
<td>2.2</td>
<td>10</td>
<td>$SU(5) \times SU(2) \times U(1)^3$</td>
<td>0.10</td>
<td>66</td>
</tr>
<tr>
<td>2.3</td>
<td>7</td>
<td>$SU(5) \times SU(2) \times U(1)^3$</td>
<td>0.10</td>
<td>65</td>
</tr>
<tr>
<td>2.4</td>
<td>7</td>
<td>$SU(5) \times SU(2) \times U(1)^3$</td>
<td>0.13</td>
<td>60</td>
</tr>
<tr>
<td>2.5</td>
<td>6</td>
<td>$SU(5) \times SU(2) \times U(1)^3$</td>
<td>0.14</td>
<td>61</td>
</tr>
<tr>
<td>2.6</td>
<td>6</td>
<td>$SU(5) \times SU(2) \times U(1)^3$</td>
<td>0.12</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>12</td>
<td>$SU(4) \times SU(2)^2 \times U(1)^3$</td>
<td>0.07</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>5</td>
<td>$SU(4) \times SU(2)^2 \times U(1)^3$</td>
<td>0.12</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>10</td>
<td>$SU(4) \times SU(2)^2 \times U(1)^3$</td>
<td>0.12</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>5</td>
<td>$SU(4) \times SU(2)^2 \times U(1)^3$</td>
<td>0.13</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>7</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.10</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>12</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.09</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>7</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.07</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>15</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.12</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>17</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.11</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>13</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.12</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>6</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.11</td>
<td>62</td>
</tr>
<tr>
<td>4.8</td>
<td>6</td>
<td>$SU(3) \times SU(2)^2 \times U(1)^4$</td>
<td>0.12</td>
<td>53</td>
</tr>
</tbody>
</table>
• Classified superpotential terms of degree \(\leq 9 \)

• Large number \((O(50))\) fields in each, \(\sim\) half are SM singlets

• None are singlets under all \(U(1)\)’s

• Huge number of terms, but small wrt number of fields due to symmetries/selection rules

• \(r_{FI} = \sqrt{|\xi_{FI}|}/M_{PL} \sim \langle S_i \rangle/M_{PL} \)
<table>
<thead>
<tr>
<th>Pattern</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>113</td>
<td>24</td>
<td>21329</td>
<td>23768</td>
<td>1697</td>
<td>3380308</td>
</tr>
<tr>
<td>1.2</td>
<td>97</td>
<td>12</td>
<td>13968</td>
<td>4418</td>
<td>498</td>
<td>1552812</td>
</tr>
<tr>
<td>2.1</td>
<td>67</td>
<td>10</td>
<td>5188</td>
<td>3515</td>
<td>162</td>
<td>342186</td>
</tr>
<tr>
<td>2.2</td>
<td>80</td>
<td>11</td>
<td>7573</td>
<td>3066</td>
<td>272</td>
<td>582326</td>
</tr>
<tr>
<td>2.3</td>
<td>75</td>
<td>10</td>
<td>6508</td>
<td>2874</td>
<td>250</td>
<td>467020</td>
</tr>
<tr>
<td>2.4</td>
<td>53</td>
<td>0</td>
<td>2795</td>
<td>360</td>
<td>0</td>
<td>119454</td>
</tr>
<tr>
<td>2.5</td>
<td>58</td>
<td>0</td>
<td>3363</td>
<td>688</td>
<td>26</td>
<td>150838</td>
</tr>
<tr>
<td>2.6</td>
<td>31</td>
<td>0</td>
<td>642</td>
<td>0</td>
<td>0</td>
<td>10976</td>
</tr>
<tr>
<td>3.1</td>
<td>54</td>
<td>4</td>
<td>2749</td>
<td>768</td>
<td>21</td>
<td>119973</td>
</tr>
<tr>
<td>3.2</td>
<td>43</td>
<td>2</td>
<td>1758</td>
<td>291</td>
<td>9</td>
<td>59182</td>
</tr>
<tr>
<td>3.3</td>
<td>48</td>
<td>4</td>
<td>2187</td>
<td>393</td>
<td>20</td>
<td>81497</td>
</tr>
<tr>
<td>3.4</td>
<td>31</td>
<td>8</td>
<td>750</td>
<td>375</td>
<td>42</td>
<td>15074</td>
</tr>
<tr>
<td>4.1</td>
<td>50</td>
<td>3</td>
<td>2090</td>
<td>693</td>
<td>14</td>
<td>81222</td>
</tr>
<tr>
<td>4.2</td>
<td>62</td>
<td>6</td>
<td>3206</td>
<td>793</td>
<td>38</td>
<td>143257</td>
</tr>
<tr>
<td>4.3</td>
<td>55</td>
<td>5</td>
<td>2516</td>
<td>613</td>
<td>15</td>
<td>100793</td>
</tr>
<tr>
<td>4.4</td>
<td>38</td>
<td>2</td>
<td>1137</td>
<td>147</td>
<td>3</td>
<td>28788</td>
</tr>
<tr>
<td>4.5</td>
<td>48</td>
<td>0</td>
<td>1872</td>
<td>0</td>
<td>0</td>
<td>62597</td>
</tr>
<tr>
<td>4.6</td>
<td>47</td>
<td>0</td>
<td>1738</td>
<td>50</td>
<td>0</td>
<td>51970</td>
</tr>
<tr>
<td>4.7</td>
<td>53</td>
<td>0</td>
<td>2219</td>
<td>0</td>
<td>0</td>
<td>76244</td>
</tr>
<tr>
<td>4.8</td>
<td>21</td>
<td>0</td>
<td>301</td>
<td>0</td>
<td>0</td>
<td>4120</td>
</tr>
</tbody>
</table>
• Require F and D flatness

• Examined 3 models from each pattern (conjecture: all models in pattern equivalent)

• Studied subset of flat directions with 1d D flatness and minimal F-flatness (more general directions very complicated)

• Huge number of D-flat directions, reduced drastically by F-flatness
<table>
<thead>
<tr>
<th>Pattern</th>
<th>w/o</th>
<th>w/3</th>
<th>w/3-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1486616</td>
<td>16283</td>
<td>489</td>
</tr>
<tr>
<td>1.2</td>
<td>11656</td>
<td>188</td>
<td>28</td>
</tr>
<tr>
<td>2.1</td>
<td>155555</td>
<td>1239</td>
<td>245</td>
</tr>
<tr>
<td>2.2</td>
<td>96932</td>
<td>737</td>
<td>249</td>
</tr>
<tr>
<td>2.3</td>
<td>43884</td>
<td>670</td>
<td>115</td>
</tr>
<tr>
<td>2.4</td>
<td>5195</td>
<td>114</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.6</td>
<td>825</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>16927</td>
<td>80</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>2443</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>9871</td>
<td>74</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>1303</td>
<td>59</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>17413</td>
<td>106</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>78819</td>
<td>513</td>
<td>199</td>
</tr>
<tr>
<td>4.3</td>
<td>14715</td>
<td>310</td>
<td>163</td>
</tr>
<tr>
<td>4.4</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.5</td>
<td>5126</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>4.6</td>
<td>128</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4.7</td>
<td>5285</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>4.8</td>
<td>49</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
• For each surviving direction, looked for candidate Majorana mass terms \(\langle S_1 \cdots S_{n-2} \rangle_{NN} \), where the \(\langle S_i \rangle \neq 0 \) for that direction

• Only two patterns out of 20 (2.6 and 1.1) have candidate Majorana mass terms

• Must still check:
 – Is there a surviving hypercharge \(Y \) with \(Y_N = 0 \)?
 – Are there candidate Dirac couplings \(\langle S'_1 \cdots S'_{d-3} \rangle_{NLH_u} \) at low enough order?
 – Do \(L, H \), and quark candidates have correct \(Y \)?
Six directions have Majorana mass terms of form

\[
\begin{align*}
\text{I - monomial:} & \quad (4, 4, 6, 7, 18, 35, 43, 43), \\
\text{Eff. Maj. mass:} & \quad (4, 5, 5)
\end{align*}
\]

- Numbers refer to a classification of the chiral matter superfields
- I-monomial lists S_i fields with VEVs (of order $r_{\text{FI}} M_{\text{PL}} \sim 0.1 M_{\text{PL}}$)
- Underlined fields are the S_i, others (N_5) are Majorana neutrinos
- Family indices suppressed

Madison (March 11, 2005) Paul Langacker (Penn)
• However, no Dirac couplings involving N_5 through degree $d \leq 6$, i.e., none through order $S'^{d-3}N_5LH_u$

• Light seesaw masses would be of order

$$m_\nu \sim \left(\frac{r_{FI}^{d-3}v_u}{r_{FI}M_{PL}} \right)^2 \sim r_{FI}^{2d-7} \times 10^{-5} \text{ eV} \underbrace{\Rightarrow}_{d>6} < 10^{-10} \text{ eV}$$

• Also eight directions of form

$$\begin{align*}
I \text{ – monomial} &: (4, 4, 7, 18, 19, 27, 43, 43), \\
\text{Eff. Maj. mass} &: (7, 7, 19, 27, 43, 43, 43, 34, 34)
\end{align*}$$

• However, no Dirac couplings of degree $< 9 \Rightarrow m_\nu \leq 10^{-10} \text{ eV}
Pattern 1.1

- No anomalous $U(1)_A$; VEVs may still be determined, e.g., by radiative breaking of non-anomalous, typically at intermediate scale

- Two classes of directions with Majorana masses, but first has no Dirac couplings through (needed) degree 6. Second class promising:

 \[I \text{ – monomial} : \quad (3, 3, 8, 21, 22, 29, 46, 72), \]
 \[\text{Eff. Maj. mass} : \quad (8, 22, 46, 72, 9, 9) \]

- There is also a candidate Dirac mass: $N_9L_{36}L_{64}$, where L_{36}, L_{64} are two $SU(2)$ doublets
• Can define appropriate hypercharge for all fields \(\rightarrow L_{36} = L, L_{64} = H_u \) (family indices suppressed)
 – A second set of Majorana and Dirac couplings of higher degree also present (not shown)
 – No realistic quark Yukawas (and no GUT-type relations)
 – Undesired doubling of leptons and Higgs

• Apparently, we have found an example of a seesaw, even if not fully realistic!

• We were about to study family structure (scale, hierarchy, mixings)
The Fatal Flaw

- The same direction has degree 3 mass terms coupling \(N_9 \) to other fields \(\tilde{N} \):

\[
W_{\text{mix}} = \lambda S_8 N_9 \tilde{N}_{14} + \lambda S_{22} N_9 \tilde{N}_{27} + \lambda S_{72} N_9 \tilde{N}_{50} + \lambda S_{46} N_9 \tilde{N}_{81}
\]

\[
L = (\nu_L \quad \tilde{N} \quad N) \begin{pmatrix} 0 & 0 & A \\ 0 & 0 & B \\ A & B & C \end{pmatrix} \begin{pmatrix} \nu_L \\ \tilde{N} \\ N \end{pmatrix},
\]

with \(B \gg C \gg A \)

- Three massless and six supermassive neutrinos! (no additional terms generated to needed order)

- This could also occur for other apparent seesaws
Outlook

- Neutrino mass likely due to large or Planck scale effects, but little previous work in string context

- No viable examples of minimal seesaw in huge class of Z_3 orbifold vacua
 - Could consider more general vacua (two independent VEVs, cancellations of F terms)
 - Other types of orbifolds and heterotic constructions? Will also have strong gauge and stringy constraints. (L conserved in existing intersecting brane)

- Even if a few examples are found, they don’t appear generic
Consider alternatives seriously

- Small Dirac masses from high degree terms (very common in constructions) (could also give light sterile ν's and mixing)

- Extended seesaws, $m_\nu \sim m_D^{2+k}/M^{1+k}$, with $k \geq 1$ and low (e.g., TeV) scale M

- Higgs triplet models: non-trivial to embed in strings (higher level), but very predictive (e.g., inverted hierarchy with nearly bi-maximal mixing) (B. Nelson, PL)
Extended (TeV) Seesaw?

- \(m_\nu \sim m_p^{p+1}/m_p^p, \quad p > 1 \) (e.g., \(m \sim 100 \) MeV, \(m_S \sim 1 \) TeV for \(p = 2 \))

- \(\nu_L, N_R, N'_R \) (3 flavors each)

\[
L = \frac{1}{2} (\bar{\nu}_L \, \bar{N}^c_L \, \bar{N}'^c_L) \begin{pmatrix}
 0 & m_D & m_{D'} \\
 m_T^D & 0 & m_{S_{SS}'} \\
 m_T^{D'} & m_{S_{SS}'} & 0
\end{pmatrix} \begin{pmatrix}
 \nu^c_R \\
 N_R \\
 N'_R
\end{pmatrix} + hc
\]

or

\[
L = \frac{1}{2} (\bar{\nu}_L \, \bar{N}^c_L \, \bar{N}'^c_L) \begin{pmatrix}
 0 & m_D & 0 \\
 m_T^D & 0 & m_{S_{SS}'} \\
 0 & m_{S_{SS}'} & m'_S
\end{pmatrix} \begin{pmatrix}
 \nu^c_R \\
 N_R \\
 N'_R
\end{pmatrix} + hc
\]

(Faraggi et al.: may occur in specific heterotic model, with dynamical assumptions.)
Triplet models

- Introduce Higgs triplet $T = (T^{++} \ T^+ \ T^0)^T$ with weak hypercharge $Y = 1$

- Majorana masses m_T generated from $L_\nu = \lambda_{ij}^T L_i T L_j$ if $\langle T^0 \rangle \neq 0$

- Old Gelmini-Roncadelli model: $\langle T^0 \rangle \ll$ EW scale with spontaneous L violation
 - Excluded by $Z \rightarrow$ Majoron + scalar (equivalent to $\Delta N_\nu = 2$)

- Modern triplet models (type II seesaw) break L explicity by THH couplings, giving large Majoron mass (Lazarides, Shafi, Wetterich, Mohapatra, Senjanovic, Schechter, Valle, Ma, Hambye, Sarkar, Rossi, ...)

- Often considered in $SO(10)$ or LR context, with both ordinary and triplet mechanisms competing and with related parameters, but can consider independently.
- General SUSY case

\[
W_\nu = \lambda_{ij}^T L_i T L_j + \lambda_1 H_1 T H_1 + \lambda_2 H_2 \bar{T} H_2 \\
+ M_T T \bar{T} + \mu H_1 H_2
\]

\(T, \bar{T}\) are triplets with \(Y = \pm 1\), \(M_T \sim 10^{12} - 10^{14}\) GeV. Typically,

\[
\langle T^0 \rangle \sim -\lambda \langle H_2^0 \rangle^2 / m_T \quad \Rightarrow
\]

\[
m_{ij}^{\nu} = -\lambda_{ij}^T \lambda_2 \frac{v_2^2}{M_T}
\]
String constructions

- Expect $\lambda_{ij}^T = 0$ for $i = j$ (off-diagonal) $\Rightarrow m_{ii}^\nu = 0$

- Also, need multiple Higgs doublets $H_{1,2}$ with $\lambda_{1,2}$ off diagonal

- Partial explanation: $SU(2)$ triplet with $Y \neq 0$ requires higher level embedding, e.g., of $SU(2) \subset SU(2) \times SU(2)$ (Have Z_3 constructions with some but not all of the features.)

\[W \sim \lambda_{1j}^T L_1(2, 1) T(2, 2) L_j(1, 2), \ j = 2, 3 \]

yields

\[m^\nu = \begin{pmatrix} 0 & a & b \\ a & 0 & 0 \\ b & 0 & 0 \end{pmatrix} \]

- Typical string case: $|a| = |b|$
• HDO (or $SU(2) \subset SU(2) \times SU(2) \times SU(2)$) can give $m_{23}^\nu \neq 0$

• For

$$m^\nu = \begin{pmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{pmatrix}$$

can take a, b, c real w.l.o.g. by redefinition of fields (not true for general m^ν)

• Tr $m^\nu = 0$ and $m^\nu = m^\nu^\dagger \Rightarrow m_1 + m_2 + m_3 = 0$
\[|\Delta m^2_{\text{Atm}}| \sim 2 \times 10^{-3} \text{ eV}^2, \Delta m^2_\odot \sim 8 \times 10^{-5} \text{ eV}^2 \Rightarrow \text{two solutions} \]

- For \(\Delta m^2_\odot = 0 \)

 (a) \(m_i \propto 1, -\frac{1}{2}, -\frac{1}{2} \) (ordinary, with shifted masses)

 (b) \(m_i \propto 1, -1, 0 \) (inverted)

- With \(\Delta m^2_\odot \neq 0 \)

 (a) \(m_i = 0.054, -0.026, -0.026 \) eV (\(\sum |m_i| = 0.107 \) eV (cosmology))

 (b) \(m_i = 0.046, -0.045, -0.001 \) eV (\(\sum |m_i| = 0.092 \) eV (cosmology))

\[
m^\nu_a \sim \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad m^\nu_b \sim \begin{pmatrix} 0 & a & b \\ a & 0 & 0 \\ b & 0 & 0 \end{pmatrix}
\]

- (a) leads to unrealistic mixing matrix \(\Rightarrow \) consider (b)
A special texture

- The $L_e - L_\mu - L_\tau$ conserving texture

\[m^{\nu} \sim \begin{pmatrix} 0 & a & b \\ a & 0 & 0 \\ b & 0 & 0 \end{pmatrix} \]

has been considered phenomenologically by many authors (Zee; Barbieri, Hall, Smith, Strumia, Weiner; King, Singh; Ohlsson; Barbieri, Hambye, Romanino; Lebed, Martin; Babu, Mohapatra; Lavignac, Masina, Savoy; Feruglio, Strumia, Vissani; Altarelli, Feruglio, Masina)
\[m^\nu \sim \begin{pmatrix} 0 & a & b \\ a & 0 & 0 \\ b & 0 & 0 \end{pmatrix} \]

- **New aspects**
 - Strong string motivation
 - Motivation for special case \(|a| = |b|\)
 - Most likely perturbation in 23 element from HOT

- **Diagonalization:** \(\tan \theta_{\text{Atm}} = b/a \Rightarrow \text{need } |b| = |a| \text{ for maximal}\)

- \(\tan^2 \theta_\odot = 1 \text{ (maximal)}\) (experiment \(\tan^2 \theta_\odot = 0.40^{+0.09}_{-0.07}\))
• **Majorana mass matrix**

\[m^\nu \sim \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \]

• **Inverted hierarchy**

• **Bimaximal mixing for** \(U_e = I \):

\[U_\nu \sim \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{\sqrt{2}} \\ \frac{-1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \]
Perturbations on m^ν cannot give both Δm^2_\odot and $\frac{\pi}{4} - \theta_\odot \sim \theta_C \sim 0.23$ without fine-tuning between terms, e.g.,

$$\frac{1}{4\sqrt{2}} \frac{\Delta m^2_\odot}{\Delta m^2_{Atm}} = -\frac{\epsilon_{23}}{4} \sim 0.007 \neq \frac{\pi}{4} - \theta_\odot \sim 0.23$$
• However, $U_e \neq I$ with small angles (comparable to CKM) can give agreement with experiment (Frampton, Petcov, Rodejohann; Romanino; Altarelli, Feruglio, Masina)

$$U_e^\dagger \sim \begin{pmatrix} 1 & -s_{12} & 0 \\ s_{12} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

yields

$$\theta_\odot \sim \frac{\pi}{4} - \frac{s_{12}}{\sqrt{2}} = 0.56^{+0.05}_{-0.04}$$

$$|U_{e3}|^2 \sim \frac{(s_{12})^2}{2} \sim (0.023 - 0.081), \ 90\% \ (\text{exp}: < 0.03)$$

$$m_{\beta\beta} \sim m_2 (\cos^2 \theta_\odot - \sin^2 \theta_\odot) \sim 0.020 \ \text{eV}$$
Conclusions

- Neutrino mass likely due to large or Planck scale effects, but little work in string context

- Specific orbifold string constructions (heterotic, intersecting brane) not consistent with common GUT and bottom up assumptions for m_ν

- No examples of minimal seesaw in large class of heterotic Z_3 orbifold vacua

- Small Dirac, extended seesaw, Higgs triplet (inverted hierarchy in string context) may be more likely