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ABSTRACT
We evaluate the e†ect of electrostatic screening by ions and electrons on low-Z thermonuclear reac-

tions in the Sun. We use a mean Ðeld formalism and calculate the electron density of the screening cloud
using the appropriate density matrix equation of quantum statistical mechanics. Because of well-
understood physical e†ects that are included for the Ðrst time in our treatment, the calculated enhance-
ment of reaction rates does not agree with the frequently used interpolation formulae. Our result does
agree, within small uncertainties, with SalpeterÏs weak screening formula. If weak screening is used
instead of the commonly employed screening prescription of Graboske et al., the predicted 8B neutrino
Ñux is increased by 7% and the predicted chlorine rate is increased by 0.4 SNU.
Subject headings : nuclear reactions, nucleosynthesis, abundances È Sun: abundances È Sun: interior

1. INTRODUCTION

In recent years, an increasing amount of attention has
been devoted to calculating more accurately the e†ects on
the rates of solar fusion reactions of electrostatic screening
in the solar plasma Scha� fer, & Koonin(Carraro, 1988 ;

et al. & PinsonneaultJohnston 1992 ; Bahcall 1992 ; Shoppa
et al. et al. DeglÏInnocenti, &1993 ; Dzitko 1995 ; Ricci,
Fiorentini & Bahcall &1995 ; Gruzinov 1997 ; Brown
Sawyer & Gough All of these dis-1997 ; Bru� ggen 1997).
cussions take as their starting point the classical analysis by

The primary reason for making moreSalpeter (1954).
precise calculations is that nuclear fusion reactions produce
the solar neutrino The neutrino Ñuxes are beingÑuxes.1
observed with a number of large new detectors that are
expected to yield Ñux measurements of high accuracy (of the
order of a few percent or better, see et al. and,Bahcall 1995,
for more details, Totsuka 1996 ; McDonald 1994 ; Arpesella
et al. 1992).

In this paper, we calculate for the Ðrst time the electron
density in the vicinity of the fusing nuclei using the partial
di†erential equation for the density matrix that is derived in
quantum statistical mechanics. In previous treatments of
screening that attempted to go beyond the linear regime, the
electron density near the nucleus was either taken to beÈ
without quantitative justiÐcationÈthe unperturbed value

et al. or left as a freen
e
(O) (Mitler 1977 ; Dzitko 1995)

parameter et al. or the electrons were assumed(Ricci 1995)
to be completely degenerate et al. We(Graboske 1973).
calculate screening corrections in a mean Ðeld approx-
imation ; we numerically solve the nonlinear Poisson-
Boltzmann equation for a mixture of electrons and ions.
The electron density distribution calculated from the
density matrix equation is included self-consistently and
iteratively in the mean Ðeld equation.

Our results represent both an improvement on and a
simpliÐcation of the description of nuclear fusion used in
many solar evolution codes.

For simple physical reasons, our results di†er from the
interpolation formulae that are currently used to describe
reaction rates in the Sun & Van Horn(Salpeter 1969 ;

et al. and the numerical calculations ofGraboske 1973)
et al.Dzitko (1995).

1 See http ://www.sns.ias.edu/ jnb.

Interpolation formulae describe a transition between Sal-
peterÏs weak screening, which is due to both electrons and
ions, and strong screening, for which only ions are e†ective.
At the high densities relevant for strong screening, electrons
are fully degenerate. The solar core, however, is only weakly
degenerate, and the e†ects of degeneracy are already
included into the Debye radius (which is increased 2%RDby electron degeneracy, cf. of the present paper or eq.eq. [4]
[25] of Therefore, the interpolation formu-Salpeter 1954).
lae in use underestimate the electron contribution to screen-
ing and give reaction rates lower than ours.

The numerical procedures of et al. andDzitko (1995)
predict reaction rates that are too slow forMitler (1977)

heavy ions because they assumed that the electron charge
density near a screened nucleus is the unperturbed value,

This assumption seriously underestimates theen
e
(O).

charge density near heavy ions. For example, it is known
that a screened beryllium nucleus under solar interior con-
ditions has charge density near the nucleus B[3.85en

e
(O)

& Bahcall & Sawyer all(Gruzinov 1997 ; Brown 1997 ;
quantum mechanical calculations give similar results, see

and Kalata, & SchwartzBahcall 1962 Iben, 1967).
This paper is organized as follows. In we review the° 2

basic concepts, and in we relate the electrostatic energy° 3
to the screening enhancement using the free energy. We
describe the calculations in and summarize the numeri-° 4
cal results in In we summarize our main results and° 5. ° 6
present the conclusions regarding solar neutrino Ñuxes. The
Appendix evaluates a quantum correction to the kinetic
energy of thermal electrons in the electrostatic Ðeld of a
screened nucleus.

2. ENHANCEMENT OF FUSION RATES

The solar core plasma is dense enough that it noticeably
enhances fusion rates as compared to the rates in a rareÐed
plasma of the same temperature. As explained by Salpeter

the rate of a fusion of two nuclei of charges and(1954), Z1is increased by a factorZ2
f\ exp " , (1)

where

"\ Z1Z2
e2

T RD
. (2)
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Here is the Debye radius,RD
1

RD2
\ 4nbne2f2 , (3)
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Here b \ 1/T ; n is the baryon density ; and are,X
i
, Z

i
, A

irespectively, the mass fraction, the nuclear charge, and the
atomic weight of ions of type i. The quantity f @/f ^ 0.92
accounts for electron degeneracy. is the sameEquation (4)
as equation (25) of In what follows, we willSalpeter (1954).
make use of a simpliÐed expression for f,

fsimple+ [(1[ Y /2) f @/f ] 1]1@2 , (5)

in which the plasma is assumed to consist only of hydrogen
and helium (Y is the helium abundance by mass). The
approximation of considering only a hydrogen and helium
plasma rather than the full solar composition (cf. Grevesse
& Noels causes an error of less than 0.5% in comput-1993)
ing solar fusion rates. This error is completely unimportant
for our purpose of estimating the ratio of the total screening
to the weak screening value given by equations (1)È(4).

The enhancement of fusion rates due to screening
depends only very weakly upon location in the solar inte-
rior (cf. et al. because the primary e†ect ofRicci 1995)
screening is proportional to o/T 3 (cf. eqs. which is[1]È[4]),
approximately constant in the solar interior (cf. eq. [41] of

et al. The plasma parameters at a character-Bahcall 1982).
istic radius in the solar interior, areR/R

_
\ 0.06, (Bahcall

& Pinsonneault and T \ 47 in atomic1995) RD \ 0.46
units In units that are more common in(m

e
\ + \ e\ 1).

astronomical discussions, the temperature in millions ofT6degrees is and the Debye radius in centi-T6\ 0.32T \ 15,
meters is cm.RD \ 0.46] 5.3] 10~9 \ 2 ] 10~9

Consider an important example : for the solarZ1Z2\ 4
fusion reactions 3He(4He, c)7Be and 7Be(p, c)8B. Equation

yields "\ 0.19. According to the calculated(2) equation (1),
rates of these fusion reactions are then 21% faster than they
would be if screening were neglected.

is only valid to Ðrst order in ". Nonlin-Equation (1)
earities in the electrostatic screening interactions might
naively be expected to produce corrections D"2, i.e., of
order 4% for a reaction. In the following sec-Z1Z2\ 4
tions, we calculate corrections to the Salpeter weak screen-
ing formula, and Ðnd that the numericalequation (1),
corrections are always signiÐcantly smaller than "2.

3. ENHANCEMENT FACTORS AND FREE ENERGY

SalpeterÏs formula (eqs. can be derived as[1], [2])
follows. The screened potential near the nucleus in theZ1Debye-Hu� ckel approximation is

Z1
r

e~r@RD B
Z1
r

[ Z1
RD

. (6)

The potential shift increases the probability that theZ1/RDcharge comes close to by the Boltzmann factor e",Z2 Z1"\bZ1Z2/RD.
Unfortunately, this clear derivation cannot be used if we

go beyond the Debye-Hu� ckel approximation and include
nonlinear screening e†ects. Given a numerically calculated

potential around the charge we cannot assumeZ1, /1(r),that the enhancement factor is equal to e" with "\bZ2This is already obvious from the] [Z1/r [ /1(r)] o
r/0.asymmetry of this expression under the 1-2 permutation ; /1is not just proportional to for nonlinear screening.Z1In the more general case considered here, the enhance-

ment of fusion rates due to screening can be calculated in
terms of an expression involving the free energy of a
screened charge Z, F(Z). In terms of free energy, the
enhancement factor is simply Graboske, &(DeWitt,
Cooper e" with1973)

"\ [bF(Z1] Z2) ] bF(Z1) ] bF(Z2) , (7)

which is a manifestly symmetrical expression. Equation (7)
expresses the thermodynamic relation that at constant tem-
perature (which is relevant when considering solar fusion
reactions) dF\ [dW , where dW is the work done by the
plasma on the fusing ions. The extra work performed by the
plasma due to screening is positive, pushing the fusing ions
closer together. For a given relative kinetic energy when the
ions fuse, the initial kinetic energy is lower by dW than in
the absence of screening. Therefore, the probability of the
fusing conÐguration is increased, i.e., the reaction rates are
faster, by a factor exp (b dW ) \ exp ([b dF) \ exp (").

The free energy can be calculated in terms of electrostatic
energy using the thermodynamic formula

bF\
P
0

b
db@U . (8)

The lower limit in the integral in is chosen soequation (8)
that at high temperature (small b) F goes to zero as b1@2, as
implied by Debye theory (see discussion below). The total
electrostatic energy including the self-energy is

Utot\ 12
P

d3r/(r)o(r) . (9)

The self-energy of the charges cancels out in performing the
di†erence indicated by The fusing nuclei areequation (7).
well separated whenever screening is relevant ; their com-
bined self-energies are the same in the fusing state as the
sum of the self-energies in the initial (inÐnitely separated)
state. Most of the acceleration of the fusing nuclei occurs at
distances larger than which is 4 orders of magnitude0.1RD,
larger than nuclear radii. Therefore, the relevant self-energy
for the calculation of enhancement factors due to screening
does not include the self-energies and is

U \Z
2

d/(0)] 1
2
P

d3r/(r)do(r) , (10)

where d/\ /[ Z/r and do \ o [ Z d(r).
In the Debye-Hu� ckel approximation these expressions

reproduce SalpeterÏs formula & Gough(Bru� ggen 1997).
In the Debye-Hu� ckel approximation, /\ (Z/r)e~r@RD,

and gives4n do \[//RD2 , d/(0)\ [Z/RD, equation (10)
Since givesU \[34Z2/RD. RD D b~1@2, equation (8)
Then givesbF\[12bZ2/RD. equation (7) equation (2).

4. CALCULATIONS

In the mean Ðeld approximation, electrostatic screening
of a charge Z is described by the Poisson-Boltzmann equa-
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tion

+2/\ 4nn
CA

1 [ Y
2
B
ebÕ[ (1 [ Y )e~bÕ[ Y

2
e~2bÕ

D
,

(11)

where the terms on the right-hand side represent, respec-
tively, screening by electrons, protons, and alphas. The
boundary condition is /] Z/r for r ] 0. In the nonlinear
regime, one cannot solve the Poisson-Boltzmann equation
as written. Classical electrons recombine, which corre-
sponds formally to the divergence of the classical Boltz-
mann factor ebÕ near the nucleus. This problem does not
arise in previous solutions of the Poisson-Boltzmann equa-
tion, which were carried out in the linear regime corre-
sponding to weak screening.

Quantum statistical mechanics must be used for calcu-
lating terms beyond the weak screening approximation.
Fortunately, electron degeneracy makes only a small cor-
rection, less than 2% in the Debye radius, see equation (4),
and therefore less than 1% for all cases in the reaction rates.
Hence, a distinguishable particles approximation can be

We use a numerical code that solves the densityemployed.2
matrix equation for the density of electrons near the
nucleus. The code, which was developed following the dis-
cussion of is described in &Feynman (1990), Gruzinov
Bahcall (1997).

The average electron density can be calculated by solving
the density matrix equation (e.g., Feynman 1990)

Lbo \ [12+2] /(r)]o , (12)

with the initial condition

o(r, b \ 0) \ d(3)(r) . (13)

Since appropriately describes the quantumequation (12)
statistical mechanical e†ects, the solution for the density
matrix converges everywhere despite the divergence of the
classical potential at r \ 0. Another great advantage of the
density matrix formulation is that the character of the states
in the plasma does not have to be speciÐed, and therefore
difficult questions concerning the existence or nonexistence
of bound states are Ðnessed. The enhancement of the elec-
tron density to be used in the Poisson-Boltzmann equation
instead of the Boltzmann factor ebÕ is the solution of

for the nuclear charge of Z divided by theequation (12)
solution for Z\ 0. The solution for the Z\ 0 case can be
obtained analytically and is o0(b) \ (2nb)~3@2.

As described in & Bahcall the di†usionGruzinov (1997),
with multiplication problem, can be solvedequation (12),
easily by direct three-dimensional numerical simulations for
solar conditions because the inverse temperature b is small
(D0.02) and the di†usive trajectory stays close to the origin.
The mesh size and the regularization procedure were the
same as in our previous work.

& Sawyer calculated electron densities using both2 Brown (1997)
Fermi-Dirac and Maxwell-Boltzmann statistics. Degeneracy e†ects on the
value of the central electron density were of order 10% for Z\ 6. We shall
show in the course of this paper that changing the central electron density
by almost an order of magnitude does not signiÐcantly change the rate of
nuclear fusion reactions. Therefore, the small fractional change in the
central electron density due to using di†erent statistics is not important for
our purposes.

Numerically, we start with an initial guess that /(r) \
everywhere and then calculate the electron(Z/r)e~r@RD

density using for all r \ 0.4. The particularequation (12)
value of r \ 0.4 is not important. For all our(DRD) r Z 0.2,
density matrix code simply reproduces the Boltzmann dis-
tribution factor n(r) \ n(O)ebÕ. We use the calculated elec-
tron density at r \ 0.4 to solve numerically forequation (11)
all r. We then obtain a new potential /(r). We use this
potential to calculate the electron density at r \ 0.4 using

and repeat the procedure. The procedure con-equation (12)
verges quickly, after one to three iterations.

The electrostatic energy was calculated from equation
The calculation was repeated at higher temperatures(10).

for the purpose of estimating the free energy using equation
(8).

Quantum statistical mechanics implies the existence of an
e†ect that we believe has not been previously considered in
the context of fusion reaction rates. The kinetic energy of
electrons in the electrostatic Ðeld of the nucleus is no longer
(3/2)T per electron. Indeed, the kinetic energy of electrons is
increased. In the low-temperature limit this e†ect is the fam-
iliar zero-point oscillations. In the high-temperature limit
the e†ect is more subtle, but it can be calculated analyti-
cally. In the Appendix we calculate the quantum statistical
mechanics corrections to the electron kinetic energy and the
resulting correction to the free energy.

5. NUMERICAL RESULTS

gives the numerical results for : (1) corrections toTable 1
the Debye-Hu� ckel electrostatic energy, (2) corrections to the
free energy due to the changed electrostatic energy, (3) cor-
rections to the kinetic energy of electrons, (4) corrections to
the free energy due to the changed kinetic energy of elec-
trons, and (5) the total correction to free energy.

explains the sources of di†erent corrections toFigure 1
the Debye-Hu� ckel approximation of screening.

1. At large distances (small /), the plasma response is
suppressed due to helium ions. To see this, expand equation

up to the second order in / :(11) +2/\ /(1[ wb/)/RD2 ,
where w\ 3Y /(8 [ 2Y ).

2. At small distances, the plasma response is suppressed
due to the fuzziness of quantum electrons, which is
expressed by the density matrix equation (12).

3. At intermediate radii, the plasma response can be
enhanced just because ebÕ [ b/.

TABLE 1

ELECTROSTATIC, KINETIC, AND FREE ENERGY CORRECTIONS (%)

Z

PARAMETER 1 2 4 5 7 8

b dU . . . . . . . 0.34 1.6 6.4 9.2 11.2 7.6
b dF

U
. . . . . . 0.1 0.6 2.7 3.9 5.7 5.2

b dK . . . . . . . 0.22 0.57 1.9 3.2 8.1 12.6
b dF

K
. . . . . . 0.1 0.3 0.8 1.3 2.9 4.4

b dF . . . . . . . . 0.2 0.9 3.5 5.2 8.6 9.6

NOTES.ÈThe symbols represent nuclear charge Z corrections
to (1) the electrostatic energy normalized to temperature b dU,
(2) the free energy due to increased electrostatic energy b dF

U
,

(3) the kinetic energy of electrons b dK, (4) the free energy due to
increased kinetic energy and (5) the total free energy b dF.b dF

K
,

The plasma parameters are taken from the solar model of
& Pinsonneault at the representative pointBahcall 1995

R/R
_

\ 0.06.
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FIG. 1.ÈScreening of two test charges. The induced charge density o
normalized to the Debye-Hu� ckel charge density, is shownoDH \ //(4nRD2),
as a function the electrostatic potential /. For small / (large distances from
the screened nucleus), o is given by the classical Boltzmann formula (see the
right-hand side of In this region, o is smaller than due to theeq. [11]). oDHpresence of helium ions. At large / (close to the screened nucleus), o is
much smaller than due to the quantum fuzziness embodied in theoDHdensity matrix equation At intermediate distances, o can be(eq. [12]).
larger than (because exp /[ /). For Z\ 8 the plasma response isoDHlarger than linear at intermediate distances. For Z\ 5 the plasma response
is always smaller than linear.

The second column of shows the corrections,Table 2
[d", to reaction rates calculated in this paper (GB) relative
to SalpeterÏs weak screening rates. For example, the
correction to the rate of the 7Be(p, c)8B reaction
is d"\ [b dF(5)] b dF(4)] b dF(1)\ [5.2%] 3.5%]
0.2%\ [1.5%. This means that the reaction is only 1.5%
slower in the Sun than predicted by the Salpeter formula.

also compares our corrections with those predictedTable 2
by et al. hereafter GDGC), by &Graboske (1973, Salpeter
Van Horn and by et al.(1969), Dzitko (1995).

Our corrections are typically an order of magnitude
smaller than the corrections calculated by (cf. cols.GDGC
[2] and [3] of The intermediate screening pre-Table 2).

TABLE 2

REACTION RATE CORRECTIONS (%)

Reaction GB GDGC SVH DTDL
(1) (2) (3) (4) (5)

p ] p . . . . . . . . . . . . 0.5 0.0 0.5 0.2
3He] 4He . . . . . . 1.7 8.2 2.4 1.8
p ]7Be . . . . . . . . . 1.5 8.5 2.6 2.3
p ]14N . . . . . . . . . 0.8 15.2 6.3 6.3

NOTES.ÈCorrections to weakly screened reaction rates.
Nuclear fusion reactions in the Sun are enhanced by a factor
exp ("] d"), where " is given by SalpeterÏs expression,
which is The table shows the corrections, [d", cal-eq. (2).
culated in this paper (GB), by et al. (GDGC),Graboske 1973
by & Van Horn (SVH), and by et al.Salpeter 1969 Dzitko

(DTDL). The corrections refer to a representative point1995
R/R

_
\ 0.06.

scription of (their Table 4, p. 465) uses the interme-GDGC
diate screening formula from et al. p. 455 ;DeWitt (1973,
their eq. [70]) ; the et al. formula wasDeWitt (1973)
obtained as an illustration assuming completely degenerate
electrons, which is inappropriate for the solar interior. The

intermediate screening prescription underestimatesGDGC
the enhancement of fusion reactions by a factor exp

which varies from about 7% for the(d"GDGC[ d"GB),important 3He(4He, c)7Be and 7Be(p, c)8B reactions to
about 16% for the 14N(p, c)15O reaction (cf. Table 2 of Ricci
et al. 1995).

The discrepancies between our results and those of
et al. only become large when relatively heavyDzitko (1995)

nuclei are involved. In this case, the electron density in the
vicinity of the fusing nuclei is much larger than the value,

assumed by et al.n
e
(O), Dzitko (1995).
For heavier nuclei like nitrogen, the large classical

enhancement of electron density near the nucleus competes
with the smearing e†ect due to quantum fuzziness, resulting
in a net correction that is smaller than for the lighter nuclei
(see Fig. 1).

6. SUMMARY AND CONCLUSION

We use the density matrix equation to determine from
quantum statistical mechanics the electron density in the
near vicinity of the fusing nuclei. Our treatment is the Ðrst
to describe properly the electron density in screening calcu-
lations that are appropriate for solar interior conditions.
Previously, the lack of understanding of what to use for the
electron density near the fusing nuclei has been the prin-
cipal cause for uncertainty in estimating nonlinear correc-
tions to screening calculations (see, e.g., et al. andRicci 1995
references therein).

The nonlinear corrections that we calculate to the Salpe-
ter weak screening formulae, equations are, for solar(1)È(4),
conditions, D1% for all the important nuclear fusion reac-
tions. The principal uncertainty in our calculations is
caused by thermal Ñuctuations, which are not included in
the present treatment. For the analogous case of electron
capture, thermal Ñuctuations a†ect the average rate by
¹1% & Bahcall Since the nonlinear(Gruzinov 1997).
e†ects calculated in the present paper are small and of the
same order as the e†ects of Ñuctuations that occur in the
electron capture problem, we recommend using the Salpeter
weak screening formula for solar fusion rates.

What di†erence do the present results make for the solar
neutrino problem? This question is answered by Table 3 of

& Pinsonneault Keeping all other inputBahcall (1992).
data constant, the weak screening approximation gives,
relative to the et al. prescription, a 0.4Graboske (1973)
SNU larger result in the chlorine (Homestake) experiment,
a 2 SNU increase in the gallium experiments, and a 7%
larger 8B neutrino Ñux (measured in the Super Kamio-
kande, Kamiokande, and Sudbury Neutrino Observatory
experiments). The et al. prescription wasGraboske (1973)
used previously by Bahcall and Pinsonneault and in many
other stellar evolution codes (cf. et al.Ricci 1995).

An error in the screening enhancement is equivalent to an
error in the low-energy cross section factor. Therefore, one
can use the well-known power-law dependences of the neu-
trino Ñuxes on cross section factors to esti-(Bahcall 1989)
mate the uncertainties introduced by inaccuracies in the
screening calculations. A 1% uncertainty in the screening
calculation causes a D1% uncertainty in the predicted 8B
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neutrino Ñux and a smaller uncertainty for other Ñuxes in
the pp chain. For the crucial 8B neutrino Ñux, the uncer-
tainty in the measurement of the low-energy cross section
factor for the 7Be(p, c)8B reaction causes a much larger
uncertainty, more than 10% (see & PinsonneaultBahcall
1995).

The nonlinear e†ects in ion and electron screening that
are evaluated in this paper cause di†erences in the solar
model neutrino Ñuxes that are small compared to the order-
of-unity di†erences between the rates measured in solar
neutrino experiments and the Ñuxes predicted by standard

models (assuming nothing happens to the neutrinos after
they are created).

This work was supported by NSF PHY-9513835. We are
grateful to S. Turck-Chièze for valuable discussions that
Ðrst directed our attention to the problem of the large
apparent corrections implied by the et al.Graboske (1973)
prescription and stimulating comments on a draft of this
manuscript. We are grateful to M. Bru� ggen for a valuable
discussion.

APPENDIX

QUANTUM CORRECTIONS TO THE (3/2)T KINETIC ENERGY PER PARTICLE RULE

In classical statistical mechanics, the kinetic energy of particles, interacting or noninteracting, in an external potential or in
free space, is (3/2)T per particle. In quantum statistical mechanics, the kinetic energy at a given temperature depends on the
external potential. This is obvious in the low-temperature limit : the kinetic energy of the ground state is positive if the external
potential is not constant (the zero-point oscillations).

Thermal electrons in an electrostatic Ðeld of a nucleus have kinetic energy larger than (3/2)T . The e†ect depends on Z and
reduces the reaction rates (as compared to SalpeterÏs weak screening rates). The correction to kinetic energy can be calculated
if the diagonal of the density matrix (e.g., o(r, b) 4 o(r, r, b) is known,Feynman 1990)

dK \ n
e
(2nb)3@2

P
d3r[[Lb o [ (32b~1 ] V )o] , (A1)

that is, the correction to the kinetic energy is the total energy minus the unperturbed kinetic energy (3/2)T minus the potential
energy V . In classical statistical mechanics

o \ (2nb)~3@2e~bV , (A2)

and gives dK \ 0.equation (A1)
We calculated the density matrix of electrons analytically and used to calculate the kinetic energy correctionequation (A1)

for assuming b > 1, ZD few, These conditions are satisÐed in the solar interior where b B 0.02V \[(Z/r)e~r@RD RD [ b1@2.
and Two di†erent approaches were used at distances from the nucleus greater than the de Broglie wavelength b1@2RD B 0.5.
and at distances smaller than the Debye radius These two approaches are explained below.RD.

A1. r ? b1@2 : HIGH-TEMPERATURE EXPANSION

Thermal electrons have ““ a characteristic size ÏÏ Db1@2. If the potential energy does not change by much over this distance
(which in our case is true for r [ b1@2), the density matrix is approximately given by with small corrections. Theequation (A2)
corrections are due to the fact that a fuzzy thermal electron samples potential not only at a given point but in the b1@2 vicinity
of the given point.

Let (x, y, z) be a small deviation of coordinates from (r, 0, 0). Potential energy is, up to the second order,

dV \ V @x ] 1
2

V Ax2] 1
2

V @
r

y2] 1
2

V @
r

z2 , (A3)

where primes denote the r derivatives, and we assume that V is spherically symmetrical. The path integral giving the density
matrix (e.g., Chap. 3) is Gaussian and can be calculated. In fact, the answer can be constructed without theFeynman 1990,
actual calculation from the known density matrix of the linear harmonic oscillator (e.g., Chap. 2). It readsFeynman 1990,

o \ (2nb)~3@2e~bV
C
1 ] 1

24
b3V @2 [ 1

12
b2
A
V A] 2

r
V @
BD

. (A4)

The kinetic energy correction is given by equation (A1)

dK \ n
e

P
4nr2 dre~bV

C
[ 1

8
b2V @2] 1

6
b
A
V A ] 2

r
V @
BD

. (A5)

In our case is valid only at but if potential energy V were smooth at all r, we could have integrated theequation (A4) r Zb1@2,
last term by parts

dK \ 124n
e
b2
P

4nr2 dre~bVV @2 , (A6)
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showing that kinetic energy correction is positive in the high-temperature limit. In our calculation we used atequation (A4)
and results from the next section were used at The Ðnal answer does not depend on the choice of as long asr [ r0, r \ r0. r0RD Z r0Z b1@2.

HYDROGENIC DENSITY MATRIXA2. r > RD :

At distances from the screened nucleus the potential energy isr >RD,

V \ [ Z
r

exp
A
[ r

RD

B
B [ Z

r
] Z

RD
. (A7)

The only e†ect of the constant correction is to lower electron density by the Boltzmann factor The densityZ/RD e~bZ@RD.
matrix in the Coulomb potential can be obtained from hydrogenic eigenstates.

The kinetic energy correction is

dK \ n
e
e~bZ@RD(2nb)3@2

P
d3r[[Lb o [ (32b~1] V )o] . (A8)

The diagonal of the density matrix is

o(r, b) \ ;
l/0

= 2l ] 1
4n

C
;
n/1

=
oR

nl
(r) o2eb@2n2 ]

P
0

= dk
2n

oR
kl
(r) o2e~bk2@2

D
. (A9)

Here the bound states of hydrogen are (e.g., & LifshitzLandau 1977)

R
nl
(r)\ 2

nl`2(2l ] 1) !
C (n ] l) !
(n [ l[ 1) !

D1@2
(2r)le~r@nF

A
[n ] l ] 1, 2l ] 2,

2r
n
B

, (A10)

where F is the conÑuent hypergeometric function. The continuum states are

R
kl
(r) \ 2ken@2k

K
!
A
l ] 1 [ i

k
B K

(2kr)le~ikrF
A i
k

] l ] 1, 2l ] 2, 2ikr
B

, (A11)

and for we scale r ] Zr, b ] Z2b.ZD 1
We used these formulae to calculate the kinetic energy shift at small r. Results of this subsection match the high-

temperature results if We repeated the calculation at smaller b to obtain the free energy shift due to theb1@2\ r \RD.
quantum correction to kinetic energy of electrons,

b dF\
P
0

b
db@ dK(b@) . (A12)

Results are shown in Table 1.
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