Back to Unsolved Problems

Contents

Prefacexiii
1 The Cosmological Parameters1
    1.1 Introduction1
    1.2 Why Measure the Parameters?2
        1.2.1 Testing the Physics2
        1.2.2 How Will It All End?7
    1.3 The State of the Measurements11
    1.4 Cosmology for the Next Generation17
2 In the Beginning...25
    2.1 The Future Fate of Cosmology25
    2.2 Testing Inflation27
    2.3 The Power of the Cosmic Microwave Background28
    2.4 Cosmic Concordance35
    2.5 A New Age?40
3 Understanding Data Better with Bayesian and Global Statistical Methods49
    3.1 Introduction49
    3.2 Combining Experimental Measurements50
    3.3 Bayesian Combination of Incompatible Measurements51
    3.4 Another Variant of the Method56
    3.5 Results for the Hubble Constant56
    3.6 Conclusion59
4 Large-Scale Structure in the Universe61
    4.1 Introduction61
    4.2 Clustering and Large-Scale Structure65
        4.2.1 Galaxies and Large-Scale Structure65
        4.2.2 Clusters and Large-Scale Structure69
    4.3 Peculiar Motions on Large Scales74
    4.4 Dark Matter and Baryons in Clusters of Galaxies79
    4.5 Is < 1? 81
    4.6 The SDSS and Large-Scale Structure82
        4.6.1 The Sloan Digital Sky Survey82
        4.6.2 Clusters of Galaxies83
    4.7 Summary86
5 Unsolved Problems in Gravitational Lensing93
    5.1 Introduction94
    5.2 Gravitational Lens Optics94
    5.3 The Problems98
        5.3.1 How Old Is the Universe?98
        5.3.2 What Is the Shape of the Universe?101
        5.3.3 What Is the Large Scale Distribution of Matter? 101
        5.3.4 How Are Rich Clusters of Galaxies Formed? 102
        5.3.5 When Did Galaxies Form and How Did They Evolve? 105
        5.3.6 How Big Are Galaxies?106
        5.3.7 Of What Are Galaxies Made?107
        5.3.8 How Big Are AGN Ultraviolet Emission Regions? 107
    5.4 How Many More Surprises Will Gravitational Lenses Provide?108
6 What Can Be Learned from Numerical Simulations of Cosmology115
    6.1 Introduction116
    6.2 Simulation Methods119
        6.2.1 Specification of Models119
        6.2.2 Physical Processes and Numerical Methods 122
    6.3 Results: Comparison with Observations126
        6.3.1 Hot Components126
        6.3.2 Warm Components127
        6.3.3 Cold Condensed Components128
    6.4 Conclusions, Prospects, and More Questions129
7 The Centers of Elliptical Galaxies137
    7.1 Introduction137
        7.1.1 Black Holes and Quasars138
        7.1.2 The Sphere of Influence139
        7.1.3 Cores and Cusps140
    7.2 Photometry142
        7.2.1 The Peebles-Young Model145
    7.3 Kinematic Evidence for Central Black Holes147
    7.4 Physical Processes148
    7.5 Summary152
8 The Morphological Evolution of Galaxies159
    8.1 Introduction159
    8.2 Early Formation of Massive Ellipticals161
    8.3 Slow Evolution of Massive Disk Galaxies164
    8.4 Redshift Surveys and the Dwarf-Dominated Universe 166
    8.5 Faint Galaxy Morphologies from HST170
    8.6 Conclusions174
9 Quasars181
    9.1 Quasars and the End of the `Dark Age'181
    9.2 The Relation of AGNs to the Central Bulges of Galaxies183
    9.3 Quasars and Their Remnants: Probes of General Relativity?186
        9.3.1 Dead Quasars in Nearby Galaxies186
        9.3.2 Do These Holes Have a Kerr Metric?187
10 Solar Neutrinos: Solved and Unsolved Problems195
    10.1 Why Study Solar Neutrinos?195
    10.2 What Does the Combined Standard Model Tell Us About Solar Neutrinos?198
        10.2.1 The Combined Standard Model198
        10.2.2 The Solar Neutrino Spectrum200
    10.3 Why Are the Predicted Neutrino Fluxes Robust?201
    10.4 What Are the Three Solar Neutrino Problems?202
        10.4.1 Calculated versus Observed Chlorine Rate203
        10.4.2 Incompatibility of Chlorine and Water (Kamiokande) Experiments204
        10.4.3 Gallium Experiments: No Room for 7Be Neutrinos205
    10.5 What Have We Learned?206
        10.5.1 About Astronomy206
        10.5.2 About Physics208
    10.6 What Next?209
        10.6.1 Solvable Problems in Physics209
        10.6.2 Solvable Problems in Astronomy212
    10.7 Summary217
11 Particle Dark Matter221
    11.1 Introduction: Three Arguments for Non-Baryonic Dark Matter221
    11.2 The Case for Non-baryonic Matter222
        11.2.1 We've Looked for Baryonic Dark Matter and Failed222
        11.2.2 We Can't Seem To Make the Observed Large-Scale Structure with Baryons223
        11.2.3 Dynamical Mass Is Much Larger than Big Bang Nucleosynthesis Allows224
    11.3 Neutrinos As Dark Matter225
        11.3.1 Detecting Massive Neutrinos226
    11.4 WIMPs227
        11.4.1 Searching for WIMPs228
        11.4.2 Indirect WIMP Detection230
        11.4.3 What Is To Be Done?231
    11.5 Axions231
    11.6 Conclusions233
12 Stars in the Milky Way and Other Galaxies 241
    12.1 Introduction241
    12.2 Recent Star Count Results241
    12.3 Microlensing and Star Counts243
    12.4 Disk Dark Matter: Still a Question243
    12.5 Mystery of the Long Events244
    12.6 Proper Motions from EROS II245
    12.7 Pixel Lensing: Stellar Mass Functions in Other Galaxies246
    12.8 Star Formation History of the Universe248
    12.9 Conclusions249
13 Searching for MACHOs with Microlensing 253
    13.1 Introduction253
    13.2 The Gravitational Microlens254
    13.3 The "Macho Fraction" in the Galactic Halo256
    13.4 The Experimental Situation258
    13.5 Next Generation Experiments260
        13.5.1 What Can Be Achieved from the Ground?260
        13.5.2 Observing Macho Parallax261
    13.6 Working on Gravitational Microlensing263
    13.7 Summary264
        13.7.1 What We Know Now264
        13.7.2 What We Will Learn from Current Experiments 264
        13.7.3 Next Generation Experiments264
    13.8 Late Breaking News265
14 Globally Asymmetric Supernova 269
    14.1 Introduction269
        14.1.1 Preamble269
        14.1.2 Evidence for Asymmetry270
        14.1.3 State of the Art271
    14.2 Instability During Core Collapse272
        14.2.1 Accomplishments273
        14.2.2 Future Directions273
    14.3 Overstable Core g-Modes274
        14.3.1 Accomplishments275
        14.3.2 Future Directions276
        14.3.3 Turbulent Excitation of g-Modes 277
15 In and around Neutron Stars281
    15.1 Introduction281
    15.2 Superfluid-Superconductor Interactions in a Neutron Star Core284
    15.3 The Stellar Crust288
    15.4 Spun-up Neutron Stars289
    15.5 Spinning-down Radiopulsars293
    15.6 Glitches of Radiopulsar Spin Periods294
16 Accretion Flows around Black Holes301
    16.1 Introduction301
    16.2 X-rays and -rays from Accreting Black Holes302
    16.3 Hot Accretion Flow Models304
        16.3.1 Corona Models305
        16.3.2 SLE Two-Temperature Model306
        16.3.3 Optically-Thin Advection-Dominated Model 306
    16.4 Directions for Future Research311
        16.4.1 Unresolved Theoretical Issues311
        16.4.2 Clues from Observations of Black Hole XRBs 313
        16.4.3 Black Holes versus Neutron Stars315
    16.5 Conclusion316
17 The Highest Energy Cosmic Rays325
    17.1 Introduction325
    17.2 Review of Existing Data on the Highest Energy Cosmic Rays327
    17.3 Acceleration and Transport of the Cosmic Rays   1019 eV329
    17.4 The Big Events332
    17.5 The Auger Project335
    17.6 What Can We Learn from Two Large Surface Arrays? 337
    17.7 Should a Student Work on This Problem?338
    17.8 Final Remark339
18 Toward Understanding Gamma-Ray Bursts343
    18.1 Introduction343
    18.2 Observations344
        18.2.1 Observational Open Questions348
    18.3 A Brief Summary348
    18.4 Where?349
    18.5 How?349
        18.5.1 The Compactness Problem350
        18.5.2 Relativistic Motion351
        18.5.3 Slowing Down of Relativistic Particles 354
        18.5.4 The Acceleration Mechanism?362
    18.6 What?364
        18.6.1 What Do We Need from the Internal Engine? 364
        18.6.2 Coincidences and Other Astronomical Hints 365
    18.7 Why?367
    18.8 Conclusions369
    18.9 Some Open Questions369