
success in recovering both previously unknown
cave bear and known Neanderthal genomic
sequences using direct genomic selection indicates
that this is a feasible strategy for purifying specific
cloned Neanderthal sequences out of a high
background of Neanderthal and contaminating
microbial DNA. This raises the possibility that,
should multiple Neanderthal metagenomic libra-
ries be constructed from independent samples,
direct selection could be used to recover Neander-
thal sequences from several individuals to obtain
and confirm important human-specific and Nean-
derthal-specific substitutions.

Conclusions. The current state of our knowl-
edge concerning Neanderthals and their relationship
tomodernhumans is largely inferenceandspeculation
based on archaeological data and a limited number of
hominid remains. In this study,we have demonstrated
thatNeanderthal genomic sequences canbe recovered
using ametagenomic library-based approach and that
specific Neanderthal sequences can be obtained from
such libraries by direct selection. Our study thus pro-
vides a framework for the rapid recovery of Nean-
derthal sequences of interest from multiple
independent specimens, without the need for whole-
genome resequencing. Such a collection of targeted
Neanderthal sequences would be of immense value
for understanding human and Neanderthal biology

and evolution. Future Neanderthal genomic studies,
including targeted and whole-genome shotgun
sequencing, will provide insight into the profound
phenotypic divergence of humans both from the great
apes and from our extinct hominid relatives, and will
allowus to explore aspects ofNeanderthal biologynot
evident from artifacts and fossils.
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Resilient Machines Through
Continuous Self-Modeling
Josh Bongard,1*† Victor Zykov,1 Hod Lipson1,2

Animals sustain the ability to operate after injury by creating qualitatively different compensatory
behaviors. Although such robustness would be desirable in engineered systems, most machines fail
in the face of unexpected damage. We describe a robot that can recover from such change
autonomously, through continuous self-modeling. A four-legged machine uses actuation-sensation
relationships to indirectly infer its own structure, and it then uses this self-model to generate
forward locomotion. When a leg part is removed, it adapts the self-models, leading to the
generation of alternative gaits. This concept may help develop more robust machines and shed
light on self-modeling in animals.

Robotic systems are of growing interest
because of their many practical applica-
tions as well as their ability to help

understand human and animal behavior (1–3),
cognition (4–6), and physical performance (7).
Although industrial robots have long been used

for repetitive tasks in structured environments,
one of the long-standing challenges is achieving
robust performance under uncertainty (8). Most
robotic systems use a manually constructed
mathematical model that captures the robot’s
dynamics and is then used to plan actions (9).
Although some parametric identification methods
exist for automatically improving these models
(10–12), making accurate models is difficult for
complex machines, especially when trying to
account for possible topological changes to the
body, such as changes resulting from damage.

Fig. 7. Recovery of Neanderthal genomic sequences from library NE1 by direct genomic selection.
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Although much progress has been made in
allowing robotic systems to model their environ-
ment autonomously (8), relatively little is known
about how a robot can learn its own morphology,
which cannot be inferred by direct observation or
retrieved from a database of past experiences (13).
Without internalmodels, robotic systems can auton-
omously synthesize increasingly complex behaviors
(6, 14–16) or recover from damage (17) through
physical trial and error, but this requires hundreds or
thousands of tests on the physical machine and is
generally too slow, energetically costly, or risky.

Here, we describe an active process that allows
a machine to sustain performance through an
autonomous and continuous process of self-
modeling. A robot is able to indirectly infer its
ownmorphology through self-directed exploration
and then use the resulting self-models to synthesize
new behaviors. If the robot’s topology unexpect-
edly changes, the same process restructures its
internal self-models, leading to the generation of
qualitatively different, compensatory behavior. In
essence, the process enables the robot to continu-
ously diagnose and recover from damage. Unlike
other approaches to damage recovery, the concept
introduced here does not presuppose built-in
redundancy (18, 19), dedicated sensor arrays, or
contingency plans designed for anticipated failures
(20). Instead, our approach is based on the concept
of multiple competing internal models and gener-
ation of actions to maximize disagreement
between predictions of these models.

The process is composed of three algorithmic
components that are executed continuously by the
physical robot while moving or at rest (Fig. 1):
Modeling, testing, and prediction. Initially, the
robot performs an arbitrary motor action and
records the resulting sensory data (Fig. 1A). The
model synthesis component (Fig. 1B) then syn-
thesizes a set of 15 candidate self-models using
stochastic optimization to explain the observed
sensory-actuation causal relationship. The action
synthesis component (Fig. 1C) then uses these
models to find a new actionmost likely to elicit the
most information from the robot. This is
accomplished by searching for the actuation pattern
that, when executed on each of the candidate self-
models, causes the most disagreement across the
predicted sensor signals (21–24). This new action
is performed by the physical robot (Fig. 1A), and
themodel synthesis component now reiterates with
more available information for assessing model
quality. After 16 cycles of this process have
terminated, the most accurate model is used by
the behavior synthesis component to create a
desired behavior (Fig. 1D) that can then be
executed by the robot (Fig. 1E). If the robot detects
unexpected sensor-motor patterns or an external
signal as a result of unanticipated morphological
change, the robot reinitiates the alternating cycle of
modeling and exploratory actions to produce new
models reflecting the change. The new most
accurate model is now used to generate a new,
compensating behavior to recover functionality. A
complete sample experiment is shown in Fig. 2.

We tested the proposed process on a four-
legged physical robot that had eight motorized
joints, eight joint angle sensors, and two tilt sensors.
The space of possiblemodels comprised any planar
topological arrangement of eight limbs, including
chains and trees (for examples, see Figs. 1 and 2).
After damage occurs, the space of topologies is
fixed to the previously inferredmorphology, but the
size of the limbs can be scaled (Fig. 2, N and O).
The space of possible actions comprised desired
angles that the motors were commanded to reach
(25). Many other self-model representations could
replace the explicit simulations used here, such as
artificial neural or Bayesian networks, and other
sensory modalities could be exploited, such as
pressure and acceleration (here the joint angle
sensors were used only to verify achievement of
desired angles, and orientation of the main body
was used only for self-model synthesis). None-
theless, the use of implicit representations such as
artificial neural networks—although more biologi-
cally plausible than explicit simulation—would
make the validation of our theorymore challenging,

because it would be difficult to assess the
correctness of the model (which can be done by
visual inspection for explicit simulations). More
important, without an explicit representation, it is
difficult to reward a model for a task such as
forward locomotion (which requires predictions
about forward displacement) when the model can
only predict orientation data.

The proposed process was compared with two
baseline algorithms, both of which use random
rather than self-model–driven data acquisition. All
three algorithm variants used a similar amount of
computational effort (~250,000 internal model
simulations) and the same number (16) of physical
actions (Table 1). In the first baseline algorithm, 16
randomactionswere executed by the physical robot
(Fig. 1A), and the resulting data were supplied to
the model synthesis component for batch training
(Fig. 1B). In the second baseline algorithm, the
action synthesis component output a randomaction,
rather than searching for one that created dis-
agreement among competing candidate self-
models. The actions associated with Fig. 1, A to C,

Fig. 1. Outline of the algorithm. The robot continuously cycles through action execution. (A and B)
Self-model synthesis. The robot physically performs an action (A). Initially, this action is random;
later, it is the best action found in (C). The robot then generates several self-models to match
sensor data collected while performing previous actions (B). It does not know which model is
correct. (C) Exploratory action synthesis. The robot generates several possible actions that
disambiguate competing self-models. (D) Target behavior synthesis. After several cycles of (A) to
(C), the currently best model is used to generate locomotion sequences through optimization. (E)
The best locomotion sequence is executed by the physical device. (F) The cycle continues at step (B)
to further refine models or at step (D) to create new behaviors.
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were cycled as in the proposed algorithm, but
Fig. 1C output a random action, rather than an
optimized one.

Thirty experiments of each of the three al-
gorithm variants were conducted, both before and
after the robot suffered damage. Before damage,
the robot began each experiment with a set of
randommodels; after damage, the robot beganwith
the best model produced by the model-driven
algorithm (Fig. 2F). We found that the probability
of inferring a topologically correct model was
notably higher for the model-driven algorithm than
for either random baseline algorithm (Table 1) and
that the final models were more accurate on
average in the model-driven algorithm than in
either random baseline algorithm (Table 1). Sim-
ilarly, after damage, the robot was better able to
infer that one leg had been reduced in length using
the model-driven algorithm than it could using
either baseline algorithm (Table 1). This indicates
that alternating random actions with modeling,
compared with simply performing several actions
first and then modeling, does not improve model
synthesis (baseline 2 does not outperform base-
line 1), but a robot that actively chooses which
action to perform next on the basis of its current set
of hypothesized self-models has a better chance of
successfully inferring its own morphology than a
robot that acts randomly (the model-driven algo-
rithm outperforms baseline algorithms 1 and 2).

Because the robot is assumed not to know its
own morphology a priori, there is no way for it to
determine whether its current models have captured
its body structure correctly. We found that dis-
agreement among the currentmodel set (information
that is available to the algorithm) is a good indicator
of model error (the actual inaccuracy of the model,
which is not available to the algorithm), because a
positive correlation exists between model dis-
agreement and model error across the n = 30
experiments that use the model-driven algorithm
(Spearman rank correlation = 0.425, P < 0.02).
Therefore, the experiment that resulted in the most
model agreement (through convergence toward the
correct model) was determined to be the most
successful from among the 30 experiments per-
formed, and the best model it produced (Fig. 2F)
was selected for behavior generation. This was also
the starting model that the robot used when it
suffered unexpected damage (Table 1).

The behavior synthesis component (Fig. 1D)
was executed 30 times with this model, starting
each time with a different set of random behaviors.
Figure 3 reports the final positions predicted by the
model robot using the best behavior produced by
each experiment (black dots). Each of those 30
behaviors was then executed on the physical robot,
and the resulting actual positions are reported in
Fig. 3 (blue dots). As a control, 30 random be-
haviors were also executed on the physical robot
(red dots). Although there is some discrepancy be-
tween the predicted distance and actual distance,
there is a clear forward motion trend that is absent
from the random behaviors. This indicates that this
automatically generated self-model was sufficiently

predictive to allow the robot to consistently develop
forward motion patterns without further physical
trials. One of the better locomotion patterns is
shown in fig. S1A. The transferal from the self-
model to reality was not perfect, although the gaits
were qualitatively similar; differences between the
simulated and physical gait (seen at 2.6 and 5.2 s)
were most likely due to friction and kinematic
bifurcations at symmetrical postures, both difficult
to predict. Similarly, after damage, the robot was
able to synthesize sufficiently accurate models (an
example is given in Fig. 2O) for generating new,
compensating behaviors that enabled it to continue
moving forward. An example of a compensating
gait is shown in fig. S1B and movie S1.

Although the possibility of autonomous self-
modeling has been suggested (26), we demonstrated
for the first time a physical system able to
autonomously recover its own topology with little
prior knowledge, as well as optimize the parameters
of those resulting self-models after unexpected

morphological change. These processes demon-
strate both topological andparametric self-modeling.
This suggests that future machines may be able to
continually detect changes in their ownmorphology
(e.g., after damage has occurred or when grasping a
new tool) or the environment (when the robot enters
an unknown or changed environment) and use the
inferred models to generate compensatory behavior.
Beyond robotics, the ability to actively generate and
test hypotheses can lead to general nonlinear and
topological system identification (23) in other
domains, such as computational systems (22),
biological networks (23), damaged structures (24),
and even automated science (27).

This work may inform future investigations of
cognition in animals and the development of
cognition in machines. Whereas simple yet robust
behaviors can be created for robots without
recourse to a model (14–17, 28), higher animals
require predictive forward models to function,
given that in many cases biological sensors are

Fig. 2. The robot contin-
uallymodels and behaves.
The robot performs a ran-
dom action (A). A set of
random models, such as
(B), is synthesized into ap-
proximatemodels, such as
(C). A new action is then
synthesized to createmax-
imal model disagreement
and is performed by the
physical robot (D), after
which further modeling
ensues. This cycle contin-
ues for a fixed period or
until no further model
improvement is possible
(E and F). The best model
is then used to synthesize
a behavior. In this case,
the behavior is forward
locomotion, the first few
movements of which are
shown (G to I). This be-
havior is then executed by
the physical robot (J to L).
Next, the robot suffers
damage [the lower part
of the right leg breaks off
(M)]. Modeling recom-
mences with the best
model so far (N), and
using the same process
of modeling and experi-
mentation, eventually dis-
covers the damage (O).
The new model is used to
synthesize a new behav-
ior (P to R), which is ex-
ecuted by the physical
robot (S to U), allowing it
to recover functionality
despite the unanticipated
change.
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not fast enough to provide adequate feedback
during rapid and complex motion (29). Although
it is unlikely that organisms maintain explicit mod-
els such as those presented here, the proposed
method may shed light on the unknown processes
bywhich organisms actively create and update self-
models in the brain, how and which sensor-motor
signals are used to do this, what form these models
take, and the utility of multiple competing models
(30). In particular, this work suggests that directed
exploration for acquisition of predictive self-models
(31) may play a critical role in achieving higher
levels of machine cognition.
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Solid-State Thermal Rectifier
C. W. Chang,1,4 D. Okawa,1 A. Majumdar,2,3,4 A. Zettl1,3,4*

We demonstrated nanoscale solid-state thermal rectification. High-thermal-conductivity carbon
and boron nitride nanotubes were mass-loaded externally and inhomogeneously with heavy
molecules. The resulting nanoscale system yields asymmetric axial thermal conductance with
greater heat flow in the direction of decreasing mass density. The effect cannot be explained by
ordinary perturbative wave theories, and instead we suggest that solitons may be responsible for
the phenomenon. Considering the important role of electrical rectifiers (diodes) in electronics,
thermal rectifiers have substantial implications for diverse thermal management problems,
ranging from nanoscale calorimeters to microelectronic processors to macroscopic refrigerators
and energy-saving buildings.

The invention of nonlinear solid-state
devices, such as diodes and transistors,
that control electrical conduction marked

the emergence of modern electronics. It is ap-
parent that counterpart devices for heat conduc-
tion, if they could be fabricated, would have

Fig. 3. Distance traveled during optimized versus
random behaviors. Dots indicate the final location
of the robot’s center of mass, when it starts at the
origin. Red dots indicate final positions of the
physical robot when executing random behaviors.
Black dots indicate final expected positions
predicted by the 30 optimized behaviors when
executed on the self-model (Fig. 2F). Blue dots
denote the actual final positions of the physical
robot after executing those same behaviors in
reality. The behaviors corresponding to the circled
dots are depicted in Fig. 2, G to L. Squares in-
dicate mean final positions. Vertical and horizon-
tal lines indicate 2 SD for vertical and horizontal
displacements, respectively.

Table 1. Performance summary for the three algorithm variants. Baseline algorithms 1 and 2
disable the iterative and the model-driven nature of the learning process, respectively, while
ensuring that the same computational effort and number of physical actions are used. Before
damage, a successful experiment is determined as one that outputs a model with correct topology
(see fig. S2 for examples of correct and incorrect topologies). Mean model error was calculated over
the best model from each of the 30 experiments. Mean values are reported ± SD. An additional 90
experiments were conducted after the robot was damaged. The robot reinitiates modeling at this
point using the most accurate model from the first 90 experiments (Fig. 2F). In this case, mean
model error is determined as the difference between the inferred length of the damaged leg and
the true damaged length (9.7 cm).

Baseline 1 Baseline 2 Model-driven
algorithm

Before damage
Independent experiments (n) 30 30 30
Physical actions per experiment 16 16 16
Mean model evaluations (n = 30) 262,080 ± 13,859 246,893 ± 17,469 262,024 ± 13,851
Successful self-models 7 8 13
Success rate 23.3% 26.7% 43.3%
Mean model error (n = 30) 9.62 ± 1.47 cm 9.7 ± 1.45 cm 7.31 ± 1.22 cm

After damage
Independent experiments (n) 30 30 30
Physical actions per experiment 16 16 16
Mean model evaluations (n = 30) 292,430 ± 44,375 278,140 ± 37,576 296,000 ± 22,351
Mean model error (n = 30) 5.60 ± 2.98 cm 4.55 ± 3.22 cm 2.17 ± 0.55 cm
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