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Abstract

We consider computational modeling of biological systems that consist of discrete
components arranged into linear structures. As time advances, these components may
process information, communicate and divide. We show that: (i) the topological notion
of cell complexes provides a useful framework for simulating information processing and
flow between components; (ii) an index-free notation exploiting topological adjacencies
in the structure is needed to conveniently model structures in which the number of
components changes (for example, due to cell division); and (iii) Lindenmayer systems
operating on cell complexes combine these elements in the case of linear structures.
These observations provide guidance in constructing L-systems and explain their mod-
eling power. L-systems operating on cell complexes are illustrated by revisiting models
of heterocyst formation in Anabaena and presenting a simple model of leaf development
focused on the morphogenetic role of the leaf margin.

1 Introduction

There is a feedback between mathematics and studies of nature. On one hand, mathematical
concepts — even though they may eventually be formalized in an axiomatic way — are often
inspired and motivated by studies of nature. On the other hand, they feed back on these
studies by providing proper mathematical tools.
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In this context, we consider computational methods needed to model the development of
multicellular structures, in particular plants. We show that these methods are not merely a
new application of partial differential equations, traditionally used to model spatio-temporal
phenomena in mathematical physics. Instead, developmental modeling of multicellular struc-
tures requires an integration of tools rooted in different branches of mathematics and com-
puter science. This combination includes L-systems [19], ordinary differential equations, and
the topological notion of cell complexes [10].

The structures we consider are the spatial arrangements of discrete components that
process information and communicate. These structures are dynamic, which means that
not only the state of the components, but also their number can change over time. The
development is symplastic: the neighborhood relations can only be changed as a result of
the addition or removal of components (in contrast to animal cells, plant cells do not move
with respect to each other). We limit our examples to linear structures consisting of sequences
of cells, although similar problems occur in the modeling of branching plant structures at
the larger scale of architectural modules: branch and root segments, buds, leaves, flowers
and fruits. The insights we obtain also extend to models of fully two-and three-dimensional
structures.

2 Computation in cell complexes

Let us consider the fundamental process of diffusion in a filament as a running example. At
any point in time, the distribution of the diffusing substance can be visualized by plotting
concentration c as a function of position x along the filament:
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How can we model changes in concentration due to diffusion over time? The first impulse
may be to apply the well known partial differential equation for diffusion:

∂c

∂t
= D

∂2c

∂x2
. (1)

Unfortunately, there is a problem with this approach. To derive partial differential equa-
tion (1), one starts with a discrete description of diffusion, then passes to the limit in space
and time [8, Chapter 9]. When ascribing this equation to a multicellular structure, we go
back to the discrete version. Such circular thinking should be avoided [3].

One step towards a solution is to ignore Equation (1) and directly write the set of ordinary
differential equations that describe the changes in concentration in each cell without going
to the spatial limit:

x

c
ci-1 ci+1ci

dci
dt

= ki (ci−1 − ci)− ki+1 (ci − ci+1) , i = 2, 3, . . . , n− 1. (2)

According to these equations, the concentration of the diffusing substance in each of the
n− 2 cell interior to the filament changes proportionally to the difference in concentrations
across cell walls (a version of Fick’s law [8]). For simplicity, we do not consider here the
boundary cells 1 and n. We assume that the concentration of the diffusing substance is
approximately uniform within each cell. This is a reasonable assumption as it is the cell
walls, rather than the cells themselves, that present a significant obstacle to diffusion. The
system of equations (2) highlights, however, another problem, which becomes apparent when
we compare the equations for adjacent cells, e.g. i and i+ 1:
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dci
dt

= ki (ci−1 − ci)− ki+1 (ci − ci+1)

dci+1

dt
= ki+1 (ci − ci+1) − ki+2 (ci+1 − ci+2)

(3)

The shaded calculation is repeated twice, first to determine the amount of the diffusing
substance exported from cell i to cell i + 1, and a second time to determine the amount of
the substance received by cell i+1 from cell i. Superficially, performing the same calculation
twice may seem merely redundant: computationally inefficient, but without any effect on the
final result. However, the problem created by repeating this calculation is deeper. Suppose
that the diffusion coefficients are random variables, which is well justified if the number of
diffusing molecules is small. Calculating an expression with random variables twice will likely
produce different results, and the amount of substance exported by cell i will be different
from the amount received by cell i+ 1, violating the law of mass conservation.

We can solve this problem by computing fluxes between any pair of adjacent cells only
once and using the result twice, to update concentration in each cell. While implementing
this solution, we need to properly recognize the topology of the modeled structure, which
is a sequence of cells separated by walls. This topology offers placeholders for all variables
inherent in diffusion: concentrations c are associated with cells, and fluxes J with walls:

x

c
ci-1 ci+1ci

i)i(J →−1 )i(iJ 1+→

J(i−1)→i = K(i−1)→i (ci−1 − ci)
dci
dt

= J(i−1)→i − Ji→(i+1)

 i = 2, 3, . . . , n− 1 (4)

Although the flux through each wall is computed the same way as in Equations (2) and (3), it
is now computed only once. Consequently, mass is conserved even in the presence of random
fluctuations of flux. Furthermore, if the system of equations (4) is evaluated numerically, for
example using the forward Euler method with time step ∆t,

4



J t+1
(i−1)→i = Kt

(i−1)→i

(
cti−1 − cti

)
ct+1i = cti +

(
J t

(i−1)→i − J t
i→(i+1)

)
∆t

}
i = 2, 3, . . . , n− 1 (5)

mass will be conserved exactly in spite of the errors in estimating fluxes over finite time
intervals that are inherent in numerical methods.

A sequence of cells separated by walls is an example of a one-dimensional cell complex [10].
Formally, such a complex is an interwoven sequence of objects of two types: line segments
(cells) and points at which these segments meet (walls). Thinking in terms of cell complexes
facilitates proper definition of discrete models, especially in higher dimensions. For example,
in three-dimensional tissues built from polyhedral cells we distinguish three-dimensional
cells, two-dimensional polygonal faces that are shared by pairs of cells, one-dimensional
edges that bind these faces, and zero-dimensional vertices in which the edges meet. Each
of these objects may provide a placeholder for different variables, organizing simulations of
multicellular organisms in a systematic manner [17].

3 L-systems

Do cell complexes provide a good framework for describing processes such as diffusion or
genetic regulation in multicellular systems? They are certainly a step in the right direction,
but many problems remain. The key issue is how to identify the components of a cell complex,
the variables related to each component, and the equations that relate these variables. One
method is to use indices and specify neighborhood relations between the components with
index arithmetic. For instance, if n components are arranged into a sequence indexed from
1 to n, the neighbors of component i ∈ {2, . . . , n − 1} will have indices i − 1 and i + 1.
Equations (4) and (5) are examples of this notation. It is so standard in mathematical
practice that we tend to use it without much thought. Unfortunately, it does not work well
for developing organisms.

To see the problem let us consider a filament with consecutively numbered cells [24]. A
cell, say number 9, divides and becomes two cells. What indices should they have? One
possibility would be to pass number 9 to one of the child cells and assign some arbitrary
number that has not yet been used, say 42, to the other cell:

7 8 9 10 11

8 9 42 10 117
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Each cell has again a unique identifier, but we can no longer rely on index arithmetic to find
who is the neighbour of whom: it no longer suffices to add one to find the neighbour to the
right, or subtract one to find the neighbour to the left.

Another possibility is to preserve index arithmetic. We can accomplish this, for example,
by assigning the second new cell number 10, and renumbering all of the remaining cells to
the right. The old cells 9-10-11 now become cells 10-11-12:

7 8 9 10 11

8 9 10 11 127

In this case, we can perform index arithmetic on the new filament, but the identity of cells
is no longer maintained. For example, cell 10 has become cell 11, and may become cell 12,
13 or higher in the future.

Analyzing these problems, we conclude that their source is not merely one or another
indexing scheme, but the very attempt to use indices to identify cells in a growing organism.
Paraphrasing Hermann Weyl, who said “The introduction of numbers as coordinates [...] is
an act of violence” [32], we can say “...and so is the introduction of indices.”

An alternative idea is to exploit the topological structure of the filament and introduce
operators that will return the informational content of the neighbours. The possibility of
accessing such context in a local manner, without globally enumerating all components of the
modelled structure, is one of key ideas behind L-systems, the formalism for describing and
simulating development introduced in 1968 by Aristid Lindenmayer [19]. Using the notation
for (context-sensitive) L-systems presented in [23], we can write Equation (5) as:

C(cL)<W (J)>C(cR) → W (K · (cL − cR))

W (JL)<C(c)>W (JR) → C (c+ (JL − JR)∆t)
(6)

L-system expressions are called rewriting rules or productions, as in the theory of algo-
rithms and formal languages. The first production above states that wall W is associated
with a single variable, noted J . This variable represents flux though the wall. Its value is
updated (arrow → ) considering concentrations cL and cR of the diffusing substance in cells
C on the left and right side of wall W . These cells are indicated by the operators < and
> , respectively. The variable identifiers cL and cR are local to this production and can be
arbitrary, but must be distinct. Given the wall and its context (i.e., the adjacent cells), the
updated flux is calculated using the expression K · (cL − cR).
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The second production works in a similar way. In order to update the concentration
c of the substance in cell C, the walls W that delimit this cell on the left and right sides
are considered. Each wall is characterized by a flux: JL and JR, respectively. Within time
∆t associated with a single simulation step, concentration c changes by (JL − JR) ∆t. The
L-system productions (6) thus express the same idea as Equations (5), but without involving
indices or any other global enumeration of cells and walls. Instead, they use the operators
that look for the context, or neighbourhood, of cells and walls.

Summarizing the ideas presented so far, we have introduced three notions of key impor-
tance to the modeling of multicellular structures. First, we formalize these structures as cell
complexes. This notion provides a vehicle for assigning variables to proper elements of the
structure, in our example concentrations to cells and fluxes to walls. Second, we use locally
defined context, rather than globally defined indices (or any other global enumeration) to
access information about the neighbours of any element in the complex. The third point a
little more subtle, but equally true: the arrow is an operator that relates what was before
to what will come next, and thus indicates the neighbourhood in time. Thus, in contrast
to Equations (5), L-system (6) needs no indices for time as well. An additional benefit of
L-systems is that they naturally extend to another type of productions, which capture cell
division. For example, the following production:

C(c) : condition → C(c)W (0)C(c) (7)

says that, if some condition is met, cell C will divide into two child cells with the same
concentration c as the parent cell, separated by a wall.

4 Heterocyst differentiation in Anabaena

To illustrate the presented concepts in a biological context, we will apply them to model
morphogenesis in a growing filament. The chosen organisms, representing genus Anabaena,
integrate some of the most fundamental processes linking patterning and growth. Conse-
quently, they have been repetitively used to illustrate both the basic mechanisms of mor-
phogenesis and diverse aspects of modeling with L-systems [1, 20, 5, 26, 12, 9, 4]. Here we
focus on the integration of L-systems and cell complexes.

Anabaena is a genus of cyanobacteria, organisms that have been on Earth for over 3 billion
years and are responsible for the introduction of oxygen into the atmosphere [13]. It creates
multicellular filaments consisting of two basic types of cells. Vegetative cells are capable
of photosynthesis and produce sugars. Heterocysts are capable of fixing nitrogen from the
atmosphere, and produce nitrogenous compounds that the bacterium needs. Photosynthesis
and nitrogen fixation are biologically difficult to reconcile, because the enzyme crucial to the
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fixation is inhibited by oxygen. Consequently, some cyanobacteria separate photosynthesis
and nitrogen fixation in time: they photosynthesize during the day and fix nitrogen at night.
Others, including Anabaena, separate these tasks in space [13].

On the average, consecutive heterocysts in an Anabaena filament are separated by about
ten vegetative cells [14]. Heterocysts cannot divide, but vegetative cells do divide and grow,
causing the filament to elongate. As the existing heterocysts are moved apart by growing
vegetative segments, new heterocysts differentiate in-between. The process that controls
this differentiation has been extensively studied. A small protein called PatS is produced
by heterocysts and diffuses through the vegetative segments of the filament, inhibiting the
differentiation of new heterocysts [33]. As the existing heterocysts move apart, the concen-
tration of PatS in the vegetative segments gradually decreases, eventually falling below a
threshold near the center of the segment. This decline is detected by the genetic regulatory
circuit that triggers the differentiation of a new heterocyst.

The maintenance of approximately constant spacing between heterocysts in a growing
filament can be captured and explained using computational models, which may represent
different tradeoffs between biological accuracy and simplicity. Here we present a very simple
model that illustrates the use of cell complexes.

#define H 0 // Heterocyst cell type
#define V 1 // Vegetative cell type

#define K (ran(2.0)) // Diffusion coefficient
#define ν 0.5 // Turnover rate
#define R 1.1 // Cell growth factor
#define Θ 0.1 // Threshold for heterocyst differentiation
#define sMAX 0.8 // Cell size at division

#define ∆t 0.01 // Timestep

Axiom: C (H, 1, 1) W (0) C (V, 1, 1) W (0) C (H, 1, 1)

p1: C (aL, cL, sL) <W (J) >C (aR, cR, sR) → W (K · (cL − cR))

p2: C (a, c, s) : a = H → C (H, 1, 1)

p3: W (JL) <C (a, c, s) >W (JR) :
{ c � c+ ((JL − JR)− νc) ∆t; s � sR∆t; }
c < Θ → C (H, 1, 1)
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p4: W (JL) <C (a, c, s) >W (JR) :
{ c � c+ ((JL − JR)− νc) ∆t; s � sR∆t; }
s > sMAX → C (V, c, s/2) W (0) C (V, c, s/2)

p5: W (JL) <C (a, c, s) >W (JR) :
{ c � c+ ((JL − JR)− νc) ∆t; s � sR∆t; }
→ C (V, c, s)

The axiom specifies that the initial structure consists of three cells C delimited by walls W .
The cells are characterized by three parameters: type a (H for heterocyst, V for a vegetative
cell), inhibitor concentration c, and cell length s. Productions are ordered, and the first
applicable production is used for each cell or wall. Production p1 determines flux J of the
inhibitor across a wall, as in L-system (6). Production p2, applicable to heterocysts, sets
both the inhibitor concentration and heterocyst length to 1. Productions p3 to p5 apply to
vegetative cells. They describe changes in inhibitor concentration due to its diffusion and
turnover, and changes in cell length due to growth. In addition, production p3 specifies
that the vegetative cell in which the inhibitor concentration falls below threshold Θ will
differentiate into a heterocyst. Likewise, production p4 states that a vegetative cell which
exceeds maximum length sMAX will divide.

The figure below shows selected steps of a simulation. Vertical lines above the cells
indicate concentrations of the inhibitor. As time progresses, the vegetative cell and its
descendants divide, pushing the heterocysts apart. Concentrations of the inhibitor in the
vegetative cells decreases with their distance from the heterocysts, as the diffusive supply of
the inhibitor diminishes. When the concentration of the inhibitor falls below a threshold,
indicated as the red horizontal line, the corresponding cell differentiates into a heterocyst.
The average distance between heterocysts is thus maintained in spite of the filament’s growth.
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5 Leaf development

The previous example was focused on the arrangement of cells of different types within a
growing filament. This filament was visualized by placing cells along a line, as its overall form
was not important. In the next example we use a more complex geometric interpretation
of an L-system operating on a cell complex. The resulting computational model plausibly
explains the form of a lobed leaf.

Many aspects of plant development are regulated by the plant hormone auxin [18], which
is actively exported from cells by a family of proteins called PINFORMED — in short,
PIN. Within this family, the PIN1 protein [11] plays the dominant role in leaf development.
Confocal microscopy images of diverse plants show that PIN1 proteins at the leaf margin
export auxin towards discrete locations, called convergence points [15, 28]. From there, auxin
propagates into the leaf blade, forming streams, or canals, which define the paths of future
veins [28]. The first convergence point in a young leaf primordium is at the leaf tip. As the
leaf grows, the distance between this convergence point and the leaf base increases, and new
convergence points are gradually formed in the available space [2].

Convergence points

The above process can be compared to the gradual differentiation of heterocysts in the
growing filament of Anabaena. However, while the positioning of new heterocysts can be
intuitively explained by the depletion of the diffusively transported inhibitor (PatS) between
heterocysts moving apart, the molecular mechanism defining the spacing of convergence
points on the leaf margin is not yet fully understood. The key assumption is that the con-
centration of PINs in the membrane of cells at the leaf margin depends on the concentration
of auxin in the adjacent cells. The higher this concentration, the more PINs will be allocated
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to the abutting cell membrane [16, 30]. This interactions between PINs and auxin can thus
be represented as a feedback loop:

i j

Here cells are represented schematically as black contours, with auxin concentrations shown
as filled blue squares. The size of these squares is proportional to the concentration of auxin
within the cells. Auxin fluxes are shown as black arrows between the cells: the wider the
arrow, the larger the flux. PIN concentrations are visualized as red rectangles running parallel
to cell edges; the wider the line, the larger the PIN concentration at the corresponding cell
membrane. The feedback loop of interactions is indicated by the green arrows. The top
arrow shows that PINs in the membrane of cell i abutting cell j pump auxin towards cell j.
The bottom arrow shows that the concentration of auxin in cell j affects the allocation of
PINs in the membrane of cell i, and thus controls further flow of auxin into cell j.

To show that the postulated interactions between auxin and PINs can produce a pattern
of approximately equidistant convergence points in a file of cells, we construct a simple
computational model governed by three equations (for related models and their analysis
see [16, 30, 27, 2, 7]). The first equation describes the flux Ji→j of auxin from cell i to the
adjacent cell j as the sum of active and diffusive transport:

Ji→j = Tci [PIN ]i→j − Tcj [PIN ]i←j +K(ci − cj). (8)

The active transport from cell i to cell j is assumed to be proportional to the auxin concen-
tration ci in cell i, multiplied by the concentration [PIN ]i→j of PINs in the membrane of
cell i abutting cell j. The coefficient of proportionality is T . An analogous term describes
active transport of auxin from cell j to cell i. The last term represents diffusive transport
with the diffusion coefficient K, as in Equation (4, top).

The second equation describes the allocation of PINs to the membrane of cell i abutting
cell j. It has the form

[PIN ]i→j ∼ [PIN ]i · f (cj) , (9)

where [PIN ]i is the overall concentrations of PINs in cell i, and f is some increasing function
of auxin concentration cj in cell j.
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The third equation adds to the law of mass conservation (Equation 4, bottom) terms
representing local auxin production with a constant absolute rate σ, and local turnover with
relative rate µ:

dci
dt

= Jx→i − Ji→x + σ − µci. (10)

To model a sequence of cells and walls obeying the above equations, we express them as
an L-system operating on a cell complex:

#define T 1.2 // Polar transport coefficient
#define K 0.02 // Diffusion coefficient

#define σ 0.1 // Auxin production
#define µ 0.005 // Auxin turnover

#define ∆t 0.05 // Timestep

Axiom: C (0, 0, 0) W (0) C (0, 0, 0) · · · C (0, 0, 0) W (0) C (0, 0, 0)

p1: C (
↼
pL, cL,

⇀
pL) <W (J) >C (

↼
pR, cR,

⇀
pR)

→ W (T
(
cL

⇀
pL − cR ↼

pR

)
+K (cL − cR))

p2: C (
↼
pL, cL,

⇀
pL) W (JL) <C (

↼
p, c,

⇀
p) >W (JR) C (

↼
pR, cR,

⇀
pR) :

→ C (f(cL), c+ (JL − JR + σ − µc) ∆t, f(cR))

Assuming uniform distribution of auxin throughout the file of cells, the initial state of
the system can be visualized as follows:

As expected, a stable pattern of discrete convergence points — maxima of auxin concentra-
tion with PINs oriented towards them — emerges as the simulation progresses. Three stages
of simulation in a file of constant length are shown below.
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We will now apply the above process to model the development of leaf form. Hay et
al. [15] postulated that the convergence points on the leaf margin define the positions of
accelerated leaf outgrowth. A limited but simple method for modeling such outgrowth is
the boundary propagation method [29, Chapter 1]. It operates by moving the boundary of
a shape in the normal direction in each simulation step:

We model the leaf margin as a single file of cells, initially in the shape resembling a
leaf primordium. The propagation rate of each cell is proportional to the concentration of
auxin. In addition, we assume that cells reaching the threshold length divide as in the case
of Anabaena. The figure below shows an example of the resulting progression of the shapes
of the growing margin and compares the final stage of the simulation with an ivy leaf.

The molecular details of ivy leaf development are not yet known. Nevertheless, a closely
related model has been constructed and supported by experiments for Arabidopsis leaves [2]
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and it is likely that it extends to other plants, such as ivy. In summary, both the model
of heterocyst differentiation in Anabaena and the model of leaf development illustrate the
principles of computational model construction using L-systems and cell complexes. In spite
of their simplicity, these models provide insights into pattern formation in nature.

6 Conclusions

Mathematics of multicellular development. Modeling multicellular systems in de-
velopment requires a spatially discrete formalism, which sets it apart from the continuous
treatment of time and space in classical mathematical physics. Cell complexes provide a
convenient abstraction for representing topological relations between components of discrete
structures. Variables describing a system can be associated in a natural manner with com-
ponents of different dimensions within a cell complex, allowing for convenient storage of
these variables in their topologically meaningful location [6]. Respecting the principle of
locality, equations relating these variables may only refer to the variables in the neighbor-
ing components of the structure. The notion of cell complexes makes it possible to access
these variables using an index-free notation. This is particularly important when dealing
with systems in which structure changes dynamically, for example as a result of cell division.
In the one-dimensional case, such changes can be conveniently expressed using the notion
of L-systems. This provides an explanation of why L-systems work so well in modeling
applications.
Molecular processes and pattern formation. We have illustrated modeling with cell
complexes using examples of pattern formation in growing sequences of cells. Maxima of
the concentration of a morphogen arise from an interplay between its local production and
passive, diffusive transport, as in the model of Anabaena, or by reshuffling an existing or
diffusely produced substance through active transport, as in the model of leaf margin. One
question is whether these molecularly different mechanisms represent fundamentally different
paradigms of pattern formation, or different implementations of a common principle. From
the biological perspective it would also be interesting to know why such different mechanisms
have evolved to create similar patterns.
Open problems. The confluence of L-systems and cell complexes provides a convenient
framework for modeling one-dimensional developing structures. Modeling of higher-dimensional
structures with dynamic cell complexes is substantially more difficult, and is a subject of
ongoing research [17]. Difficulties extend to the visualization of three-dimensional models,
where representations of the model’s surface only provide partial information about the entire
structure, and volumetric representations are often visually confusing.

Another problem open for further research concerns numerical methods for modeling
structures with dynamic topology. Traditional formalisms for specifying and solving large
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systems of equations are based on matrix notation, which is not well suited for modeling
multicellular organisms. First, matrices have fixed dimensions, so each time a cell divides,
matrices describing the system globally have to be redefined. Second, the matrices are very
sparse, since each cell can only be affected by a small number of neighboring cells due to
the locality of interactions. General-purpose algorithms for solving systems of sparse equa-
tions use automatic techniques to identify which variables are connected through equations.
However, constructing a sparse matrix and then identifying these connections represents un-
necessary work, because a precise description of the connections between variables is already
present in the topology of the complex. Thus, instead of expressing a structure using a ma-
trix, and applying general methods for dealing with sparse matrices, it is better to operate
directly on cell complexes [21, 3, 6]. The appropriate numerical methods have been devised
in some contexts [22, 31, 9, 25], but a more complete toolbox of numerical methods designed
for dynamic cell complexes is needed.
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