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Abstract

A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this
process involves preferential growth along particular orientations raising the question of how these orientations are
specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another
possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based
system). The axiality-based system has recently been explored through computational modelling. Here we develop and
apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous
material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established
by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under
genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory
network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically
connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by
the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue,
allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between
polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing
Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose
that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems,
have been exploited during evolution to generate a range of observed biological shapes.
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Introduction

Although there have been many experimental and theoretical

studies on patterns of gene activities and their establishment in

animals and plants [1–6] much less is known about how patterns

of activity are linked to tissue growth and deformation.

Addressing this problem represents a challenge because final

form is usually not a direct readout of locally specified

properties, but depends on mechanical constraints from

neighbouring regions. For example, if the margin of a leaf has

a higher specified growth rate than the centre, a wavy edge will

emerge. The wavy edge is not directly specified but is a feature

that emerges through the interaction between patterns of

specified growth and the mechanical constraints of tissue

continuity [7]. In such cases we may distinguish between

specified growth, which is the growth that would be attained if

each region grew independently of its neighbours (i.e. in

mechanical isolation), and resultant growth, which is the growth

observed when mechanical constraints of neighbours are taken

into account (i.e. mechanically connected tissue). In animal

systems a similar distinction is made between an imposed active

deformation, and an elastic passive deformation [8].

Resultant growth can be measured experimentally by tracking

tissue deformations over time [9–13]. However, to understand the

mechanisms by which resultant growth arises we need to know

how genes influence specified growth. Where specified growth is

isotropic, genes need to control a single parameter, the local rate of

growth. However, in many cases specified growth may be

anisotropic requiring orientations as well as rates of growth to

be under genetic control. Controlling orientations of growth

requires a local axis to be defined (i.e. axiality, represented as a

field of lines). In this respect growth is similar to stress which also

has axiality. This similarity has led to the suggestion that stresses

provide the primary cues for orienting growth. According to such

a stress-based axiality mechanism, gene activity influences stresses in

the tissue, the orientations of which are transduced to influence

molecular properties of cells such as the cytoskeleton. These in

turn modulate growth orientations which may further feed back to

influence the pattern of stresses [14–18]. Recent support for such

mechanisms in plants have come from studies of the effect of

stresses on microtubule patterns [19].

A different way of specifying orientations of growth is through

differential concentrations of signalling molecules. The varying

concentrations define a local (cellular) polarity which includes both
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axiality and directional components (represented by a field of

arrows). The axiality component is then used to orient growth. In

this polarity-based axiality system, genes influence the distribution of

signalling molecules which define a coordinated field of polarities.

Incorporation of mechanical constraints then leads to resultant

growth, which may feed back to influence, for example, tissue

polarity orientations. In support of this system, there is

considerable evidence that polarity is prevalent in biological

tissues and may modulate growth [20–24]. For example, planar

cell polarity (PCP) systems have been described in animals and

implicated in processes such as growth of wings in Drosophila and

convergent-extension in vertebrates [25–27]. Similarly, the

polarised distribution of auxin transporters (PIN molecules) has

been shown to be important for outgrowths of primordia in plants

[28].

Elements of the stress-based axiality system have recently been

modelled [29,30]. Here we describe a framework and software

implementation for the alternative polarity-based axiality ap-

proach, which we call GPT-framework. ur software, called

GFtbox, is a MATLAB application available from http://www.

uea.ac.uk/cmp/research/cmpbio/GFtbox. This framework was

developed with plant growth in mind, although it may also be

useful for modelling animal systems where cell movement is

limited. In accompanying papers we show how a biologically

relevant model can be derived using the GPT-framework [31,32].

This model of Snapdragon flower development is constrained by a

range of experimental data including gene expression patterns,

mutant phenotypes, clonal analysis, growth dynamics and changes

in geometry. It provides a working hypothesis for how growth is

specified and shows how reorientation of growth can account for

key observations. In this paper we explore a series of simplified

models which illustrate how growth and polarity may interact

combinatorially during morphogenesis to generate a wide range of

forms. The results highlight the value of being able to specify

orientation independently of stresses in the generation of complex

tissue shapes. In addition, we provide the theoretical foundations

on which our modelling depends.

Results

Overview of the GPT-framework
Modelling the genetic control of tissue growth requires the

incorporation of gene regulatory networks and signal propogation

within a growing, mechanically connected, tissue. In the GPT-

framework, tissue is treated as a continuous sheet of material with

two surfaces and a thickness, here termed the canvas. Biologically,

the canvas may correspond to a sheet of cells, single cells or

subcellular components (e.g. walls). Regulatory factors are

distributed over the canvas and may interact and propagate,

allowing particular patterns and local polarities to be specified.

Regulatory factors can be classified into two types. Identity factors do

not propagate within the canvas, while signalling factors can. The

regulatory factors specify a growth tensor field which describes the

specified rates of growth parallel and perpendicular to the local

polarity. Elasticity theory is used to compute the resultant

deformation of the canvas. This deformation modifies the

relationships within the canvas and thus feeds back to influence

the regulatory factors. Our implementation (GFtbox) is specialised

towards tissues that grow as sheets, such as petals or leaves, but the

basic concepts are also applicable to bulk three-dimensional and

flat two-dimensional tissues.

In the results we study the interactions between tissue polarity

and differential growth in the generation of shape through a series

of models. For convenience each example has a setup phase

during which the shape of the initial canvas and distribution of

regional identities and signalling factors is established, and three

components that form the model. (1) A Polariser Regulatory

Network (PRN) controls the activity of various organisers from

which tissue polarity information propagates. There are two types

of organiser, termed zorganiser and {organiser. As a conven-

tion, we show polarity pointing away from zorganisers, and

towards {organisers. Polarity propagation is implemented

through a signalling factor called POLARISER (POL), the

gradient of which defines local polarity. The PRN controls

production and degradation of POL at organisers that anchor the

polarity. POL may also be produced and degraded at a

background rate throughout the canvas. (2) A gene regulatory

network (GRN) controls the activity of identity or signalling factors

encoded by genes. (3) A growth rate regulatory network (KRN)

determines how identity or signalling factors influence specified

growth rates parallel to, kpar, and perpendicular to, kper, local

polarity. The KRN also specifies the growth in thickness, knor. The

specified growth rates for a region of the canvas are equivalent to

the growth that would arise without the constraints of surrounding

material (see Methods).

In the first time step the specified growth field is applied to the

initial canvas which may then distort through mechanical interac-

tions in the continuous material (modelled according to elasticity

theory, see Methods). The result is a slight deformation of the canvas

(resultant growth field) that takes the regions of identity factors with

it. Where a region containing an identity factor expands, that region

inherits the properties of the parent region, so maintaining

boundaries. In such new volumes, the concentrations of signalling

factors are interpolated from the parent surrounding regions and

then further adjusted according to their production, dilution,

propagation and decay rates. The deformed canvas and expression

pattern provides the starting point for the next time step and the

sequence is reiterated. To verify the computational correctness of

GFtbox, results were computed for several situations where analytical

solutions are possible (see Text S1). In the following we explore

combinatorial interactions between polarity and growth through a

series of simple cases. We first consider deformations in 2D.

Interaction between growth and polarity (2D)
A key feature of the polarity-based axiality system is that

orientation and growth rates can be specified independently and

then combined in various ways. This combinatorial aspect is

unlike the stress-based axiality system where orientations can only

be specified once stresses have been generated in the tissue. These

stresses will depend on the pattern of specified growth rates and

Author Summary

How do genes control the growth of cells into complex
tissue shapes such as flowers, wings or hearts? A key
requirement is that genes must be able to modulate
growth along particular directions. Two mechanisms have
been proposed for how this may work; one based on the
directions of mechanical stresses in the tissue and the
other on molecular signals that propagate and provide
local polarities. Here we show how a polarity-based system
has the advantage of being able to act in combination
with growth rates to generate a wide range of shapes. By
applying this system to the development of the Snap-
dragon flower, we show, by comparison of computational
simulations with actual flower development, how a simple
set of polarity controls may underlie the formation of
complex biological structures.

Interactions between Tissue Polarity and Growth

PLoS Computational Biology | www.ploscompbiol.org 2 June 2011 | Volume 7 | Issue 6 | e1002071



the geometry of the tissue. To illustrate the combinatorial

interactions within a polarity-based axiality system we first model

simple anisotropic growth (Case A) and differential isotropic

growth (Case B) separately. We then combine them in different

ways (Cases C-I). We use an initially square canvas marked with

black discs (simulating cells that produce marked clones) and a grid

to show the geometrical transformations [33]. In all Cases the total

areal increase (accumulated growth) is the same. The state of the

canvas before and after growth is illustrated in Figure 1 for each

Case.

Case A: Uniform polarity field with spatially uniform anisotropic

specified growth rates. A gradient of POL is established during the

setup phase through two organisers, izorg ( zorganiser ) and i{org

({organiser ) at the bottom and top boundaries respectively. The

PRN involves izorg promoting production of POL while i{org

promotes degradation of POL, forming a proximodistal gradient of

POL (arrows). After the setup phase the POL gradient is frozen

(fixed to the canvas so that the gradient deforms with the canvas).

An identity factor i G is expressed uniformly throughout the canvas.

The KRN is kpar~iG,kper~0 (the value of kparzkper is indicated

by the intensity of orange). The resultant growth transforms the

square into a vertically stretched rectangle. The black discs become

vertically oriented ellipses. The specified growth pattern underlying

this transformation is straightforward to implement using the

polarity-based axiality system. By contrast, an stress-based axiality

system would require an additional step that generates vertically

oriented stresses and thus an additional deformation. Moreover, the

pattern of stresses would need to be maintained during growth

unless there was a mechanism for fixing the axiality.

Case B: Spatially varying isotropic specified growth rates.

Differential growth is achieved by promotion of specified growth

rates towards the right side of the square. This involves

establishing an identity factor i G during the setup phase that is

most strongly expressed along the right edge from where it declines

gradually. The KRN involves i G promoting the specified growth

rates equally in all directions (kpar~0:5 iG , kper~0:5 iG ). This leads

to a gradient of locally isotropic specified growth that increases

from left to right. The overall result is a curved fan. Curvature is

not directly specified but arises through differential growth and

mechanical constraints inherent in the canvas.

Case C: A combination of Cases A and B: uniform polarity field

with spatially varying anisotropic specified growth rates. The PRN

and KRN are the same as in Case A while the pattern of i G is the

same as in Case B. That is, specified growth rate is oriented

parallel to the POL gradient and increases towards the right. The

result is a convex fan with much stronger curvature than Case B.

Thus anisotropic specified growth, which on its own produces no

curvature (Case A), reinforces the curvature arising through

differential growth. In principle this reinforcement may arise from

two causes. 1) Because there is no kper, the gradient in kpar is

greater than in Case B. 2) Because polarity is local, the directions

of specified growth rotates with the canvas, enhancing curvature.

To separate the contributions of these two components, we fix the

direction of specified growth by using an external (global) frame of

reference, as shown in Case D.

Case D: A combination of Cases A and B but using an external

field to specify growth orientations. The gradient of POL is

determined by an external frame of reference (y axis) instead of

being embedded in the tissue. Biologically, external polarity

information could be obtained from, for example, the effect of

gravity. The result is a fan with reduced curvature compared to

Case C. Note that ellipse orientations still deviate from the vertical

because, even though growth is specified to be vertical, at each

step mechanical constraints force the canvas to curve. The

enhanced curvature of Case C over Case D reveals the

contribution of orientations being specified internally (2) rather

than externally (2). Another way of reducing curvature is by using

a local polarity field that re-adjusts dynamically as the structure

grows, as will be shown in Case E.

Case E: The same model as Case C but allowing POL to

continue diffusing rather than being frozen after the setup phase.

As with Case D, the resulting curvature is less than Case C,

particularly near the extremities. This is because growth

orientations turn less near the extreme positions of the canvas.

The previous Cases considered uniform polarity fields with

differential growth. This raises the question of how non-uniform

polarity fields may influence shape. We first consider these when

combined with uniform growth rates (Cases F and G, Figure 2)

and then with differential growth rates (Cases H and I, Figure 2).

Case F: Similar to Case A but setting a spatially varying polarity

field. A gradient of POL is established during the setup phase by

izorg, which is expressed along the horizontal midline, and i{org,

which is expressed in the top, bottom, and right edges, increasing

toward the right corners. The resulting POL gradient is shown by

the arrows. The polarity field is frozen (fixed to the canvas) after the

setup phase. The distribution of i G is spatially uniform as in Case A.

Growth at the top and bottom edges is oriented by the {organisers

producing a strongly concave right edge. Thus, curvature is

generated as a result of non-uniform specified orientations of

growth. The curvature is even stronger if the polarity field is not

frozen after the setup period, as shown in Case G.

Case G: Similar to Case F but allowing POL to continue

diffusing rather than being frozen after the setup phase. The result

is more concave than Case F. This is because of feedback between

canvas geometry and the polarity field. We now look at the effect

of introducing differential growth rates.

Case H: Similar to Case F but with a gradient of specified

growth rate. The PRN is the same as Case F leading to a polarity

field pointing to the right corners. The KRN and distribution of

i G are the same as Case C leading to increasing values of kpar

towards the right edge. The result is intermediate between Case C

and Case F because the diagonally specified growth orientations

counteract the curvature induced by differential growth. Thus,

unlike Case C where local specification of orientation reinforces

tissue curvature, here it antagonises curvature. This effect is still

stronger when the POL gradient is not frozen as shown in Case I.

Case I: Similar to Case H but allowing POL to continue

diffusing rather than being frozen after the setup phase. The right

edge grows to be almost vertical showing that an appropriate

specified local polarity can antagonise curvature arising from

differential growth (Case B).

The main conclusion to emerge from Cases A to I is that the

ability to combine specified growth rates with separately specified

orientations provides an effective control mechanism for generat-

ing shape transformations. The shapes that emerge reflect

interactions between specified orientations, differential growth

and mechanical constraints. Depending on the spatial distribution

of organisers and the dynamics of polarity propagation, tissue

polarity can reinforce or antagonise curvatures resulting from

differential growth or may generate curvature even in the context

of uniform growth. So far we have only considered combinatorial

interactions within the plane of the canvas. We next consider

deformations out of the plane.

Interaction between growth and polarity (3D)
We again consider a series of simplified cases (Figures 3 and 4)

in which polarity and differential growth are treated separately

(Cases J, K, O) and in combination (Cases L, M, N, P, Q). In each

Interactions between Tissue Polarity and Growth
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Figure 1. 2D growth patterns with uniform POL gradient. Column 1 shows the initial state drawn with randomly scattered circular marked
clones. Column 2 shows the initial state drawn with a regular grid and coloured to show areal specified growth rate (kparzkper , orange), POL gradient
direction (arrows), zorganiser (dark blue), and {organiser (cyan). Columns 3 and 4 show the state after growth for a certain period. In Cases A, C, the
POL gradient, once formed is no longer modified through propagation and deforms with the canvas. In Cases D, the POL gradient is held vertically by
an external system. In Case E the POL continues to diffuse so the gradient is continually updated as the shape changes during growth. Deformations
of the grid can be compared with the transformations of shape described in [33]. (Mesh of 3200 elements, growth magnitudes around 1 per unit
time, dt~0:1, runtime &5 min for each example. kpar has arbitrary units.).
doi:10.1371/journal.pcbi.1002071.g001

Interactions between Tissue Polarity and Growth
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Figure 2. 2D growth patterns with non-uniform POL gradient. Colours and symbols as for Figure 1.
doi:10.1371/journal.pcbi.1002071.g002

Interactions between Tissue Polarity and Growth
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Case the up-down symmetry is broken by the centre of the initial

canvas being slightly bowed upward. To simulate the presence of

tissue beyond the boundaries of the initial canvas, the edges of

tissue are prevented from moving or rotating out of the plane.

Case J: Spatially varying specified orientation with a uniform

areal growth rate. The PRN involves an organiser (izmidorg ),

expressed in the middle of the canvas (blue). An outer region is

defined by iouter which keeps POL levels at zero. This leads to a

divergent polarity field near the centre (arrows). POL continues

to diffuse after the setup phase (i.e. the gradient is not frozen). iG
is spatially uniform as in Case A. The KRN involves anisotropic

growth in the polarised region (kpar~iG and kper~0). By default,

growth is isotropic where the POL gradient is zero

(kpar~kper~0:5iG ). The result is a small spike. As with Case F

tissue curvature has arisen through variations in specified growth

direction even when areal growth rate is uniform. However, in

Case J the curvature occurs out of the plane as well as in the

plane.

Figure 3. Shapes growing in 3D from a square canvas. In all cases there is a background specified growth rate (light orange) and each column
shows the result of growing to a given multiple of the initial area. Symbols and colour coding as for Figure 1. (Mesh of 1800–2600 elements, growth
magnitudes around 1 per unit time, dt~0:1, runtime & 5 to 8 min for each example. kpar has arbitrary units.).
doi:10.1371/journal.pcbi.1002071.g003

Interactions between Tissue Polarity and Growth
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Case K: Spatially varying isotropic specified growth rates.

During the setup phase iG is established in the centre of the canvas

from where it declines in a graded fashion. As with Case B, the

KRN has iG setting the specified growth rates, kpar~0:5 iG,

kper~0:5 iG. This leads to a gradient of locally isotropic specified

growth rate that increases towards the centre. The result is a

puffball-like central bulge exhibiting curvature both in and out of

the plane of the canvas. The rounder shape compared to Case K

illustrates the limitations of isotropic specified growth in creating

elongated outgrowths. However, by combinging Cases J and K the

outgrowth can be further exaggerated as shown in Case L.

Case L: Spatially varying anisotropic specified growth rates

(combining Case J and K). The PRN and KRN are the same as

Case J leading to radially directed growth. The distribution of iG is

the same as Case K leading to increased anisotropic specified

growth towards the centre. The result is a tall central spike with a

sharp tip showing how differential growth and anisotropy act in

combination. In many biological structures, such as a growing

plant apex, protrusions have rounded tips rather than sharp

points. This can be achieved by reducing growth in the central

region, as shown in Case M.

Case M: Spatially varying anisotropic specified growth rates

with a central region of no growth. This is similar to Case L,

except that additional identity factor sets kpar and kper to zero

in a small central region. The final shape is a rounded

projection similar to what might be observed in a plant apex.

Such a model is also consistent with the observation that

growth rates tend to be lower in the central region of plant

apices [12].

We conclude that a range of outgrowths can be readily obtained

by combining specified growth rates and orientations. As for the

2D cases, deformations lead to changes in orientations of the

polarity field which feed back to influence further deformations. So

far we have considered the effects of uniform and divergent

polarity fields. A further elaboration is to combine these two as

illustrated in Figure 4.

Interaction of polarity fields (3D)
Case N: A uniform polarity field with spatially varying

anisotropic specified growth rates (combination of Cases A and

K). The PRN and KRN are the same as in Case A leading to a

left-right polarity field and anisotropic growth. The pattern of iG is

the same as in Case K leading to enhanced growth in the centre.

POL continues to diffuse after setup. The result is a thin bulge with

grooves at each end. As with Case C, the polarity field is acting as

a modulator rather than generator of curvature (no curvature is

produced by the polarity field when combined with uniform

anisotropic growth, Case A). We next look at the effect of

combining the polarity fields in Cases A and J.

Case O: Interacting polarity fields with spatially uniform anisotropic

specified growth rates (combination of Cases A and J). The PRN and

KRN are the same as Case A except that the additional organiser

from Case J is included. The new zorganiser distorts the polarity field

shown in Case N inducing a saddle point upstream. As result following

Figure 4. Shapes growing in 3D with superimposed gradients of POL. Symbols, colour coding, and execution parameters as for Figure 3.
doi:10.1371/journal.pcbi.1002071.g004

Interactions between Tissue Polarity and Growth
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growth, the canvas widens slightly in the centre and forms a central

ripple. Thus, as with Cases F and J, some curvature arises even with

uniform specified areal growth rates. Next we combine this polarity

field with centrally increased specified growth rates.

Case P: A combined polarity field with spatially varying

anisotropic specified growth rates (combination of Cases K and

O). The PRN and KRN are the same as Case O while the pattern

of i G is the same as Case K. The result is an asymmetric spur

reflecting the interactions between tissue polarity and growth. The

asymmetry arises because the POL gradient generated by the

central organiser flows in the same direction as the background

POL gradient on one side but in the opposite direction on the

other, creating a region of counterflow (arrowed). Disorganisation

of growth in the counterflow region reduces growth along the

main axis of the tissue. Asymmetry induced in this way is a feature

of simple polarity-based axiality systems that would not occur in

simple stress-based axiality systems. The orientation of the spur

can be reversed by using a {organiser instead of a zorganiser in

the centre as shown in Case Q.

Case Q: A combined polarity field with spatially varying

anisotropic specified growth rates. The PRN and KRN and the

pattern of iG are the same as Case P except that the central

zorganiser is replaced by a {organiser. This time the

asymmetric spur points in the opposite direction to Case P

because the counterflow region is on the other side.

We conclude that combining polarity fields provides a further

richness by generating asymmetries. The above Cases illustrate

some basic combinatorial interactions between polarity and

growth. To see how the same principles may apply to a biological

example, we consider a simplified model of the Snapdragon

corolla tube.

Simplified model of the Snapdragon tube
To simplify the Snapdragon tube we assume the initial canvas

comprises an initial cylindrical canvas closed at one end. As a first

step we study locally isotropic specified growth (Case R) and then

explore the effect of introducing specified anisotropic growth

(Cases S and T).

Case R: Spatially varying isotropic specified growth rates. An

early step in the development of the Snapdragon flower is arching

over of the tube through differential growth. We simplify this

process by restricting growth rates in opposite regions of the

cylinder and also at the base. This is achieved by having a general

background level of iG which is inhibited in the base by ilower and is

also inhibited by a diffusing signal slat which is generated along

opposite sides of the cylinder by ilat. In this Case, specified growth

is isotropic, kpar~kper~0:5iG .

The result is a ballooned out bowl (Figure 5B,C) rather than an

arched over tube. Some areas of the canvas near the base show

anisotropic resultant growth, evident from elongated ellipses. This

is shown more clearly Figure 5 C where the principal directions of

resultant growth (kmax) are shown with short lines and the rate of

anisotropic growth (kmax{kmin) is shown in magenta. As with

curvature, resultant anisotropy is not specified directly but arises

through the interaction between differential growth and mechan-

ical constraints. However, the pattern and extent of resultant

anisotropy is inconsistent with experimental observations of clones

in the Snapdragon tube, which are highly elongated along the

proximodistal axis [31]. To address this discrepency we introduce

specified anisotropic growth through a polarity field as shown in

Case S.

Case S: A uniform polarity field with spatially varying

anisotropic specified growth rates. A gradient of POL is

Figure 5. Case R: Spatially varying isotropic specified growth rates. (A) Initial shape with three regions, ilat and ilower. Orange colour denotes
the value of specified areal growth. The initially circular discs monitor local shape changes. (B) Shape after growing to 2.2x the area. (C) As (B) but
showing regions of resultant anisotropic growth (magenta) and its orientation (lines). (Mesh of 5600 elements, growth magnitudes around 0.018 per
unit time, dt~5, runtime &15 min for each example. kpar has arbitrary units. Vertices of the base are fixed in the Z-axis.) (A movie of this development
is in ‘Video S1’.).
doi:10.1371/journal.pcbi.1002071.g005

Interactions between Tissue Polarity and Growth
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established through two organisers, izorg and i -i{org at the base

and rim respectively (Figure 5A, arrows). The KRN is the same as

Case R except that the specified growth rate is now anisotropic,

kpar~0:75iG and kper~0:25iG . Compared to the output from

Case R, the sides of the cylinder curve towards each other rather

than ballooning outwards (Figure 6 B). Thus, introducing specified

anisotropy has a major effect, leading to a more closed shape. It

also generates much more elongated clones matching experimen-

tal observations. However, continuation of growth leads to the two

sides arching further (Figure 6 C) rather than creating the

elongated shape that is observed experimentally. (In our

implementation which does not currently include collision

detection the two sides grow through each other. For clarity we

therefore only show one side in Figure 6.) To address this

discrepancy, we exploit the potential to reorient growth within the

GPT-framework by modulating the polarity field as shown in Case

T.

Case T: Initially the same as Case S followed by reorientation of

tissue polarity. There are two phases of growth, early and late.

During the early phase the cylinder grows as in Case S. At the start

of the late phase, the polarity field is modulated by restricting the

spatial region of the {organiser. This is achieved by activating an

identity factor iR in the lateral regions of the cylinder which

inhibits i{org, restricting the distal organisers (cyan) to small

regions at the apex of each arch (Figure 6D,E). The reoriention of

polarity leads to vertical elongation of the arch rims, maintaining

the closed shape, rather than the sides continuing to arch over.

This captures an essential feature of Snapdragon corolla tube

growth.

Discussion

We model growth through the accumulation of a series of small

deformations of the tissue (canvas). Stresses are generated during

the process as the canvas is mechanically interconnected. This may

lead to anisotropic resultant growth even when growth is specified

to be isotropic (e.g. Case R). In principle, such resultant stresses

could be used, through stress-based axiality, to orient all forms of

anisotropic growth. However, this would mean that specified

orientations of growth would be dependent on differential rates of

growth, precluding the possibility of independent control. By

contrast, we show how a polarity-based axiality system allows

diverse forms to be generated through combinatorial interactions

between specified orientations and rates of growth.

In this system, a key element in controlling growth orientations

is the distribution of polarity organisers. These are of two types, z

or {, allowing polarity fields to be anchored at both ends. Even

when specified anisotropic growth is uniform over the canvas, a

range of forms can be generated by varying the pattern of

organisers. For example, starting from an initial square canvas it is

possible to generate rectangles (Case A), concavities (Case F), small

spikes (Case J) and ripples (Case O). In these Cases polarity was

fixed after a setup period. Biologically, this would correspond to an

initial period when polarity propagates across the tissue (when the

tissue is small), followed by polarised cells maintaining their

polarity and passing it on to their daughters. Another possibility is

that polarity continues to propagate during growth leading to

slight modifications of the resulting shape (compare Cases F and

G).

The range of shapes may be greatly extended by combining

polarity fields with differential growth rates. For example, tissue

polarity may reinforce or antagonise curvature arising through

differential growth (Cases C and I). Both aspects are incorporated

into the growing Snapdragon tube - reinforcement of curvature

during the early phase leading to arching over (Case S), followed

by antagonism of curvature leading to straightening (Cases T). It is

also straightforward to generate extended outgrowths and apices

by combining a single organiser with enhanced growth (Cases L

and M). A further feature of polarity-based axiality systems is the

emergence of asymmetries through interactions between polarity

fields. For example, asymmetric spurs may arise because of

counterflowing polarity on one side (Cases P and Q). The

asymmetry of the outgrowths in these Cases results from the

underlying polarity interactions and would not have arisen from a

simple system with only stress-based axiality.

In these examples only a few organisers are needed to achieve

major shape transformations. To test whether the same

simplicity might underly more complex biological transforma-

tions, we modelled growth of the Snapdragon flower [31]. This

model is constrained by a range of experimental data. The

expression pattern of the genes DIV, CYC, DICH and RAD are

set according to experimental observations. The model has to

not only account for the wild-type phenotype but also double

(cyc, dich) and triple (cyc, dich, div) mutants. The model is also

constrained by the observed changes in 3D shape determined by

optical projection tomography at several developmental stages.

In addition the pattern of growth rates and directions over each

model petal need to be similar to those observed by clonal

analysis. The model starts with an initial cylindrical canvas with

five lobes and a proximodistal pattern of polarities established

through two polarity organisers (i proxorg and i distorg ) (Figure 7

A). During the early phase of growth the ventral region of the

tube arches over through differential anisotropic growth. To

account for the observed pattern of clones a third organiser

(i cenorg) is introduced (Figure 7 C). In the absence of this

organiser the tube bulges out (Figure 7 F) similar to what

happens in the simplified corolla with no reorientation of

growth (Case S). However, with the introduction of the

organiser the tube automatically straightens out during later

stages, consistent with experimental observations. Thus, this

biologically relevant case provides evidence for three organisers

underlying major shape transformations and growth dynamics.

In the Snapdragon model, the reorientation of growth is under

the control of DIV, a gene that encodes a Myb-like transcription

factor that affects flower shape and symmetry [31]. As well as its

effect on organiser activity, DIV also influences growth rates.

Thus, although rates and orientations of growth are specified

separately in the model they can be regulated by a common

gene.

The polarity-based axiality system has the flexibility to account

for global shape changes, observed growth patterns and clones

without invoking large numbers of polarity organisers. This alone

does not demonstrate the validity of invoking tissue polarity for the

control of growth orientations. Nevertheless, tissue polarity is

commonly observed in animals, for example, polarised cell

movements [27] and in plants where the polar distribution of

molecules within cells, such as PIN auxin transporters, suggests

that cell polarity is also common [23,24]. It has also been proposed

that an auxin concentration maximum at a vascular boundary in

the root tip establishes a distal polarity organiser in the root [20].

The GPT-framework allows hypotheses on polarity-based axiality

growth to be established that can be subjected to further tests such

as mechanical or genetic perturbations. The Snapdragon model,

for example, was evaluated against predictions of shapes of

multiple mutants not used to build the model [31,32]. The results

showed a good, quantitative, fit between predicted and observed

shapes. The model also makes important predictions about the

location of polarity organisers. Polarity markers are predicted to
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show reversals (i.e. arrows pointing away or towards each other) at

these locations.

In all our Cases we make the simplifying assumption that the

tissue is linear over small deformations and has isotropic material

properties. An elaboration of the GPT-framework would be to

incorporate non-uniform properties, although this would also

require these properties to be measured across the tissue during

growth. The GPT-framework is consistent with current hypotheses

regarding the mechanisms in which plant tissue grows under

turgor pressure through the loosening and formation of bonds

(Theorems 1 and 2, Methods). Loosening bonds in the cell wall

allows the tissue to grow. If new material is inserted that restores

the properties of the cell wall then the residual strain returns to

zero (‘snip and fill’ [31]). Biologically this would require some form

of feedback between resultant stresses (or strains) and cellular

properties [34]. Feedback from stresses to microtubule patterns

has been proposed [19], and this can be interpreted as reflecting

the need to dissipate residual stresses rather than being the

primary way of orienting specified growth. Cutting provides a

convenient experimental way to evaluate the extent to which

residual stresses accumulate or dissipate in a given biological

system. Often they accumulate in certain regions in later

developmental stages. For example, the dorsal and ventral petals

of the adult Snapdragon flower press against each other holding

the flower shut (not a part of the model in Green et al [31]). The

observation that the accumulation of residuals varies systematically

from region to region suggests that the process of dissipating or

accumulating residuals is under genetic control. Stresses that are

accumulated can be modelled with the GPT-framework and, to

enable direct comparison with experimental results, the resulting

shapes can be cut allowing the structure to spring into a new

shape.

The GPT-framework assumes that regions (e.g. cells) in a tissue

do not slide or move past each other. This is valid for plants [35],

Figure 6. Cases S and T: An initially uniform polarity field with spatially varying anisotropic specified growth rates. (A) Initial shape
with arrows showing proximodistal gradient of POL organised by the green and cyan regions (bottom and top) jonly half of the tube is shown colour-
coded. Orange colour denotes the value of kparzkper. (B) Case S. At 2.2x areal growth the sides are arching over. Blue ellipses (induced as circles in
initial state) show regions of local anisotropic growth. (C) Arching continues and at 5x areal growth the two sides overlap (there is no collision
detection in our current software). (D) Case T. At 2.2x areal growth the distal organiser (cyan) is spatially redistributed to create two small patches
causing the orientation of growth to change (arrows) and growth continues upwards (E). (Mesh of 5600 elements, growth magnitudes around 0.018
per unit time, dt~5, runtime &15 min for each example. kpar has arbitrary units. Vertices of the base are fixed in the Z-axis.) (Movies of these
developments, C and D, are in ‘Video S2’ and ‘Video S3’.).
doi:10.1371/journal.pcbi.1002071.g006
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making them particularly appropriate for this approach. The

GPT-framework may also be applicable to some aspects of animal

development. For example, finite element models have been used

to capture deformations during Drosophila ventral furrow formation

driven by apical constriction and apicobasal elongation of cells [8].

Comparable deformations can also be generated using GPT-

framework by using a posterior-anterior polarity field [36] and

incorporating negative growth (contraction) on one side of the

canvas (Figure 8). Although this model does not incorporate all

biologically relevant features such as constraints of the external

vitelline membrane, it illustrates the flexibility of the approach.

Clones generated in early wing development of Drosophila often

stay as contiguous patches, indicating that connectivity is broadly

maintained and extensive mixing of cells does not occur [37].

Greater cell mixing is observed for clones in developing

mammalian tissues such as the heart or limb, although even in

these cases cell movements are not sufficient to disrupt formation

of clonal clusters or patches[38]. At the tissue scale it may

therefore be reasonable to model many animal structures with the

framework described here, particularly as orientated cell behav-

iours are thought to play a critical role [39,40].

As well as multicellular tissues the canvas could represent a

region of a plant or bacterial cell wall. By extension of the GPT-

framework it may also be possible to capture the growth of

compartments enclosed by a canvas (e.g. cells with their walls) or

growth of a bulk solid. Thus, the GPT-framework provides a

general approach that can be applied to growing tissues at many

scales.

The GPT-framework with its assumption of tissue polarity as a

key component of growth specification provides an economical

way of generating diverse shapes and forms. We hypothesise that

this combinatorial richness is not only computationally attractive

but has also been exploited during evolution to generate a range of

observed biological shapes.

Materials and Methods

Various mathematical and computational methods [21] have

been used to model tissue growth. These range in scale from

detailed modelling of individual sections of cell wall to larger scale

models treating the tissue as a continuous substance. The physical

properties have been studied in terms of mass-spring models,

elasticity theory of thin shells, and elasticity theory for solid

volumes. Elasticity theory described here subsumes both classical

linear elasticity theory and elastoplastic or viscoplastic theory for

modelling solid flow.

In mass-spring models tissue is represented as a set of point

masses linked by springs. De Boer [41] combines mass-spring

modelling with the L-system formalism of [42] to describe a two-

dimensional model of cellular growth. In these models, and in

those of [13,43,44], the springs correspond to sections of cell wall,

and the masses are where three or more springs meet. Growth is

Figure 7. Patterns of growth in the Snapdragon model [31]. (A) Initial canvas showing organisers of polarity, iproxorg and idistorg (green and cyan
respectively) and cylindrical shape. Orange indicates growth rate parallel to the POL gradient. (B) By the end of the early growth phase, extra ventral
growth (dark orange) creates an arch (as in Figure 6). (C) At the beginning of the late phase icenorg is formed and anisotropic growth has reoriented
along the new axis (arrows show polariser gradient that now points towards icenorg , cyan). (D) Adult shape in which the ventral arch has grown
upwards (see Section in Fig.1C). (E) Vertical section through adult shape. (F) Similar view of the same model except that anisotropic growth is not
reoriented. (Mesh of 3000 elements, growth magnitudes around 0.003 per unit time, dt~2:5 hours, runtime &60 min for each example. kpar has
arbitrary units.) (Movies of these developments, B, C, E, F, are in ‘Video S4’, ‘Video S5’, ‘Video S6’, ‘Video S7’.).
doi:10.1371/journal.pcbi.1002071.g007
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modelled by changing the resting length of the springs. The new

equilibrium configuration is then computed by iteratively finding a

state of minimum energy. There are empirically-based rules for

deciding when cells should divide. These models are mainly

limited to two-dimensional problems, although they have also

been used to model model axisymmetric three-dimensional solid

problems such as root tip growth. A problem with mass-spring

modelling of continuous tissue (i.e. above the cellular scale) is that

it is not trivial to design the model so that on a large scale, realistic

elastic properties emerge. For example, a regular grid of springs is

not geometrically isotropic.

For tissues which take the form of curved surfaces, thin in

comparison with their extent, one can use thin shell theory (c.f.

sheets of cells [45]). This is the branch of elasticity theory dealing

with the mechanics of curved surfaces [46–48]. It is the limit of

three-dimensional bulk elasticity theory as the thickness of the

sheet tends to zero while retaining its bending stiffness properties.

For surfaces which are extremely thin in comparison to their area,

this has advantages for numerical computation over describing

them by the methods of solid volume elasticity theory. The rippled

edges of leaves have been modelled by this method as the

mechanical consequence of faster growth at the edges [49,50]. (Cf.

Text S1, Case 14 and Video S8 [7,51,52].)

A third approach is to model biological structures as three-

dimensional solid objects [19,53]. This can be appropriate when

tissue thickness is sufficiently large to make the thin shell

approximation unnecessary. The method is analysed theoreti-

cally by Goriely and Ben Amar [54], who consider the general

problem of describing the growth of elastic substances resulting

from local growth fields and, by alternating a phase of growth

without movement (that is, insertion of new material) over a

small time interval and then allowing elastic relaxation, they

show how growth over an extended period of time can be

modelled. The net result is a visco-plastic deformation. It is this

approach that is taken in the GPT-framework, and it has been

extended to model both the extent and orientation of

anisotropic growth.

Calculating growth
The following theory covers the local specification of growth,

how to compute the resulting growth given the mechanical

properties of the canvas, how to handle residual growth, and how

modelling using the GPT-framework relates to modelling growth

in terms of turgor pressure and modifications to the mechanical

properties of the cell walls.

We distinguish two types of growth, specified and resultant.

Resultant growth is the growth that can be directly observed by

tracking or clonal analysis. Specified growth is the growth that

would happen to an element of the canvas if it grew in isolation.

Resultant growth emerges as result of specified growth in

different regions interacting through connected tissue. This is

illustrated in Figure 9. Panel (A) shows the initial state of a

square tissue, divided into a number of small tiles. If we apply a

radially increasing field of locally isotropic growth, then in (B)

we have an exploded view of how this would affect each tile

individually, if it were not attached to its neighbours. It is clear

that without some further deformation, these tiles cannot fit

together into a continuous tissue without gaps. This conflict

between the specified growth field and the continuity of the

tissue leads to an equilibrium compromise between the two

Figure 8. Invagination in the developing Drosophila embryo. (A) Initial pattern of iventral and itwist on a shape that is polarised from posterior to
anterior (arrows). (B) Side view of the developing embryo. The patterns become occluded as the furrow develops. (C) Transverse section of embryo
showing colours representing relative specified growth rates perpendicular to the polariser gradient on the internal and external faces. The furrow is
produced by a shrinkage on the outside coupled with an expansion on the inside and a net shrinkage in the ventral region (specified by knor). Cyan
shows negative specified growth on the outside and dark red shows positive growth on the inside. The images are all to the same scale.
doi:10.1371/journal.pcbi.1002071.g008
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shown at (C). It is mathematically determined by the partial

differential equations of elasticity theory, and numerically

computed by the finite element method, both of which we shall

briefly summarise.

Describing resultant growth
Suppose that at a given time, each point at position x in a tissue is

moving with an instantaneous velocity v(x). The resultant growth

rate g in the neighbourhood of x is the gradient of the velocity field

v(x) with respect to x. This is the second rank tensor field (a two-

dimensional matrix at each point of the tissue) g~+v whose

components are gij(x)~
Lvi

Lxj

, where i and j range from 1 to 3. This

velocity gradient tensor represents both the change of shape and size and

the rigid rotational motion of the material in the neighbourhood of

the point x. These are respectively its symmetric and skew-symmetric

parts: g~ezv, where eij~(gijzgji)=2 and vij~(gij{gji)=2. e is

called the resultant strain rate tensor field, and v the resultant vorticity. The

vorticity field describes the angular velocity at each point. When the

vorticity component of a tensor field is zero, the field is called

irrotational. To avoid subscripts we abbreviate the definition of e to

e~Sv, where S is the differential operator defined by (Sv)ij

~(
Lvi

Lxj

z
Lvj

Lxi

)=2. The rate of resultant growth of the material in any

particular direction v is the sum
X

ij
vieijvj .

Because the resultant strain rate tensor e(x) at a point x is

symmetric, it can be diagonalised by suitably rotating the local

frame of reference. The resulting three diagonal components are

the principal rates of resultant growth, in three perpendicular

directions. These are the eigenvalues of e(x), and the principal

growth directions are parallel to its eigenvectors. The growth

directions and rates will in general vary over the tissue.

Calculating resultant growth from specified growth
To explain how resultant growth may be calculated from

specified growth, it is convenient to think in terms of small

displacements rather than velocities, by considering the effect over

a small time dt. This is also how the computational implemen-

tation (to be discussed below) works, iterating through time in

small steps dt. ‘‘Small’’ here means small enough that first-order

approximations apply. In time dt a velocity field v produces a small

displacement field u~vdt, and a growth rate or strain rate tensor

field produces an amount of growth or strain, which we shall

denote by the same symbols as before.

At each point x in the growing canvas, let s(x) be a specified

strain tensor at that point, being the product of a strain rate tensor

by a small time dt. This is the growth that would occur in a small

region around x in time dt if it were mechanically isolated from

the rest of the tissue. Let u(x) be the displacement field that will

result from this pattern of growth if the tissue remains in

mechanical equilibrium, and g(x)~+u(x) the associated growth

tensor field. Except in some special cases, such as uniform isotropic

growth, g will differ from s. Even if the rotational component of g
is ignored, its strain component e~S(u) will still in general differ

from s: there may be no displacement field u of which s is the

strain field. This is due to the constraint of physical continuity that

we mentioned above. (For clarity, the amount of growth shown in

Figure 9 has been made far greater than we would normally

compute in a single time step.)

Physical continuity is expressed mathematically by the St.

Venant compatibility constraints [55]. If e is a strain field of the

form S(u), then it necessarily satisfies the following partial

differential equation:

For all i, j, k, l : 1 . . . 3 :

L2eij

LxkLxm

z
L2ekm

LxiLxj

{
L2eik

LxjLxm

{
L2ejm

LxiLxk

~ 0

This can be verified by substituting S(u) for e and (somewhat

laboriously) finding that all of the terms in the resulting sum of

third derivatives of components of u cancel out. It is a deeper result

Figure 9. Specified and residual strain. (A) The initial state. (B) Exploded view of the specified growth of each tile, with the original sizes
superimposed in grey. (C) The minimum-energy shape that results from the constraint of continuity.
doi:10.1371/journal.pcbi.1002071.g009
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that the St. Venant conditions are sufficient for such a velocity field

u to exist.

If, on replacing e by s in the above equation, it fails to hold, then

whatever deformation u is applied, the material must remain in a

state of frustration. There will be unrelieved residual strain given

by r~e{s~Su{s. When the material is in mechanical

equilibrium, the displacement field u will be such as to minimise

the energy contained in that residual strain. To calculate u, we use

the principle of virtual work: if the material is in equilibrium, and

any additional infinitesimal displacement du is applied, then it will

do zero work against the stresses in the material ([56], ch. 2).

These stresses are given by a tensor field s calculated from the

strain and the elasticity properties by the constitutive equation of

the material:

sij~
X

kl

Dijkl rkl ð1Þ

The subscripts all range over the spatial dimensions 1–3. D is the

elasticity tensor or stiffness tensor, a 4th rank tensor field representing

the elasticity properties of the substance [57]. The work done by

any small strain e’ against any stress s is
P

ij e’ijsij , and the total

work done for strain and stress fields is found by integrating this

over the whole tissue.

This is the linear elastic constitutive model, which we are

assuming to be valid for small strains. For some biological tissues

this assumption may not be accurate, for example as noted in [58]

for the mouse ventricle, which also notes that determining a more

accurate constitutive model is experimentally challenging.

To avoid writing explicit summations, we shall adopt the

notations that if a and b are second rank tensors and C and D are

fourth rank tensors, then:

ab~Sijaijbij

(aC)kl~SijaijCijkl

(Cb)ij~SklCijklbkl

(CD)ijkl~SmnCijmnDmnkl

The work done by the strain Sdu against the residual stress is

then:

W (du)~

ð
(Sdu)D (Su{s) ð2Þ

where the integration is over the whole volume. For u to be the

equilibrium deformation we must have:

For all d u : W (du)~0 ð3Þ

Except for degenerate situations (such as the initiation of buckling

[59]), this determines u up to a rigid translation or rotation of the

whole object.

We have omitted from equation 3 the possibility of external forces

acting on the substance, since there are no such forces present in the

applications used in this paper and the Snapdragon model [31].

Boundary conditions can also be applied which stipulate that some

parts of the substance remain stationary. We describe how these are

handled when we discuss numerical methods.

Both the specified growth field s and the resultant strain field

e~Su are by definition irrotational. However, the resultant

growth field g~+u in general does include rotations. Leaving

aside rigid rotations of the whole tissue, the relative rotations

between different parts of the tissue are entirely determined by the

irrotational tensor s. That is, relative rotations are caused solely by

differential local growth and the continuity constraints, not by any

explicit specification: rotations are always resultant, never

specified.

Since W (u)~W (vdt)~W (dv)dt, the whole analysis carries

back to the description in terms of velocities, strain rates, and

growth rates.

In plants, specified growth rates are always positive, but in

animal tissue this is not always so. Both positive and negative

growth rates in any direction can be handled computationally

without difficulty. Figure 1 shows a simple model in which the

shape changes with negligible change of volume.

The residual strain is given by the tensor r~Su{s, which is the

symmetric part of the residual growth tensor g resid~+u{s. Most

of the examples in this paper discard the residual strain after each

time-step of the simulation. In biological terms this is consistent

with the observations of [19] that imply a feedback mechanism

that acts to absorb stresses. To illustrate the effect of discarding or

retaining residual strains we consider several cases in which we cut

the canvas after growth or constrain the canvas during growth and

then release the constraint. We contrast the effect of discarding

residual strains (Cases U and V) with accumulating strains (Cases

W and X). These are illustrated in Figure 10.

Case U: Dissipation of residual strain with a non-uniform

pattern of growth followed by cutting. This is identical to Case C

in which residual strain is dissipated at each step. As expected,

cutting the canvas induces no further changes of shape as there is

no accumulated residual strain. We next show the result of

constraining the canvas so that it cannot grow followed by

releasing the constraint.

Case V: Dissipation of residual strain with a non-uniform

pattern of growth that is constrained, followed by release. The

model is the same as Case C except that all the boundary points

are fixed during growth (column 2). When these constraints are

released the shape does not change (column 3) as there is no

accumulated residual strain. We next consider the effect of

accumulating the residual strain.

Case W: Accumulating residual strain with non-uniform pattern

of growth followed by cutting. The model is the same as Case C

except that residual strain is accumulated at each step. The result

is very similar to Case C but there is a small accumulated residual

strain (column 2, blue). Cutting and allowing the canvas to relax

releases some of this accumulated strain leading to a curve along

the line of the cut compared to the straight line in Case U.

Case X: Accumulating residual strain with non-uniform pattern

of growth that is constrained, followed by release. The model is the

same as Case V except that strain is accumulated during growth

(blue shows accumulated strain). Releasing the constraints allows a

shape to emerge similar to Case W uncut.

We may also illustrate the effect of retaining residual strain with

a 3D example. For this we use the simplified Snapdragon tube

(Case T), but allow residual strain to accumulate on one side. This

is illustrated in Figure 11.

Case Y: This is the same as Case T, except that residual strain is

retained on the right side. Figure 11 B shows how the resultant

shape of the right side differs from the left. The residual strain is

shown in blue (Figure 11 D). A further difference between the two

sides is revealed by making vertical cuts and allowing the

mechanical system to relax to a new geometry (Figure 11 C,E).
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As expected, cutting makes little difference to the left side as there

is little residual strain. However, the right side springs apart

revealing some of the stored residual strain.

In the above examples the release of residual strain by cutting

involves large displacements and rotations of the material.

However, our computational methods are based on the linear

elasticity theory of small displacements, and never directly solve

large-displacement problems. The deformation resulting from the

release of residual strain is, therefore, computed incrementally, by

iteratively applying a small fraction of the residual strain,

computing the resulting small deformation, transforming the

remainder of the residual strain according to the new orientations

of every part of the tissue, and repeating until an equilibrium is

reached.

The stiffness tensor D is a fourth-rank tensor, which in three-

dimensional space has 34~81 components at each point.

However, it satisfies certain symmetry properties which imply

that it has at most 21 independent components. For isotropic

Figure 10. Comparing dissipating residual strains, Cases U and V with accumulating residual strains Cases W and X. The residual
strain after growth is revealed in three ways: by colour (the residual strain is shown in blue); by cutting and re-equilibrating the canvas (Cases U and
W); and by releasing constraints (Cases V and X). In Case U growth produces an arc but there is no accumulated strain - no colour - and there is no
further change in shape on cutting. Likewise Case V. However, in Case W the shape changes on cutting and in Case X the shape change on releasing
constraints. Both these changes reveal the accumulated strains.
doi:10.1371/journal.pcbi.1002071.g010
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materials, further symmetries imply that D is determined by just

two values: the bulk modulus m and Poisson’s ratio n. m is the ratio

of applied pressure to relative change in volume. We will see later

(see TextS1, Equation (S1) et seq.) that its value is irrelevant for the

calculations we require: it cancels out of the equations. When a

block of material is compressed by external forces in one direction,

Poisson’s ratio n is the ratio of its transverse expansion to its

longitudinal compression. In practice n lies between 0 and 0.5. As

the value approaches 0.5, while the bulk modulus is held constant,

the resistance to unidirectional stretching and compression

decreases towards zero. If the limit is instead approached by

keeping the shear modulus constant, then the bulk modulus tends

to infinity. In the former case, the material’s resistance to shears

vanishes and it approaches the state of a liquid, while in the latter

it approaches an incompressible solid with a finite elastic resistance

to everywhere volume-preserving deformations.

However, since there are no applied forces (such as gravity) in

our models, but only growth described as a change in the resting

shape of the material, the difference is more apparent than real.

The elasticity tensor DG,n computed from G (the shear modulus)

and n (Poisson’s ratio) is equal to the tensor DK ,n computed from K

and n multiplied by
2G(1zn)

3K(1{2n)
. As mentioned above, any such

factor in the elasticity tensor cancels out (Text S1, Equation (S1)),

because all of the forces that we consider result from the material

acting against itself. Both methods of computing the elasticity

tensor for any value of n less than 0.5 give identical solutions to the

equation, solutions which are independent of G or K . At exactly 0.5

the equations become highly degenerate, and a different analysis is

required to calculate the physical behaviour in the limit. Any value

above 0.5 is physically impossible for isotropic substances, as it would

imply that the volume increased under compression, violating

conservation of energy. Few experimental determinations of Poisson’s

ratio for living plant tissues have been made. They range from 0.18 to

0.4 for onion epidermis [60-62]. We find that the growth behaviour of

a model is insensitive to the precise value of n (also see Case 6 in Text

S1), and have generally set it equal to 0.3 in our simulations. In our

current models, for simplicity we have taken the elasticity properties

to be uniform throughout the tissue and over the time of its

development. However, elasticity that varies over the tissue and over

time can also be described using the GPT-framework.

The analysis so far has assumed that the deformations to be

computed are always small. Growth by large amounts can be

computed iteratively, by growing in a series of small time steps, in

each of which the growth causes only a small deformation. The

result is to produce a plastic flow of the material over large time

intervals, computed by the theory of small deformations of purely

elastic material.

Relationship between GPT-framework and plant growth
Plant growth is thought to occur from a transient reduction in

the stiffness of cell walls allowing them to stretch under turgor

pressure, new material being added to restore the stiffness

[16,17,29,63–67]. When the process is anisotropic, it may be

Figure 11. Relieving accumulated strain by cutting. (A, B) Shape grown similarly to Figure 6 E. The specified growth rate is shown in orange. (D)
As for (B) but showing the accumulated residual-strain (blue). Strain is not retained on the left side and is fully retained on the right side (strain
retention is controlled through the action of iretention which is only active on the right side). (C, E) The result of turning off growth, making 8 vertical
cuts in the mature shape and allowing the shape to re-stabilise.
doi:10.1371/journal.pcbi.1002071.g011
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because the cell wall fibres typically have coherent directionality,

or because the weakening is distributed non-uniformly over the

walls of a cell. Most studies have simplified the process by

assuming that it is equivalent to increasing the amount of material

in a region and then relaxing the shape. This is also the approach

used in the GPT-framework : the specified-strain model. The

simplification avoids the need to measure relative stiffness and

consider turgor pressure. We show below how this approach is

related to turgor-based systems.

Suppose the tissue has stiffness tensor field D, and turgor

pressure field T. As a result, it must be in some state of strain s0.

The resulting stress in the tissue is Ds0{T. The condition for the

tissue to be in equilibrium is that for any small displacement du,Ð
(Sdu)(Ds0{T)~0. Now suppose we change the rest state. For

any small piece of the tissue, its rest state is the shape it would be in

if the turgor were removed (and the mechanical linkage to the rest

of the tissue ignored). s0 is the transformation from that state to the

state that it takes up under turgor. Changing the rest state means

applying a strain {s. (The minus sign is due to the fact that we

want positive values of s to model an increase in the resting size,

but the effect of increasing the resting size is to put the tissue into a

state of compression, which is described by negative values of

strain.) When turgor is reapplied, the resulting strain is s0{s. (To

validly add strains like this, we are assuming that all of the strains

are small.) The applied strain s will produce some equilibrium

displacement field u. The condition for the new equilibrium isÐ
(Sdu)(Ds0{TzD(Su{s))~0. We can subtract from this the

original equilibrium condition, leaving
Ð

(Sdu)D(Su{s)~0, our

original equations (2) and (3). This means that the effect of a

specified strain field s is independent of the turgor, and we can

ignore the turgor in our calculations.

The following two theorems explore the relationship between

the method of specifying the strain and the method of modulating

the stiffness tensor.

Theorem 1 Let a tissue have a stiffness tensor field D1, a turgor

pressure field T and a strain field s1, such that the tissue is in mechanical

equilibrium. Suppose that the stiffness field is then changed to D1zdD, where

dD is small compared with D1.

Let a second tissue of identical geometry have a stiffness tensor field D2 and

be in equilibrium under a strain field s2.

Then there is a specified strain tensor field s such that the deformation of the

second tissue resulting from applying s is the same as the deformation of the first

tissue resulting from the change in stiffness dD.

The strain field s1 can be split into two parts: the strain due to

turgor, which is C1T (where C1 is the compliance tensor, i.e. the

inverse of D1), and a residual strain s1{C1T. The residual stress field

in the first tissue is the residual strain multiplied by D1, which is

r1~D1s1{T. For the tissue to be in equilibrium in this state, the

work done by any infinitesimal displacement field du against the

residual stress must be zero. This work is
Ð

(Sdu)r1 where the

integration is over the whole tissue. Recall that S is the differential

operator that computes the strain tensor field of a displacement field.

If the stiffness is changed to D1zdD, a new equilibrium

configuration will be established by a displacement field u1. The

residual stress field is then r’1~(D1zdD)(s1zSu1){T, and in

equilibrium we have
Ð

(Sdu)r’1~0 for all du. Subtracting the

previous virtual work equation gives
Ð

(Sdu)(r’1{r1)~0. r’1{r1

is equal to D1Su1zdDs1zdDSu1. If we assume that dD is small

in comparison with D1 and Su1 is small in comparison with s1,

then the last term can be omitted as being of second order, leaving

an effective residual strain of D1Su1zdDs1.

In the second tissue, the residual stress is initially r2~D2s2, and

equilibrium implies that
Ð

(Sdu)r2 is zero for all virtual

displacement fields du. When the strain s is applied, it will

produce a displacement field u2, and a residual stress

r’2~D2(Su2{szs2). As for the first tissue, to determine the

equilibrium value of u2 we need only consider the effective residual

stress r’2{r2~D2(Su2{s).
To prove the theorem it is sufficient to find a value for s such

that when u2 is taken equal to u1, the residual strains r’1{r1 and

r’2{r2 are identical at every point. Thus we require s to satisfy:

D2(Su1{s)~D1Su1zdDs1

Since D2 is invertible, its inverse being a compliance tensor C2, we

can immediately calculate s~(I{C2D1)Su1{C2 dDs1, where I is

the identity matrix. This proves the Theorem.

If the first tissue of this theorem is a biologically accurate

description of an increment of growth in terms of the tissue’s

background stiffness D1, turgor T, and change in stiffness dD, then

the theorem tells us that we can find another description in terms

of a specified strain s which gives the same deformation.

Furthermore, we have a free choice of the background stiffness

D2. In particular, we can choose D2 to be uniform and isotropic,

and constant over time. However, the relationship between s and

dD is somewhat complex. When using specified strain to model

the result of growth by stiffness modulation, we would like to

obtain a closer connection between s and dD, which we now

proceed to do.

Firstly, if we take D2~D1, then the expression for s simplifies to

s~{C1 dDs1, and we need no longer calculate u1.

Now suppose that dD is orthotropic. That is, at each point there

are three orthogonal axes such that the change in stiffness is

symmetric under a half-turn about each of them. These are called

the principal axes of dD. Under certain extra conditions, we find

that the principal axes of s coincide with those of dD. Thus the

same distribution of polarisation can be used for either description

of growth.

Theorem 2 Under the conditions of Theorem 1, suppose that the

following conditions hold:

1. T, D1, and s1 are everywhere isotropic.

2. dD is orthotropic.

Then by taking D2~D1, the principal axes of the specified strain s given

by Theorem 1 coincide with those of dD.

We have seen already that if D2~D1, then s~{C1 dDs1. C1

and s1 are isotropic by the first condition. By the second condition,

dDs1 is the stress associated with the isotropic strain s1 given the

change in orthotropic material properties dD. Such a stress has the

same principal axes as dD. Multiplying by the isotropic

compliance {C1 leaves the axes unchanged.

Implementation
Numerical methods. We solve the elasticity problem by the

finite element method applied to the equations of linear elasticity

[55,56]. The first step is to represent the initial shape of the

continuous tissue by a large number of small pieces with simple

shapes. These are the ‘‘finite elements’’ for which the method is

named. For the particular tissues we examine in this paper, which

are of finite but small thickness, we divide the material into a mesh

of pentahedra. These resemble triangular prisms, except that they

need not be regular and their quadrangular faces need not even be

flat. Their opposite triangular faces lie on the two sides of the

canvas, and divide them into isomorphic triangular meshes. An

example of a discretised canvas is shown in Figure 12.

For accuracy and stability of the computations, no finite element

should be excessively longer in any direction than it is in any other:

a ratio of up to 10 is practical. In particular, its diameter along the
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surface should not be excessively greater than the thickness of the

surface. For extremely thin surfaces, this would necessitate

excessively large numbers of finite elements, and for such surfaces,

the methods of thin shells are to be preferred, which model the

surface as being a substance of zero thickness with intrinsic

bending stiffness properties. However, for the tissues we are

concerned with, the thickness is large enough for three-

dimensional elements to be practical, while also small enough

that a single layer of them suffices.

All continuous properties of the tissue–morphogen concentra-

tions, growth tensors, displacements, and the position of the tissue

itself–are represented by the values they take at the vertices of the

finite element mesh, and are interpolated over the interior of each

element. We adopt the notation that for any property p defined at

every point of the continuous tissue, the vector consisting of all the

values it takes at the vertices (in some arbitrary but fixed order) is

denoted by ~p. Provided that p does not vary very much over a

single finite element, the interpolation of ~p will be a good

approximation to the original field p.

In a small time step dt, the growth rate field gives a field of

specified growth, which determines a deformation field by

Equation (3). If in this equation we replace the unknown

deformation field u and the known specified growth tensor field

s by their interpolated approximations and perform the integration

numerically, we obtain a set of linear simultaneous equations in

the unknown vertex displacements. We defer details to Text S1.

The equations have the following general form.

K~u~f ð4Þ

Here ~u is the concatenation of all of the unknown vertex

displacement vectors. K is a square matrix computed from the

geometry and elasticity properties of the object, and f is computed

from these properties together with the specified growth field.

Since we are assuming linear elasticity, the time step, and hence

the specified growth, should be chosen small enough for the linear

approximation to be accurate. A rule of thumb is to take the time

step to be small enough that the amount of specified growth in that

time interval is nowhere greater than 10%, and the resultant

rotations are nowhere more than 10 degrees. A validity check can

be made by re-running a simulation with smaller time steps and

confirming that the same results are obtained.

The residual growth field g resid~+u{s can be numerically

obtained from~u by interpolating the displacements over the finite

elements and differentiating to obtain an approximation to +u.

The residual strain field and the rotation field are obtained as the

symmetrical and skew-symmetrical components of the residual

growth: s resid~(g residzgT
resid )=2 and r resid~(g resid{gT

resid )=2.

If some parts of the substance are required to remain stationary,

this amounts to stipulating that certain components of ~u be zero.

The corresponding components of f will then have additional

unknown terms added to them for the unknown forces that must

be present to keep those components stationary. Thus where

components of ~u are known in advance, the corresponding

components of f become unknowns. If we do not want to

compute the unknown forces, then we can simply eliminate the

relevant equations. Such conditions can be applied to individual

coordinates, for example, holding the z coordinate of a vertex

fixed while allowing it to move in the x and y directions. This is

done for all of the examples of Figure 3, where every vertex of

every finite element on the boundary of the tissue is constrained to

not move in the vertical direction, to simulate the presence of an

extended tissue around the part that is being simulated and shown

in the figure. Problems in which the canvas is required to remain

Figure 12. A curved canvas is approximated as a mesh of pentahedra.
doi:10.1371/journal.pcbi.1002071.g012
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flat but its thickness is allowed to vary can be handled by adding

the constraint that ~uuiz~uuj~0 whenever ~uui and ~uuj are the z
components of the displacements of corresponding points on the

two sides of the canvas. ~uui, ~uuj , and the unknown forces which are

implied by the constraint, can then be eliminated from the

equations and replaced by ~uui{~uuj , the thickness at that point.

Software for modelling in the GPT-framework. GFtbox is

implemented in MATLAB, which provides easily programmed

access to fast array-handling routines. Building the array K and

solving equation (4) takes most of the computing time. K is an N
by N matrix, where N is the number of spatial degrees of freedom:

three times the number of vertices in the mesh. The number of

finite elements will be approximately the same as the number of

vertices. The size of problem that can be handled is limited

primarily by the amount of memory available. Currently we are

able to run simulations with up to about 5,000 finite elements. The

number of nonzero elements of K is proportional to N, and so

most elements of K are zero. This allows ‘‘sparse’’ representations

of the matrix, which save space by storing only the non-zero

elements.

The simultaneous linear equations (4) are solved for ~u using the

conjugate gradient squared method, available in MATLAB as the

function cgs. Other methods of solution exist, but we have found

this to be the most robust and efficient, and one which works well

with sparse matrices. Although ~u is only determined up to a rigid

motion of the whole mesh (and therefore K is always rank deficient

by at least 6), in practice the cgs method finds a solution without

introducing random drift.

The accuracy of the computations and the time that they take

depend on several factors: the tolerance with which equation (4) is

solved, the time step, the fineness of the division into finite

elements, and the quality of the elements. The examples in this

paper were generally computed with between 3000 and 5000 finite

elements, and where necessary, dynamic remeshing was used to

maintain their quality. The tolerance for solving equation (4) was

typically set to 10{4 or less for elasticity, and 10{6 for diffusion.

(The tolerance is interpreted relative to the magnitude of the

numbers in the equations, and can optionally be measured either

in terms of the root mean square of the errors or their maximum

absolute value.) The computation from initial to final states was

divided into between 50 and 200 time steps. For those examples

where an analytic solution can be found, the computation agreed

to within a fraction of a percent. Several such validation tests are

described in Text S1. Time per iteration is roughly proportional to

the number of elements, and was around 15 seconds to 1 minute

(equivalently, between 5 and 20 ms per finite element).

GFtbox supports dynamic remeshing. The need for this arises

when a canvas grows anisotropically and the finite elements

become long and thin. This tends to make the finite element

equations ill-conditioned. In addition, whatever their shape, if the

diameter of the finite elements becomes significant relative to the

scale on which the mesh is bending or non-uniformly deforming,

they will produce an artefactual stiffness. It may therefore be

necessary to adapt the mesh as it grows, to maintain both its

numerical quality and its fit to the continuous canvas that it models

[68]. This is done in two ways: edges of the mesh (and the finite

elements on either side) are split when they exceed a certain

length, and local transformations are performed to eliminate thin

elements.

For this purpose we consider the triangular mesh formed by the

midplanes of the pentahedra. In general, the quality of the mesh is

better maintained if many edges are split at once than if they are

split one by one. Therefore there are two thresholds for splitting:

whenever any edge exceeds the upper threshold, every edge

exceeding the lower threshold is split. The new vertices could be

placed simply by bisecting the edges to be split. However, this

would simply subdivide each finite element into a flat mesh of

smaller elements. Since the flatness of each finite element is to be

considered as an approximation to a smoothly curved surface

passing through all the vertices, it is preferable to place the new

vertices so that successive subdivisions yield such a surface. This

can be done by the butterfly subdivision rule [69], which places the

new vertex at a certain weighted average of vertices in the

neighbourhood of the split edge that include more than just the

two endpoints. Each new vertex of the triangular mesh requires

two pentahedron vertices to be created, one on each side of the

canvas. These are found by applying the same butterfly

interpolation to the corresponding vertices on the two sides. The

values of growth factors and signals at the new vertices are

interpolated in the same way.

Growth can often be continued indefinitely in this manner

without loss of quality of the triangulation, and is limited only by

the total number of finite elements that can be handled.

Specifying the strain tensor by growth factors
We now turn to how the specified growth tensor field s is

determined by concentration fields of growth factors, and how

such concentration fields can be created by defining methods of

production, consumption, diffusion, and interaction.

Determining the specified growth tensor
A specified growth tensor has three principal axes at right angles

to each other. When the tissue is a curved canvas of finite

thickness, we assume that although the two sides of the canvas may

grow at different rates, they have the same directions of principal

growth axes, one of which is always perpendicular to the mid-

plane of the canvas, the other two being parallel to it. These axes

and the corresponding growth rates are determined by concen-

tration fields of factors. We assume that factor concentrations do

not vary through the thickness of the tissue, and therefore

represent them computationally by their values on a two-

dimensional mesh of triangles, being the midplanes of the mesh

of pentahedra used for the elasticity calculation.

In the GPT-framework factors can be classified into two types.

Identity factors do not propagate within the canvas, while signalling

factors can. The specified growth tensor at each point of the

canvas is parameterised as follows. The specified principal

directions of growth within the plane of the canvas are determined

by the gradient of a signalling factor called POL. The specified

rates of growth parallel to these directions on the two surfaces of

the canvas are given by factors called ka
par and kb

par. Likewise, the

specified growth rates perpendicular to the polarising gradient

+POL are given by factors ka
per and kb

per. The rate of growth of

thickness of the canvas is specified by a factor k nor.

Propagation
Propagation of signalling factors may occur through a variety of

mechanisms, such as diffusion or active transport. Here we

implement diffusion which biologically may be a proxy for a

variety of underlying mechanisms. The evolution of a concentra-

tion field w is modelled by the following equation:

Lw

Lt
~k+2wzR(x){aw{e volw ð5Þ

The four terms on the right hand side represent respectively

diffusion (with a diffusion constant k), production at a rate R,
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decay at a uniform rate a, and the diluting effect of growth. Here

e vol~
P

i eii is the volumetric rate of resultant growth. Our

implementation handles dilution as a separate step and does not

include it in the equation (see later). The values of k, R, and a may

vary in space. They may also vary in time, but we assume not

rapidly, so that they can be assumed constant over a single

timestep.

To obtain the concentration field at time tzdt, we can make a

linear approximation and write a forward Euler equation:

w(tzdt)~w(t)zdt(k+2wzR(x){aw) ð6Þ

By methods similar to those for elasticity, we can discretise this

relationship, representing the concentration distribution by its

values at the vertices, and obtain an equation similar in form to

equation (4): K~ww(tzdt)~f. K and f are calculated from the

geometry of the mesh, the diffusion constant, the production and

decay rates, and the current distribution ~ww. This set of equations

can be solved to give the new concentration distribution. As for the

calculation of displacements, the equations allow boundary

conditions to be added stipulating that the concentration remains

fixed at some nodes.

Unlike the case of elasticity, here K has full rank and the

solution is uniquely determined. The sizes of K and f are N|N

and N respectively, where N is the number of vertices of the

triangular mesh. This is 1=6 of the value of N for the elasticity

computation, resulting in a much faster solution. A comparison of

a computed diffusion pattern with its analytical solution is

considered in Text S1. In the case of morphogens which do not

diffuse, it is not necessary to solve the diffusion equation, and the

effects of production and decay can be calculated directly, vertex

by vertex.

We compute diffusion separately from elastic deformation. In

principle, the diffusion problem could be solved for a growing and

deforming canvas, but over a short time interval only second-order

effects arise from the interaction between growth and diffusion,

except for the dilution effect mentioned above. When a material

expands, the concentration of a physical substance spread through it

must decrease in proportion. We make this correction as a separate

step: after the diffusion and elasticity calculations, the concentration

for each factor subject to dilution by growth is reduced at each point

by the proportional expansion at that point, e vol .

It is unrealistic to assume that cells can detect the directions of

arbitrarily shallow gradients; these also pose numerical problems.

There are various options for dealing with very shallow gradients.

(1) Generate new sources or sinks for signalling factors as space is

created through growth. This would enable patterns to be

continually elaborated as the shape expands. (2) Fix the pattern

before it becomes too shallow. In the particular case of tissue

polarity, for example, polarity may be frozen when the magnitude

of the POL gradient falls below a certain threshold. This would be

equivalent to a cell becoming polarised when the tissue is small

enough for gradients to be measurable, and then retaining its

polarity when the gradient falls below the threshold of detectabil-

ity. Alternatively, (3) the polarity can disappear, resulting in

isotropic growth.

Case Z: Partitioning a canvas using a diffusing signal.

Figure 13 shows a hypothetical example of how diffusion and

thresholds can lead to the canvas being partitioned into regions to

create a new central region from a peripheral one. An identity

factor i rim is expressed at the rim of the disc-shaped canvas (blue in

Figure 13 A,C). The expression of an identity factor is represented

by the value 1 and non-expression by the value 0. (i rim could

represent a transcription factor expressed only at the rim.) Initially

a signalling factor s pat (blue in Figure 13 C) is present everywhere

(in this model an initial value of 1) and its rate of production is

promoted by i rim. Diffusion and decay cause the level of s pat to

drop in the centre until it reaches a steady state, bowl shape, as

shown in Figure 13 C. Wherever s pat drops below a threshold

Tbase the identity factor i base is expressed (is set to the value 1) so

defining a new central region. In this example, i rim can be

considered as a regional organiser as it provides a source of the

signalling factor, s pat, that enables regions to be elaborated.

This patterning process could also be used to control the timing

of particular events. For example, there can be a further factor,

s phase with a high propagation rate, which is generated where s pat

falls below a second threshold TphasevTbase. When this threshold

is reached, s phase will propagate rapidly to activate or inhibit

factors bringing in a new patterning phase.

Interaction between factors
Identity, signalling, and growth parameters may interact in

many different ways. Rather than assume a fixed set of possible

interactions, the software allows the user to write a general

function to model interactions, the ‘‘interaction function’’. The

Figure 13. Patterning in the canvas. (A) The initial disc has a pre-defined region at the rim, irim (blue). (B) The inner region, ibase (magenta), is
obtained through a combination of diffusion and interaction of a signal (spat) produced by irim. (C) Profiles of the factors (irim, spat, ibase) plotted along a
diameter together with the thresholds, Tbase and Tphase.
doi:10.1371/journal.pcbi.1002071.g013
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function is called on every iteration of the simulation, before the

calculation of diffusion and growth. To simplify the task, a few

standard functions are provided to model promotion and

inhibition of one factor by another. These are:

pro (k,x)~1zkx ð7Þ

inh(k,x)~1=(1zkx) ð8Þ

We use boldface for vectors of values, one value per mesh

vertex, and italic for scalar values. Multiplication and division of

vectors are to be understood elementwise. pro(k,x) and inh(k,x)
both tend to vectors of 1’s as the components of x tend to zero. If

factor y is to be assigned the value of factor z promoted by factor x
by an amount k, one writes the MATLAB equivalent of

y~z:pro(k,x) (i.e. y = z.*pro(k,x);). If z is to be inhibited by x,

then y~z:inh(k,x). It is convenient to express inhibition and

promotion in this way because the overall effects of different

factors (say x1,x2,x3) that may be expressed in different regions

can be obtained by multiplication (e.g. y~z:pro(k1,x1)
:inh(k2,x2):pro(k3,x3)).

The complete simulation loop
The iterative loop of the simulation combines the regulatory

and mechanical systems as follows.

1. Calculate the levels of growth factors from their interactions.

This is usually specified in the interaction function and this step

is where hypotheses can be formulated.

2. Calculate the result of diffusion over a small time step dt.

3. Calculate the specified growth tensor field arising from the

factors.

4. Calculate the resulting displacement of every vertex (Equation

4) and update the vertex positions accordingly, from which

computed growth field can be obtained.

5. From the displacement field, calculate the field of volumetric

growth, and reduce the concentration of every dilutable

signalling morphogen in proportion. Where regions of identity

factors enlarge, the new volume inherits the identity profile of

its parent volume.

6. Optionally, discard or retain part or all of the residual strains

resulting from the growth and deformation.

7. Advance simulated time by dt.

8. Display the object on screen, save a screenshot, or save a frame

to a movie file.

Supporting Information

Text S1 Illustrative examples of interaction functions, further

details of mathematical methods and implementation, and a series

of examples of GFtbox computations validating the method and the

software.

(PDF)

Video S1 A movie of the growth illustrated in Figure 5.

(MOV)

Video S2 A movie of the growth illustrated in Figure 6 (C).

(MOV)

Video S3 A movie of the growth illustrated in Figure 6 (D–E).

(MOV)

Video S4 A movie of the growth illustrated in Figure 7 (B).

(MOV)

Video S5 A movie of the growth illustrated in Figure 7 (C).

(MOV)

Video S6 A movie of the growth illustrated in Figure 7 (E).

(MOV)

Video S7 A movie of the growth illustrated in Figure 7 (F).

(MOV)

Video S8 A movie of the growth illustrated in Figure 21 in Text

S1.

(MOV)
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