
Influence Systems and Natural Algorithms

Bernard Chazelle
∗

Department of Computer Science
Princeton University

chazelle@cs.princeton.edu

— Draft (CACM Research Highlights, to appear) —

ABSTRACT

Algorithms offer a rich, expressive language for modelers of
biological and social systems. They lay the grounds for nu-
merical simulations and, crucially, provide a powerful frame-
work for their analysis. Natural algorithms may reprise in
the life sciences the role differential equations have long
played in the physical sciences. For this to happen, how-
ever, an “algorithmic calculus” is needed. We discuss what
this program entails in the context of influence systems.

1. INTRODUCTION
The gradual elevation of “computational thinking” within

the sciences is enough to warm the heart of any computer
scientist. Yet the long-awaited dawning of a new age may
need to wait a little longer if we cannot move beyond the
world of simulation and build a theory of natural algorithms
with real analytical heft. Just as differential equations have
given us the tools to explain much of the physical world, so
natural algorithms will help us model the living world and
make sense of it. At least this is the hope and, for now, I
strongly believe, one of the most pressing challenges facing
computer science.

Science or engineering?

To draw a fine line between science and engineering is a fool’s
errand. Unrepentant promiscuity makes a clean separation
neither wise nor easy. Yet a few differences bear mentioning.
If science is the study of the nature we have, then engineering
is the study of the nature we want: the scientist will ask how
the valley was formed; the engineer will ask how to cross it.
Science is driven by curiosity and engineering by need: one

∗This work was supported in part by NSF grants CCF-
0832797, CCF-0963825, and CCF-1016250.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

is the stuff of discovery, the other of invention. The path of
science therefore seems more narrow. We want our physical
laws to be right and our mousetraps to be useful. But there
are more ways to be useful than to be right. Engineering
can “negotiate” with nature in ways science cannot. This
freedom comes at a price, however. Any mousetrap is at the
mercy of a better one. PageRank one day will go; the Second
Law of thermodynamics never will. And so algorithms, like
mousetraps, are human-designed tools: they are engineering
artifacts.

But is this view entirely accurate? Perhaps search en-
gines don’t grow on trees but leaves do, and a sophisticated
algorithmic formalism, L-systems, is there to tell us how.
It is so spectacularly accurate, in fact, that the untrained
eye will struggle to pick out computer-generated trees from
the real thing. The algorithmic modeling of bird flocking
has been no less successful. Some will grouch that evolu-
tion did not select the human eye for its capacity to spot
fake trees and catch avian impostors. Ask a bird to assess
your computer-animated flock, they’ll snicker, and watch it
cackle with derision. Perhaps, but the oohs and ahhs from
CGI fans everywhere suggest these models are on to some-
thing. These are hardly isolated cases. Natural algorithms
are quickly becoming the language of choice to model bi-
ological and social processes. They are both science and
engineering.

It’s all about language

The triumph of 21st-century physics has been, by and large,
the triumph of mathematics. A few equations scattered on
a single page of paper explain most of what goes on in the
physical world. This miracle speaks to the organizing princi-
ples of the universe: symmetry, invariance, and regularity—
precisely the stuff on which mathematics feasts. Alas, not all
of science is this tidy. Instead of identical particles subject to
the same forces, biology and economics feature autonomous
agents, each one with its own idea of what laws to obey. It
is a long way, scientifically speaking, from planets orbiting
the sun in orderly fashion to unruly slime molds farming
bacterial crops. Gone are the symmetry, invariance, and
clockwork regularity of astronomy: what we have is, well,
sludge. But the sludge follows a logic that has its own lan-
guage, the language of natural algorithms.

The point of departure with classical mathematics is in-
deed linguistic. While differential equations are the native
idiom of electromagnetism, no one believes that cancer has

Figure 1: A protein and its natural algorithm.

its own “Maxwell’s equations.” Yet it may well have its own
natural algorithm. The circuit in Fig.1 attempts to explain,
in algorithmic terms, how the protein p53 keeps cancer at
bay. The chain of causal links, some deterministic, others
stochastic, cannot be expressed merely in the language of dif-
ferential equations. It is not just the diversity of factors at
play (genetic, infectious, environmental, etc); nor is it their
heterogeneous modes of interaction. It is also the need for a
narrative of collective behavior that can be expressed at dif-
ferent levels of abstraction: first-principles; phenomenologi-
cal; systems-level; etc. The issue is not realism but tractabil-
ity. This point is crucial. It could well be that PDEs will
continue to provide the most accurate descriptions of bio-
processes, just as Newtonian mechanics still gives the most
principled model of an ideal gas at equilibrium. But it was
the genius of Boltzmann and others to realize that the ther-
modynamics model of Carnot differed from a Newtonian
framework only by being a tractable, coarse-grained level
of abstraction of the same processes. Likewise, the promise
of agent-based natural algorithms is a tractable level of ab-
straction for reasoning about complex systems characterized
by heterogeneity, agency, and spacetime scale diversity.

Beyond simulation

Decades of work in programming languages have produced
an advanced theory of abstraction. Ongoing work on re-
active systems is attempting to transfer some of this tech-
nology to biology [8]. Building on decades of progress in
automata theory, temporal logic, and process algebra, the
goal has been to build a modeling framework for biologi-
cal systems that integrate the concepts of concurrency, in-
teraction, refinement, composition, encapsulation, modular-
ity, asynchrony, stochasticity, causality, etc. With the right
specifications in place, the hope is that established program-
ming language tools, such as type theory, model checking,
abstract interpretation, and the pi-calculus can aid in verify-
ing temporal properties of biosystems. The idea is to reach
beyond numerical simulation to provide proven certificates
about collective behavior.

Such an approach, however, can only be as powerful as
the theory of natural algorithms behind it. To illustrate
this point, consider classifying all possible sequences x, Px,
P 2x, P 3x, etc, where x is a vector and P is a fixed stochas-
tic matrix. Simulation, machine learning, and verification

techniques can help, but no genuine understanding of the
process can be achieved without Perron-Frobenius theory.
Likewise, natural algorithms need not only computers but
also a theory.

Algorithms from nature

If living processes are powered by the “software” of nature,
then natural selection is the ultimate code optimizer. With
time and numbers on their side—billions of years and 1030

living specimens—bacteria have had ample opportunity to
perfect their natural algorithm. No wonder computer scien-
tists are turning to biology for algorithmic insight: neural
nets and DNA computing, of course, but also ant colony op-
timization [3], shortest path algorithms in slime molds [2];
maximal independent sets in fly brain development [1], etc.
Consensus, synchronization, and fault tolerance are concepts
central to both biology and distributed computing [14, 17].
The trade of ideas promises to be flowing both ways. This
article focuses on the outbound direction: how algorithmic
ideas can enrich our understanding of nature.

2. INFLUENCE SYSTEMS
A bad, fanciful script will make the perfect stage-setter.

One fateful morning, you stumble out of bed and into your
kitchen only to discover, crawling on the floor, a swarm of
insects milling around. Soon your dismay gives way to cu-
riosity, as you watch the critters engage in a peculiar chore-
ography. Each insect seems to be choosing a set of neigh-
bors (living or inert) and move either toward or away from
them. From what you can tell, the ants pick the five clos-
est termites; the termites select the nearest soil pellets; the
ladybugs pick the two ants closest to the powdered sugar
that is not in the vicinity of any termite; etc. Each insect
seems equipped with its own selection procedure to decide
how to pick neighbors based on their species and the geom-
etry of the scene. Once the selection is made, each agent
invokes a second procedure, this time to move to a loca-
tion determined entirely by the identities and locations of
its neighbors.1 To model this type of multiagent dynamics,
we introduce influence systems, a brand of networks that
perpetually rewire themselves.

Definition and examples

An influence system is specified by two functions f and G:
it is a discrete-time dynamical system,2 x 7→ f(x) in (Rd)n,
where n is the number of agents, d is the dimension of the
ambient space (d = 2 in the example above), and each “co-
ordinate” xi of the state x = (x1, . . . , xn) is a d-tuple en-
coding the location of agent i in Rd. With any state x
comes a directed “communication” graph, G(x), with one

1 Some living systems (eg, ants, termites) exchange informa-
tion by stigmergy: instead of communicating directly with signals,
they leave traces such as pheromones in the environment, which
others then use as cues to coordinate their collective work. Al-
though lacking autonomy, inert components can still be modeled
as agents in an influence system.
2 A dynamical system generates an orbit x, f(x), f2(x), . . . , for
any x: the goal is to understand the geometry of these orbits.

node per agent. Each coordinate function fi of the map
f = (f1, . . . , fn) takes as input the neighbors of agent i in
G(x), together with their locations, and outputs the new
location fi(x) of agent i in Rd. The philosophy behind in-
fluence systems is that the flow of information across the
communication network captures the heart of the system.
By distinguishing f from G, the model separates the syn-
tactic (who talks to whom?) from the semantic (who does
what?) Recursive graph algorithms are thus expected to oc-
cupy center stage in the analysis, itself a novelty in the field
of dynamics.

Both f and G are evaluated by a deterministic or ran-
domized algorithm. An influence system is called diffusive
if f keeps each agent within the convex hull of its neighbors.
Diffusive systems never escape to infinity and always make
consensus (all xi being equal) a fixed point. The system is
said to be bidirectional if the communication graph always
remains undirected.

• HK systems: In this popular model of social dynam-
ics [9], xi is a real number denoting the “opinion” of
agent i. That agent is linked to j if and only if |xi −
xj | ≤ r. The procedure for f instructs i to move to the
mass center of its neighbors. This is the prototypical
example of a bidirectional diffusive influence system.

• Sync: An instance of Kuramoto synchronization, this
diffusive influence system links each of n fireflies to the
other fireflies whose flashes it can spot. Every critter
has its own flashing oscillator, which becomes coupled
with those of its neighbors. The function f specifies
how the fireflies adjust their flashings in reaction to
the graph-induced couplings [3, 23]. A similar model
has been applied to circadian neurons, chirping crick-
ets, microwave oscillators, yeast cell suspensions, and
pacemaker cells in the heart [25].

• Swarming: The agents may be fish or birds and their
states indicating their positions and velocities (d = 6).
The communication graph links every agent to some
of its nearest neighbors. The function f instructs each
agent to align its velocity with that of its neighbors,
to move toward their center of gravity, and to fly away
from its perilously close neighbors [20, 24]. Noise can
be added at each step by subjecting the agents’ head-
ings to a small random rotation.

• Chemotaxis: Some organisms can sense food gradients
and direct their motion accordingly. In the case of
bacterial chemotaxis, the stimuli are so weak that the
organisms are reduced to performing a random walk
with a drift toward higher food concentrations. Influ-
ence systems can model these processes with the use
of both motile and inert agents. Chemotaxis is usually
treated as an asocial process (single agents interact-
ing only with the environment). It has been observed,
however, that schooling behavior can facilitate gradi-
ent climbing for fish, a case where living in groups
enhances foraging ability [19]. Influence systems can
model both social and asocial behaviors.

Other examples of influence systems include the Ising model,
neural nets, Bayesian social learning, protein-protein inter-
action networks, etc.

How expressive are influence systems?

If agent i is viewed as a computing device, then the d-tuple
xi is its memory. The system is Markovian in that all facts
about the past with bearing on the future need to be en-
coded in x. The communication graph allows the function f
to be local if so desired. The procedure G itself might be lo-
cal even when appearance suggests otherwise: for example,
to identify your nearest neighbor in a crowd requires only lo-
cal computation, even though mathematically the function
is global, requiring knowledge of all the positions. Since
the emergence of macroscopic phenomena from simple local
rules is the raison d’être of influence systems, one expects
to see computational restrictions placed on the agents. Yet,
even with deceptively simple rules, influence systems can
pack a great amount of behavioral complexity:

(i) Learning, competition, hierarchy: Agents can imple-
ment game-theoretic strategies in competitive environ-
ments (e.g., pursuit-evasion games) and learn to co-
operate in groups (e.g., quorum sensing). They can
self-improve, elect leaders, and stratify into dominance
hierarchies.

(ii) Coarse-graining: Flocks are clusters of birds that main-
tain a certain amount of communicative cohesion over
a period of time. We can view them as “super-agents”
and seek the rules governing interaction among them.
Iterating in this fashion creates a coarse-graining of the
original system somewhat akin to Kadanoff’s block-
spin renormalization in statistical mechanics. Coarse-
graining can also be accomplished through time scal-
ing (see §5).

(iii) Asynchrony and uncertainty: In the presence of de-
layed or asynchronous communication, agents can use
their memory to implement a clock for the purpose of
time stamping. Influence systems can also model un-
certainty by granting agents access to approximations
of their neighbors’ states.

Influence systems are agent-based, a concept well worth a
detour. Consider the diffusion of pollen particles suspended
in water. A Eulerian approach to this process seeks a dif-
ferential equation for the concentration c(x, t) of particles
at any point x and time t. There are no agents, just den-
sity functions evolving over time [18]. An alternative ap-
proach, called Lagrangian, would track the movement of all
the individual particles and water molecules by appealing to
Newton’s laws. Given the sheer number of agents, this line
of attack crashes against a wall of intractability. One way
around it is to pick a single imaginary self-propelled agent
and have it jiggle about randomly in a Brownian motion.
This agent models a typical pollen particle, typical in the
“ergodic” sense that its time evolution mimics the space dis-
tribution of countless particles caught on film in a snapshot.
Time scaling plays a key role: our pollen particles indeed can
be observed only on a time scale far larger than the molec-
ular bumps causing the jiggling. Luckily, Brownian motion
is scale-free. As we shall see in §5, the ability to express a
dynamical process at different scales is an important feature
of influence systems.

The strength of the Eulerian approach is its privileged
access to an advanced theory of calculus. Its weakness de-
rives from two commitments: global behavior is implied by

infinitesimal changes; and every point is subject to identi-
cal laws. While largely true in physics, these assumptions
break down in the living world, where diversity, heterogenity,
and autonomy prevail. Alas, the Lagrangian answer, agent-
based modeling, itself suffers from a crippling handicap: the
lack of a theory of natural algorithms.

A preview

This article confines itself to influence systems. It examines
the diffusive case in §3–5 and a classic model of bird flocking
in §6.3 It begins with a surprising observation: bidirectional
diffusive systems always converge. This is best seen via an
analytical device known as the total s-energy, the topic of
the next section. The general case requires the use of an
algorithmic calculus, which we sketch in §5.

General diffusive influence systems are Turing-complete,
yet the mildest perturbation ruins it all to create periodic
behavior. This is disconcerting. Influence systems model
how people change opinions over time as a result of human
interaction and knowledge acquisition. Instead of walking
their way toward enlightenment, people are doomed to re-
cycle the same opinions in the same order in perpetuity...
At least that’s what the math says.

3. THE S-ENERGY
Let (Pt)t≥0 be an infinite sequence of n-by-n stochastic

matrices; stochastic means that the entries are nonnegative
and the rows sum up to 1. Leaving aside influence systems
momentarily, we make no assumption about the sequence,
not even that it is produced endogenously. We ask a simple
question: under what conditions does P<t := Pt−1 · · ·P0

converge as t→∞? Certainly not if

Pt =

(
0 1
1 0

)
.

The problem here is lack of self-confidence: the two agents
in the system x 7→ Pt x trust their neighbors too blindly.
So let’s assume that the diagonal entries of Pt are positive.
Alas, this still does not do the trick: the matrices1 0 0

0 1 0
0 2/3 1/3

 and

 1 0 0
0 1 0

2/3 0 1/3

grant the agents self-confidence, yet composing them in al-
ternation exchanges the vectors (0, 1, 1/4) and (0, 1, 3/4)
endlessly. The oscillation is caused by the lack of bidirec-
tionality: indeed, agents 1 and 2 never link to agent 3 in the
communication graph. The fix is to require the graphs to be
undirected. With both self-confidence and bidirectionality
(ie, mutual self-confidence) in place, surprise, the sequence
P<t always converges [11, 13, 16]. (Interestingly, this is not
true of forward products P0 · · ·Pt in general.) With noth-
ing keeping (Pt)t≥0 from “stalling” by featuring arbitrarily
long repeats of the identity matrix, bounding the conver-
gence rate is impossible. Yet an analytical device, the total
s-energy [5], allows us to do just that for influence systems
with “P<t style” dynamics. The trick is to show that they
cannot stall too long without dying off.

3 Unless noted otherwise, the results discussed are from: [5] for
§3; [6] for §4,5; and [4] for §6.

Preliminaries

Fix small ρ > 0 and let (Pt)t≥0 be a sequence of stochastic
matrices such that ρ ≤ (Pt)ii ≤ 1 − ρ and (Pt)ij > 0 ⇒
(Pt)ji > 0. Let Gt be the (undirected) graph whoses edges
are the positive entries in Pt. With x(t + 1) = Ptx(t) and
x(0) = x ∈ [0, 1]n, the total s-energy is defined as:

E(s) =
∑
t≥0

∑
(i,j)∈Gt

|xi(t)− xj(t)|s . (1)

Being a generalized Dirichlet series, the s-energy can be in-
verted and constitutes a lossless encoding of the edge lengths.
Why this unusual choice? Because, as with the most famous
Dirichlet series, the Riemann zeta function

∑
n−s, the sys-

tem’s underlying structure is multiplicative: indeed, just as
n is a product of primes, xi(t) − xj(t) is a product of the
form vTPt−1 · · ·P0 x. Let En(s) denote the maximum value
of E(s) over all x ∈ [0, 1]n.

Figure 2: The analytic continuation of |E2(s)|.

The sequence formed by (Pt)t≥0 is called reversible if Gt is
connected and there is a probability distribution (π1, . . . , πn)
such that πi(Pt)ij = πj(Pt)ji for any t; see detailed defini-
tion in [5]. This gives us a way to weight the agents so that
their mass center never moves. The notion generalizes the
concept of reversible Markov chains, with which it shares
some of the benefits, including faster convergence to equi-
librium.

Bounds

The s-energy measures the total length of all the edges for
s = 1 and counts their number for s = 0; the latter is
usually infinite, so it is sensible to ask how big En(s) can
be for 0 < s ≤ 1. On the lower bound front, we have
En(1) = Ω(1/ρ)bn/2c and En(s) = s1−n(1/ρ)Ω(n), for any n
large enough, s ≤ s0, and any fixed s0 < 1. Of course, the
s-energy is useful mostly for its upper bounds:

En(s) ≤

{
(1/ρ)O(n) for s = 1;

s1−n(1/ρ)n
2+O(1) for 0 < s < 1.

(2)

For reversible sequences and any 0 < s ≤ 1,

n−2En(s) ≤ EDn (s) ≤ 2n

s

(2n

ρ

)s/2+1

, (3)

where EDn (s) =
∑
t≥0 diams{x1(t), . . . , xn(t)}. This is es-

sentially optimal. Fix an arbitrarily small ε > 0. A step

t is called trivial if |xi(t) − xj(t)| < ε for each (i, j) ∈ Gt.
The maximum number Cε of nontrivial steps is bounded by
ε−sEn(s); hence,

Cε(n) ≤ min{ 1
ε

(1
ρ
)O(n) , (log 1

ε
)n−1(1

ρ
)n

2+O(1) }, (4)

which is optimal if ε is not too small. Convergence in the re-
versible case is polynomial: if ε < ρ/n, then ‖x(t)−πTx‖2 ≤
ε, for t = O(ρ−1 n2|log ε|). This bound is optimal. In par-
ticular, we can specialize it to the case of random walks in
undirected graphs and retrieve the usual mixing times.

Applications

(A) HK systems track opinion polarization in a population.
In the bounded-confidence version, the agents consist of n
points in Rd. At each step, each agent moves to the mass
center of the agents within distance r. This bidirectional
influence system converges in nO(n) time. The bound is
known to be polynomial for d = 1 [15].

Figure 3: The initial graph G0 and a few steps later.

(B) Truth-seeking systems differ from the bounded-confidence
model by assuming a “cognitive division of labor” [10]. We
fix one agent, the truth, and keep the n − 1 others mo-
bile. A “truth seeker” is a mobile agent that is joined to the
truth in every Gt. All the other mobile agents are“ignorant,”
meaning that they never join to the truth through an edge,
although they might indirectly communicate with it along
a path. Any two mobile agents are joined in Gt whenever
their distance is less than r. Assuming that r and the initial
configuration are encoded as O(n)-bit rationals, the system

converges in nO(n) time. All the truth seekers lie within a
tiny ball centered at the truth (doubly-exponential small).
Ignorant agents either lie in that ball or are frozen in place
forever.

Why the s-energy?

Let convP denote the convex hull of the points formed by
the rows of the matrix P . We have the“Russian doll”nesting
structure:

convP<t ⊆ convP<t−1 ⊆ · · · ⊆ convP0 ⊂ Rn.

The literature on stochastic matrices features a variety of
“coefficients of ergodicity”[21] to help us measure how quickly
the Russian dolls deflate: eigenvalues, joint spectral radius,
width, diameter, volume, etc. By seeking progress at each
step, however, these methods cannot cope with stalling. The
total s-energy gets around this by providing a global defla-
tion measure (Fig.4). The s-energy is controlled by a single

Figure 4: The deflating matrix polytope.

parameter s, which we can adjust at will to get the most out
of the inequality Cε ≤ ε−sE(s), typically choosing s so that
(dE/ds)|s = E ln ε. Proving (2) for s = 1 entails a delicate
credit amortization argument, a classical algorithmic tech-
nique apparently new to the field of dynamics. For brevity,
we discuss only the case s < 1. This will also give us a
chance to introduce a concept fundamental to the theory of
diffusive influence systems: the flow tracker. Think of it as
breadth-first search in a dynamic graph. A little imagery
will help. Pick agent 1 and dip it in water, keeping all the
other agents dry. Whenever an edge of Gt links a dry agent
to a wet one, the dry one gets wet. As soon as all the agents
become wet (if ever), dry them all except agent 1; repeat.

Flow tracker (5)

[1] t0 ← 0.

[2] Repeat forever:

[2.1] Wt0 ← {1}.
[2.2] For t = t0, t0 + 1, . . . ,∞:

Wt+1 ←Wt ∪ { i | ∃ (i, j) ∈ Gt & j ∈Wt }.
[2.3] If |W∞| = n then t0 ← min{ t > t0 : |Wt| = n }

else stop.

Let Wt denote the set of wet agents at time t, which always
includes agent 1. The assignments of t0 in step [2.3] divide
the timeline into epochs, time intervals during which either
all agents become wet or, failing that, the flow tracker comes
to a halt (breaking out of the repeat loop at “stop”). Take
the first epoch: it is itself divided into subintervals by the
coupling times t1 < · · · < t`, with Wtk ⊂ Wtk+1. If ‖Wt‖
denotes the length of the smallest interval enclosing Wt, it
can be shown by induction that ‖Wtk+1‖ ≤ 1− ρk. It then
follows that E1(s) = 0 and, for n ≥ 2,

En(s) ≤ 2nEn−1(s) + (1− ρn)sEn(s) + n3,

which implies (2) for s < 1.

4. DIFFUSIVE INFLUENCE SYSTEMS
Recall that a diffusive influence system x 7→ f(x) in Rdn

requires that the agents move within the convex hull of their
neighbors. For convenience, we set d = 1, so f(x) is en-
coded as an n-by-n stochastic matrix P (x). We further
assume that the system is piecewise-linear in the sense of
(Sontag [22]). While, in practice, f is likely to be a “simple”
function, our main result needs no such assumption. Given

x, we need only assume that P (x) is specified by a first-
order sentence in the theory of the reals.4 By algebraic lift-
ing and Collins’s cylindrical decomposition, we can linearize
the constraints. To specify the model, therefore, it suffices
to fix an arrangement of hyperplanes in Rn and define the
switching partition (SP) as its set of n-dimensional cells,
the atoms (Fig.5). The matrix P (x) = Pc depends only on
the atom c that contains x. We assume self-confidence but
not mutual confidence, ie, positive diagonal entries but not
necessarily bidirectionality. (Typically, the correspondence
c 7→ Pc is implicit and need not be encoded directly.)

Figure 5: The atom c of the SP maps via f to a cell

intersecting two atoms.

Diffusive systems can be as expressive as general piecewise-
linear systems: they can be chaotic and even Turing-com-
plete. The surprise is that perturbations wipe out their com-
putational power: diffusive systems are robustly predictable;
in fact, they are clocks in disguise. This dichotomy requires
a subtle bifurcation analysis, which we sketch in the next
section.

Theorem 1. [6] Given any initial state, the orbit of a diffu-
sive influence system is attracted exponentially fast to a limit
cycle almost surely under an arbitrarily small perturbation.
The period and preperiod are bounded by a polynomial in the
reciprocal of the failure probability. In the bidirectional case,
the system is attracted to a fixed point in time nO(n)|log ε|,
where n is the number of agents and ε is the distance to the
fixed point.

The result says that, given any starting point, a random
perturbation of the SP ensures that the orbit eventually ap-
proaches a fixed periodic orbit exponentially fast: for exam-
ple, (−1)t + 2−t. The number of limit cycles is infinite but,
if we measure distinctness the right way (ie, by factoring out
foliations), there are actually only a finite number of them.

As in statistical mechanics, the system’s complexity arises
from the tension between two opposing forces: one, caused
by the map’s discontinuities, is“entropic”and leads to chaos;
the other one, related to the Lyapunov exponents, is “en-
ergetic” and pulls the system toward an attracting mani-
fold within which the dynamics is periodic. The goal is to

4 This is the language of geometry and algebra with state-
ments specified by any number of quantifiers and polynomial
(in)equalities. It was shown to be decidable by Tarski.

show that, outside a vanishingly small region, entropy al-
ways loses. What does it mean? If, unlike in Fig.5, the
iterated image of any ball b never intersected the SP hy-
perplanes, it would merrily bounce around until eventually
periodicity kicked in. In the figure, f3(b) does not oblige
and splits into two smaller bodies. Both will bounce around
until possibly splitting again and so on. If this branching
process gets out of control, chaos will ensue. To squelch this
entropic process and induce periodicity, we have the stochas-
ticity of the matrices to credit: it causes the ball b to shrink
(at least along directions not parallel to the eigenvector 1)
and thus dissipate a form of “energy.” Entropy vs energy:
which one will win? For entropy to lose out, the ball b must
avoid splitting too frequently. This can be expressed by an
(infinite) system of linear inequalities. Feasibility hinges on
a type of matrix rigidity question: in this case, given a cer-
tain matrix, how many rows must be removed before we
can express the first column as a linear combinations of the
others? Periodicity requires that this number be high. The
matrix in question is extracted from the system’s stochastic
matrices and the SP equations, hence is highly structured.

5. AN ALGORITHMIC CALCULUS
Left to its own devices, the s-energy can produce conver-

gence rates only in favorable conditions, such as those found
in the bounded-confidence model. To see the difficulty, con-
sider a 3-agent system with agents 1 and 2 moving toward
each other: x1 → (2x1+x2)/3 and x2 → (x1+2x2)/3. Start-
ing at positions −1 and 1, agents 1 and 2 move to positions
±3−t at time t. Imagine now having a third agent start-
ing at position 0.9 < x3 < 1 and programmed to join with
agent 1 when their distance falls below 1: this will cause a
graph switch in Gt for t = Ω(|log(1−x3)|), thus dashing any
hope of a uniform bound on the time to reach equilibrium.
The solution is to perturb the system. Another, more serious
reason for doing so is to avoid chaos and Turing universality.

Perturbing a classical algorithm affects only a finite num-
ber of tests, hence creates a bounded number of probabilis-
tic conditions to satisfy. Not so with natural algorithms.
Perturbing each SP hyperplane a0 +

∑
aixi = 0 into a0 +∑

aixi = δ, for some random δ, produces an infinite number
of probabilistic conditions since it affects all of their iterated
images. Union bounds thus involve infinite series; since the
geometry of bad perturbations matters greatly, nonproba-
bilistic structural parameters must be thrown in as well.

Perturbations

We begin with a little trick, which is to thicken the discon-
tinuities. This is a purely analytical device with no effect on
the dynamics. Fix ε > 0 and define the margin

Rε =
⋃
SP

{
x ∈ Rn : | a0 + a1x1 + · · ·+ anxn + δ| ≤ ε

}
,

over all the SP hyperplanes. We define the label `(x) =
min { t ≥ 0 | f t(x) ∈ Rε } for any x ∈ [0, 1]n; by convexity,
we can limit the phase space to the unit cube. The point
x is said to vanish at time `(x) if its label is finite. The
subset of [0, 1]n not vanishing before time t is denoted by
St: obviously, S0 = [0, 1]n; and, for t > 0,

St = [0, 1]n \
t−1⋃
k=0

f−k(Rε) .

Each cell of St+1 lies within a cell of St (one of #St open
n-cells). The limit set S∞ =

⋂
t≥0 St collects the points that

never vanish. Why the thickening? Because it makes the cell
decomposition of the nonvanishing region finite: in fact, for
any t, #St = (n/ε)O(n). The system is nesting at t if no cell
c of St contains more than one cell of St+1. The minimum
value of t is called the nesting time ν of the system.

We can show that the system is nesting at any time t ≥ ν.
This result has remarkable consequences. For one thing, it
immediately bounds the period of any limit cycle. Consider
the directed graph with one node per cell c of Sν and an edge
from c to the unique cell of Sν (if it exists) that intersects
f(c): the graph defines a functional regular language (sofic
shift), meaning that each node has exactly one outgoing edge
(possibly a self-loop), so any infinite path ends up in a cycle.
Periodicity follows. The difficulty is to show that Sν covers
most of [0, 1]n; in fact, even to show that it is nonempty takes
work. The previous discussion hints at the tree structure of
the orbits, an idea we need to develop further.

The coding tree

This infinite rooted tree T encodes into one geometric object
the set of all orbits. It is embedded in [0, 1]n×R≥0, with the
last dimension representing time. The atoms are redefined
as the n-dimensional cells outside the margin. Each child v
of the root is associated with an atom Uv. The phase tube
(Uv, Vv) of each child v is the “time cylinder” whose cross-
sections at times 0 and 1 are Uv and Vv = f(Uv), respec-
tively. The tree is built recursively by subdividing Vv into
the cells c formed by its intersection with the atoms, and at-
taching a new child w for each c: we set Vw = f(c) and Uw =
Uv∩f−tv (c), where tv is the depth of v (Fig.6). We denote by
Pw the matrix of the map’s restriction to c. The phase tube
(Uv, Vv) consists of all the cylinders whose cross-sections at
t = 0, . . . , tv are, respectively, Uv, f(Uv), . . . , f tv (Uv) = Vv.
If Vv intersects the margin, we add a vanishing leaf below
v. Intuitively, T divides up the atoms into maximal regions
over which the iterated map is linear.

Figure 6: A phase tube (Uw, Vw) of length two.

Let ww′w′′ · · · denote the upward, tw-node path from w
to the root (but excluding the root). Using the notation
P≤w = PwPw′Pw′′ · · · , we have the identities Vw = P≤w Uw
and Sk =

⋃
w{Uw | tw = k }. Labeling each node w by

the unique atom that contains the cell c above allows us to
interpret any path as a word of atom labels and define the
language L(T) of all such words. The coding tree is the
system’s Rosetta stone, from which everything of interest
can be read. To do that, we need to define a few parameters:

• The nesting time ν = ν(T) is the minimum depth at
which any node has at most one nonvanishing child. A
node v is shallow if tv ≤ ν.

• The word-entropy h(T) captures the word-length growth
of the language L(T): it is defined as the logarithm of

the number of shallow nodes; #Sν ≤ 2h(T).

• The period p(T) is the maximum (prime) period of any
word in L(T).

• The attraction rate θα is the maximum, over all cells c
of Sν , of min θ such that ‖f t(x)−Π t(mod p) x‖∞ ≤ α,
for all x ∈ c and θ ≤ t ≤ `(x), for Πt,k = Πt,k(c).

The arborator

This algorithm assembles the coding tree by glueing smaller
pieces together. It relies on a few primitives that we now de-
scribe. The direct sum and direct product are tensor-like op-
erations the arborator uses to attach coding trees together.
The primitives absorb and renorm respectively prune and
compress trees. We compile a dictionary to keep track of
the tree’s parameters (nesting time, period, etc) as we build
it up one piece at a time.

Figure 7: The two tensor operations.

Direct sum. The coding tree T = T1 ⊕T2 models two inde-
pendent systems of size n1 and n2. The phase space of the
direct sum is of dimension n = n1 + n2. A path w0, w1, . . .
of T is a pairing of paths in the constituent trees: the node
wt is of the form (ut, vt), where ut (resp. vt) is a node of T1

(resp. T2) at depth t (Fig.7). The direct sum is commuta-
tive and associative: in matrix notation, Pw = Pu⊕Pv. The
following relations are part of a dictionary that we compile
to help us monitor how the coding tree’s parameters evolve
throughout the assembly:

{
ν(T) ≤ maxi ν(Ti); p(T) ≤

∏
i p(Ti)

θα(T) ≤ maxi θα(Ti); h(T) ≤ h(T1) + h(T2) + 1.

Direct product. The tree T = T1 ⊗ T2 models the concate-
nation of two systems. The direct product is associative but
not commutative. Before we get into the formalism, a few
words of intuition. Consider two systems S1 and S1, gov-
erned by different dynamics yet evolving in the same phase
space. Given an arbitrary region Λ in it, we define the hybrid
system S with the dynamics of S2 over Λ and S1 elsewhere.
Suppose we had complete knowledge of the coding tree Ti
for each Si (i = 1, 2). Could we then combine them in some
ways to assemble the coding tree T of S? To answer this
question, we follow a three-step approach:

(i) Identify all the nodes v of T1 with Vv ∩ Λ 6= ∅ and
prune the subtrees below them. Because their identi-
fication will be achieved by the flow tracker through
water propagation, we call the newly formed leaves
wet. This process is called absorption by analogy with
the absorbing states of a Markov chain.

(ii) Attach copies of T2 to the wet leaves; the trees must
be cropped so that the joining phase tubes fit together.

(iii) Iterate and glue T1 and T2 in alternation, as orbits
move back and forth in and out of Λ.

Returning now to the general case, we form the direct prod-
uct T = T1⊗T2 by, first, selecting nodes of T1 for absorption,
which means removing the subtrees they root and marking
the nodes as wet. Next, we attach copies of T2, properly
cropped, to the wet leaves of absorb(T1). With αa denoting

a parameter at least εn−O(1), we add the following relations
to the dictionary:

ν(absorb(T1)) ≤ max{ ν(T1), θαa(T1) + p(T1) }
ν(T) ≤ ν(absorb(T1)) + ν(T2)

θα(T) ≤ max{ θα(T1), ν(absorb(T1)) + θα(T2) }
p(T) ≤ max{ p(T1), p(T2) }, and

h(T) ≤ (n+2)h(T1)+h(T2)+(n+1) log θαa(T1)+O(n logn).

Renormalization

As the arborator assembles the coding tree, the dictionary
allows us to keep track of the tree’s structural parameters.
Who tells the arborator which direct sums and products
to perform and what wet nodes to select for absorption?
Answer: the flow tracker. Although defined for undirected
graphs in (5), it works just the same for directed graphs.
Note that water flows in the reverse direction of the edges.
This divides up the time horizon into epochs, themselves
broken up into intervals by the coupling times. Over each
interval, the system is block-directional, meaning that the
agents can be partitioned into two groups A and B, so that,
written in adjacency-matrix form, the communication graph
looks like:

G(x) =

(
GAA(x) GAB(x)

0 GBB(x)

)
. (6)

In other words, in a block-directional system, no B-agent
ever links to an A-agent. We modify the flow tracker in (5)
to ensure that the B-agents are kept perpetually wet. The
groups A and B are analyzed recursively. The flow tracker
instructs the arborator on how to express the entire system
as a recursive assembly of subsystems. Treating a whole
subtree recursively and squeezing it into a single node is
called renormalization. Here is how it works:

Let Tm→n−m denote the coding tree of a block-directional
system consisting of m (resp. n − m) A-agents (resp. B-
agents). The arrow indicates that no B-agent can ever link
to an A-agent. We use the notation Tm ‖n−m to indicate
decoupling. The coupling time tk is immediately followed
by a renormalization phase of the form Twk→n−wk , where
wk = |Wtk+1| − n + m is the renormalization scale (k =

1, . . . , ` − 1). Thus, any path of the coding tree can be
renormalized as5

Tm→n−m =⇒ Tm ‖n−m | t1
⊗

{ `−1⊗
k=1

Twk→n−wk | tk+1−tk−1

}
⊗ Tm→n−m . (7)

The subscripts indicate the lengths of the (underlined) renor-
malized subsystems. Varying δ may change the coding tree.
To get around this difficulty, we add δ as an extra (nonmov-
ing) agent and define the global coding tree T ∆ with phase
space [0, 1]n ×∆, for a tiny interval ∆ centered at O.

Figure 8: The algorithmic calculus.

6. BIRD FLOCKING
We briefly discuss a classic instance of a nondiffusive in-

fluence system, bird flocking, and report the results from [4].
The alignment model [7, 12, 24] we use is a trimmed-down
version of Reynolds’s original model [20]. In this influence
system, d = 6 and each bird i is specified by its position zi
and velocity vi. The undirected communication graph G(x)
joins any two birds within a certain fixed distance of each
other. Reordering the coordinates of the 6n-dimensional
state vector x as (z,v), we specify the dynamics as

x
f7−→ P (x) :=

(
In In
0 Q(x)

)
x ,

where Q(x) is the n-by-n stochastic matrix of a (lazy) ran-
dom walk on the graph G(x). The matrix P is 2n-by-2n,
so each entry is multiplied not by a single coordinate in x
but by a 3-tuple; in other words, P (x) acts not on R2n but
on (R3)2n. Although the velocities can be inferred from the
positions, they need to be included in the phase space to
keep the system Markovian.

The system always converges in the following sense: after
an initial period when the behavior can be fairly arbitrary,
the birds aggregate in flocks and from that point on can
only merge together. If we wait long enough, the flocks will
eventually stabilize. The communication graph will remain
forever fixed and the flocks will each move at a constant
speed and never meet again. The fragmentation period is
at most singly-exponential, but the convergence time is an
exotic function which is more a reflection of the model than

5 We leave out height-one trees needed to glue the renormalized
subtrees.

Figure 9: The bird at the center of the circle is influ-

enced by its two neighbors in it.

of the flocking process per se. It is expressed by a tower-of-
twos of logarithmic height; the exotic part is that this bound
is actually tight! Even though the result can accommodate
a decaying amount of noise, a more robust result awaits a
realistic noisy model analysis.

7. REFERENCES

[1] Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N.,
Bar-Joseph, Z. A biological solution to a fundamental
distributed computing problem, Science 331 (2011),
183–185.

[2] Bonifaci, V., Mehlhorn, K., Varma, G. Physarum can
compute shortest paths, Proc. 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (2012), 233–240.

[3] Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J.,
Bonabeau, E., Theraulaz, G. Self-Organization in
Biological Systems (2001), Princeton University Press.

[4] Chazelle, B. The convergence of bird flocking,
arXiv:0905.4241v1, 2009. Prelim. versions in Proc. SIAM
SODA 2009, with improvement in Proc. ACM SoCG 2010.

[5] Chazelle, B. The total s-energy of a multiagent system,
SIAM J. Control Optim. 49 (2011), 1680–1706.

[6] Chazelle, B. The Dynamics of Influence Systems,
arXiv:1204.3946v1, April 2012.

[7] Cucker, F., Smale, S. Emergent behavior in flocks, IEEE
Trans. Automatic Control 52 (2007), 852–862.

[8] Fisher, J., Harel, D., Henzinger, T.A. Biology as Reactivity,
Communications of the ACM (2011), 54, 72–82.

[9] Hegselmann, R., Krause, U. Opinion dynamics and
bounded confidence models, analysis, and simulation, J.
Artificial Societies and Social Simulation 5, 3 (2002).

[10] Hegselmann R, Krause U. Truth and cognitive division of
labor: first steps towards a computer aided social
epistemology, J. Artificial Societies and Social Simulation 9
(2006).

[11] Hendrickx, J.M., Blondel, V.D. Convergence of different
linear and non-linear Vicsek models, Proc. 17th
International Symposium on Mathematical Theory of
Networks and Systems (MTNS2006), Kyoto (Japan), July
2006, 1229–1240.

[12] Jadbabaie, A., Lin, J., Morse, A.S. Coordination of groups
of mobile autonomous agents using nearest neighbor rules,
IEEE Trans. Automatic Control 48 (2003), 988–1001.

[13] Lorenz, J. A stabilization theorem for dynamics of
continuous opinions, Physica A: Statistical Mechanics and
its Applications 355 (2005), 217–223.

[14] Lynch, N.A. Distributed Algorithms, San Francisco, CA:
Morgan Kaufmann Publishers Inc., 1996.

[15] Martinez, S., Bullo, F., Cortés, J., Frazzoli, E. On
synchronous robotic networks – Part II: Time complexity
of rendezvous and deployment algorithms, IEEE
Transactions on Automatic Control 52 (2007), 2214–2226.

[16] Moreau, L. Stability of multiagent systems with
time-dependent communication links, IEEE Transactions
on Automatic Control 50 (2005), 169–182.

[17] Navlakha, S., Bar-Joseph, Z. Algorithms in nature: the
convergence of systems biology and computational thinking,
Mol. Syst. Biol. (2011), 7: 546.

[18] Okubo, A., Levin, S.A. Diffusion and Ecological Problems,
Springer, 2nd ed, 2002.

[19] Parrish, J.K., Hamner, W.M. Animal Groups in Three
Dimensions, Cambridge University Press, 1997.

[20] Reynolds, C.W. Flocks, herds, and schools: A distributed
behavioral model, Computer Graphics 21 (1987), 25–34.

[21] Seneta, E. Non-Negative Matrices and Markov Chains,
Springer, 2nd ed., 2006.

[22] Sontag, E.D. Nonlinear regulation: the piecewise linear
approach, IEEE Trans. Automat. Control 26 (1981),
346–358.

[23] Strogatz, S.H. From Kuramoto to Crawford: exploring the
onset of synchronization in populations of coupled
oscillators, Physica D 143 (2000), 1–20.

[24] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet,
O. Novel type of phase transition in a system of self-driven
particles, Physical Review Letters 75 (1995), 1226–1229.

[25] Winfree, A.T. Biological rhythms and the behavior of
populations of coupled oscillators, J. Theoret. Bio. 16, 1
(1967), 15–42.

