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Preface to the Second Edition

The second edition is mainly an expansion of the material in the first
edition. The changes were made to (1) increase the clarity of the pres-
entation, (2) extend some of the basic ideas, and (3) indicate further
practical details. 1 have resisted the urgings (both from others and
myself) to include more difficult codes, such as Reed-Muller, Viterbi,
Fire, and cyclic. They seem to be more suitable for a second course,
and in any case require a firmer mathematical background than 1 have
assumed, if they are t0 be “understood.” 1 still believe that it is better,
in this subject, to master the fundamentais than it is to rush through,
with little real understanding, a large body of material. There are now
many excetlent texts devoted to algebraic coding theory.

Bostrom Management Corporation is thanked again for excellent
cooperation.

R. W. HAMMING



Preface to the First Edition

This book combines the ficlds of coding and information theory in a
natural way. They are both theories about the representation of abstract
symbols. The two ficlds are now each so vast that only the elements
can be presented in a short book.

Information theory is usually thought of as “sending information
from here to there” (transmission of information), but this is exactly
the same as “sending information from now to then” (storage of infor-
mation). Both situations occur constantly when handling information.
Clearly, the encoding of information for efficient storage as well as
reliable recovery in the presence of “noise” is essential in computer
science.

Since the representation, transmission, and transformation of in-
formation are fundamental to many other fields as well as to computer
science, it is time to make the theories easily available. Whenever and
wherever problems of generation, storage, or processing of information
arise, there is a need to know both how to compress the textual material
as well as how to protect it against possible mutilation. Of the many
known encoding methods, we can indicate only a few of the more im-
portant ones, but hopefully the many exampies in the text will alert the
student to cother possibilities.

The text covers the fundamentals of the two fields and gives ex-
amples of the use of the ideas in practice. The amount of background
mathematics and electrical engineering is kept to a minimum. The boek

xi



xii Freface to the First Edition

uses, at most, simple calculus plus a little probability theory, and any-
thing beyond that is developed as needed. Techniques that have re-
cently arisen in computer science are used to simplify the presentation
and the proofs of many results. These techniques are explained where
they are used, so no special knowledge of computer science is required.
Many other proofs have been greatly simplified, and when necessary
new material has been developed to meet current technological needs.
An effort has been made to arrange the material, especially the proof
of Shannon’s main resulf, so that it is evident why the theorems are
true, not just that they have been proved mathematically.

Chapter 11, on algebraic codes, deveiops the needed mathematics
of finite fields. Because of its mathematical difficulty, this chapter is
placed last and out of logical order. It can follow Chapter 3, if desired.
There is a deliberate repetition in the text; important ideas are usually
presented at least twice to ensure that the reader understands them.

The text leaves out large areas of knowledge in the belief that it is
better to master a little than to half know a loi. Thus more material
may easily be added (at the discretion of the teacher) when it seems
appropriate for the class.

I have followed custom in referring to Hamming codes and Ham-
ming distance; to do otherwise would mislead the student and be false
modesty.

Acknowledgments

It is difficult for the author to recall all his indebtedness to others, since
he has known about the material from many years of working at the
Bell Laboratories. Teaching a course at the Naval Postgraduate School,
based on N. Abramson’s elegant, small book, Information Theory and
Coding (Ref. [A}), rearoused this author’s interests in the two fields.
Short courses on the topic at other places further developed many of
the simplifications, elaborations, and examples, and the help of many
students is gratefully acknowledged. The help of Albert Wong is es-
pecially appreciated.

In the actual production of the book, thanks are due to Bostrom
Management Corporation, especially to Doug Thompson. However,
as always, all faults are to be assigned to the author.

R. W. HAMMING



Chapter 1

Introduction

1.1 A Very Abstract Summary

Although the text uses the colorful words “information,” “transmis-
sion,” and ‘“‘coding,” a closc examination will reveal that all that is
actually assumed is an information source of symbols sy, 55, . . ., 5,.
At first nothing is said about the symbols themselves, nor of their pos-
sible meanings. All that is assumed is that they can be uniquely rec-
ognized.

We cannot define what we mean by a symbol. We communicate
with each other in symbols, written or spoken (0r even gestures), and
we may or may not think in terms of symbols, but since we must use
symbols to define what we mean by a symbol, we see the circularity of
the process. Thus the meaning of a symbol must remain at the intuitive
level.

Next we introduce (Sections 4.8 and 6.2) the probabilities p,, p,, - . . ,
Pg of these symbols occurring.  How these p; are determined is not part
of the abstract theory. One way to get estimates of them is to examine
past usage of the symbol system and hope that the future is not signif-
icantly different from the past. For any discrete probability distribution
there is the value of the enfropy function:

xd 1
H= 2 p/log—
i1 Pi

I

The function H of the probability distribution p, measures the amount
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of uncertainty, surprise, or information that the distribution contains.
This function plays a leading role in the theory and provides a lower
bound on the average code length. Later we examine more complex
probability structures involving the symbols s,.

The problem of representing the source alphabet symbols s; in terms
of another system of symbols (usually the binary system consisting of
the two symbols 0 and 1) is the main topic of the book. The two main
problems of representation are the following.

1. Channel encoding: How to represent the source symbols so that
their representations are far apart in some suitable sense. As
a result, in spite of small changes (noise) in their representations,
the altered symbols can, at the receiving end, be discovered to
be wrong and even possibly corrected. This is sometimes called
“feed forward” error controt.

2. Source encoding: How to represent the source symbols in a min-
imal form for purposes of efficiency. The average code length

q
L= g:}Pnlf

is minimized where £ is the length of the representation of the ith
symbol 5. The entropy function provides a lower bound on L.

Thus, in principle, the theory is simply an abstract mathematica!
theory of the representation of some undefined source symbols in terms
of a fixed alphabet (usually the binary system) with the representation
having various properties. In this abstract theory there is no transmis-
sion through the channel, no storage of information, and no “noise is
added to the signal.” These are merely colorful words used to motivate
the theory. We shall continue to use them, but the reader should not
be deceived; ultimately this is merely a theory of the representation of
symbols. Clearly. this is a fundamental theory for much of human
symbol manipulation.

1.2 History

The beginnings of both coding and information theory go far back in
time. Many of the fundamental ideas were understood long before
1948, when information theory was first established on a firm basis. In
1948 Claude E. Shannon published two papers on A Mathematical
Theory of Communication” in the Bell System Technical Journal (re-
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printed in Ref. [S]). The papers almost immediately popularized the
field of information theory, and soon additional papers on information
theory appeared in the journals, and courses were taught on the subject
in electrical engincering and other departments of many universities.

As in most fields that suddenly open up, many of the early appli-
cations were iil advised; but how else are the limitations of a new field
to be discovered? As a result of the overexpectations of what infor-
mation theory could do, disenchantment gradually set in, and a con-
sequent decrease in the number of courses taught. Now, perhaps, a
more just evaluation can be made, somewhere between the wild enthu-
siasm of the first days and the sad disappointment that siowly
followed.

Information theory sets bounds on what can be done, but does little
to aid in the design of a particular system. The idea that it is therefore
useless to know information theory is false, as the following analogy
shows. Consider the theory of evolution as taught in biology. * Few
students will ever apply it directly in their lives, yet it is a valuable
constetlation of ideas. In spite of this lack of direct application, when
the ideas behind

1. Small changes in the species (variations)
2. Survival of the fittest (selection)

are mastered, the ideas can profitably be used in many other situations,
often far removed from biolopy. For example, when looking at a social
mstitution, such as a computer science department, a university, a mil-
itary organization, a banking system, a government, or even a family
relationship, one asks: “How did the present situation arise?” and
“What forces seiected this particular realization for survival?”

A little more appreciation of the power of the theory suggests the
questions: “Given the present forces on the social institution, what are
its possible variations (its ability to respond to the forces)?” and “‘How
will it evolve (what will survive)?” Thus the ideas in the theory of
cvolution can be used in many situations far removed from biology.

When asking “How will it evolve?” it is often worth the effort to
consider three similar questions:

What can evolve?
What should evolve?
What will evolve?

With the answers in mind, you are in a position to consider how to bring
the third answer more into line with the second - how to improve things,
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rather than merely settling for the inevitable that will occur if you do
nothing active to alter the world.

Similarly, information theory has ideas that are widely applicable
to situations remote from its original inspiration. The applicability of
the ideas is often not exact—they are often merely sugpestive—but the
ideas are still very useful.

At about the time that information theory was created, and in about
the same place, coding theory was also created. The basic paper, how-
ever, was delayed by patent requirements until April 1950, when it
appeared in the Bell System Technical Journal (reprinted in Refs. [B1},
[B1a], and {T}). In the case of coding theory, the mathematical back-
ground was at first less elaborate than that for information theory, and
for a long time it received less attention from the theorists. With the
passing of time, however, various mathematical tools, such as group
theory, the theory of finite ficlds (Galois theory), projective geometry,
and even linear programming have been applied to coding theory. Thus
coding theory has now become an active part of mathematical research
(Refs. [B1], [B3], [B4], [C], [Gui}, {L1}, [L2], [MS], [Mc], [P}, [W]).

Most bodies of knowiedge give errors a secondary role, and rec-
ognize their existence only in the later stages of design. Both coding
and information theory, however, give a central role to errors (noise)
and are therefore of special interest, since in real life noise is everywhere.

Logically speaking, coding theory lcads to information theory, and
information theory provides bounds on what can be done by suitable
encoding of the information. Thus the two theories are intimately re-
fated, although in the past they have been developed to a great extent
quite separately. One of the main purposes of this book is to show
their mutual relationships. For further detaiis on the history of coding
theory, see Refs. [B2] and [T]. By treating coding theory first, the
meaning of the main results of information theory, and the proofs, are
much clearer to the student.

1.3 Model of the Signaling System
The conventional signaling system is modeled by:

An information source

An encoding of this source

A channel over, or through, which the information is sent

A noise (error) source that is added to the signal in the channel
A decoding and hopefully a recovery of the original information
from the contaminated received signal

6. A sink for the information

bl ol
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This model, shown in Figure 1.3-1, is the one that we will use for
our signaling system. It has many features of signaling systems now in

use.
Encode w1 Channel »{  Decode

{n {2 {3 {5} {6}

Figure 1.3-1 Standard signaling system

The boxes ENCODE and DECODE should both be thought of as
being divided into two parts. In the ENCODE box, we first encode
the source, taking advantage of any structure in the symbol stream.
The more structure there is, the more, typically, we can compress the
encoding. These encoded symbols are then further encoded to com-
pensate for any known properties of the channel. Typically, this second
stage of encoding expands the representation of the message. Thus the
ENCODE box first does source encoding, followed by channel encod-
ing. The DECODE box must, of course, reverse these encodings in
the proper order to recover the original symbols.

This separation into two stages is very convenient in practice.  The
vanious types of sources are separately encoded into the standard in-
terface between the source and the channel, and then are encoded for
the particular channel that is to be used. Thus there is great flexibility
in the entire system.

1.4 Information Source

We begin, therefore, with the information source. The power of both
coding and information theory is to a great extent due to the fact that
we do not define what information is—we assume a source of infor-
mation, a sequence of symbols in a source alphaber sy, 35, . . . » 8, having
g symbols. When we get to Chapter 6 we will find that information
theory uses the entropy function H as a measure of information, and by
implication this defines what is meant by *‘the amount of information.”

But this is an abstract definition that agrees only parily with the com-
monly accepted ideas concerning information. It is probably this ap-
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pearance of reating what we mean by “information” that made infor-
mation theory so popular in the early days: people did not notice the
differences and thought that the theory supplied the proper meaning in
all cases. The implied definition does give the proper measure to be
used for information in many situations (such as the storage and trans-
mission of data), and people hoped that their situation was one of these
(they were often wrong!). Information theory does not handle the
meaning of the information; it treats only the amount of information,
and even the amount depends on how you view the source.

The source of information may be many things; for example, a
book, a printed formal notice, and a company financial report are all
information sources in the conventional alphabetic form. The dance,
music, and other human activities have given rise to various forms (sym-
bols} for representing their information, and therefore can also be in-
formation sources. Mathematical equations are still another informa-
tion source. The various codes to which we turn next are merely particular
ways of representing the information symbols of a source.

Information also exists in continuous forms; indeed, nature usually
suppiies information to us in that form. But modern practice is to
sample the continuous signal at equally spaced intervals of time, and
then to digitize (quantize; Ref. [J]) the amount observed. The infor-
mation is then sent as a stream of digits. Much of the reason for this
use of digital samples of the analog signal is that they can be stored,
manipulated, and transmitted more reliably than can the analog signal.
When the inevitable noise of the transmission system begins to degrade
the signal, the digital pulses can be sensed (detected), reshaped, and
ampilified to standard form before relaying them down the system to
their final destination. At the destination the digital pulses may, if
necessary, be converted back to analog form. Analog signals cannot
be so reshaped, and hence the farther the signal is sent and the more
it is processed, the more degradation it suffers from small errors,

A second reason that modern systems use digital methods is that
large-scale integrated circuits are now very cheap and provide a powerful
method for flexibly and reliably processing and transforming digital
signals.

Although information theory has a part devoted to analog (contin-
uous) signals, we shall concentrate on digital signals both for simplicity
of the theory and because, as noted above, analog signals are of de-
creasing importance in our technical society. Almost all of our large,
powerful computers are now digital, having displaced the earlier analog
machines aimost completely in information-processing situations. There
are almost no large, general-purpose hybrid systems left (1985). Most
of our information transmission systems, including the common tele-
phone and hi-fi music systems, are also rapidly going to digital form.
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‘1.5 Encoding a Source Alphabet

It is conventional to represent information (digital signals or more simply
symbols) as being in one of two possible states: a switch up or down,
on or off, a hole punched or not, a refay closed or open, a transistor
conducting or not conducting, a magnetic domain magnetized N-§ or
S-N, and so on. Currently, devices with two states, called binary de-
vices, are much more reliable than are muitistate devices. As a resuit,
binary systems dominate all others. Even decimal information-pro-
cessing systems, such as hand calculators, are usually made from binary
parts.

It is customary to use the symbols “*0” and “1™ as the names of the
two states, but any two distinct symbols {(marks), such as a circle and a
cross, will do. It is ofien useful to think of the 0 and I as only a pair
of arbitrary symbols, not as numbers.

First we consider merely the problem of representing the various
symbols of the source alphabet. Given two binary (two-state) devices
(digits), we can represent four distinct states (things, symbols):

00
01
10
11

For threc binary digits we get 2° = 8 distinct states:

000 100
001 101
010 110
011 111

For a system having & binary digits—usually abbreviated as biss—the
total number of distinct states is, by elementary combinatorial theory,

2’:

In general, if we have k different independent devices, the first having
n, states, the second n, states, . . . , the kth having n, states, then the
total number of states is clearly the product

L T

For example, if n; = 4, n, = 2, and n; = 5, we can represent 4 x 2
X 5 = 40 distinct items (states). This provides an upper bound on the
number of possible representations.
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This is the maximum number of source symbols we can represent
if all we consider is the number of distinct states. In Chapter 4 we
discuss how, using variable-length codes. to take advantage of the prob-
abilities of the source symbols occurring. For the present we merely
consider the number of distinct states—and this is the same as assuming
that all the source symbols are equally likely to occur.

We have emphasized two-state devices with two symbols; other
mulitistate devices exist, such as a “dead-center switch,”” with three states.
Some signaling systems also use more than two states, but the theory
is most casily presented in terms of two states. We shall therefore
generally use a binary system in the text and only occasionally mention
systems with r states.

Human beings often attribute meanings to the sequences of 0’s and
1’s, for example in the ASCII code (Table 1.7-1}. The computer (or
signaling system), however, mercly regards them as sequences of 0’s
and I's. In particular, a digital computer is a processor of streams of
the two symbols—it is the user (or possibly the input or output equip-
ment) that assigns meanings; the computer merely combines (s and 1's
according to how it is built and how it is programmed. The logic circuits
of a computer are indifferent to the meanings we assign to the symbols;
so is a signaling systemn.

This is the reason that information theory ignores the meaning of
the message, and by so deing it enables us to understand what the
equipment does to messages. The theory provides an inteHectual tool
for understanding the processing of information without paying attention
to meaning.

Typically, the channel encoding of the message increases the re-
dundancy (to be defined accurately later), as shown in Chapters 2 and
3. The source encoding (mentioned at the end of Section 1.3} usually
decreases the redundancy, as shown in Chapters 4 and 5.

We need to think of the source as a random, or stochastic, source
of information, and ask how we may encode, transmit, and recover the
original information. Specific messages are, of course, actually sent,
but the designer of the system has no way of knowing which of the
ensemble of possible messages will be chosen to be sent. The designer
must view the particular message 1o be sent as a random sample from
the population of all possible messages, and must design the system to
handle any one of the possible messages.  Thus the theory is essentially
statistical, afthough we wiil use only elementary statistics in this book.

Exercises

1.5-1 Compute the number of license plates of the form
number number number letter letter letter  Ans. (26)*(10)*
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1.5-2 How many instructions can there be in a computer with eight
binary digits for each instruction? Ans. 28 = 256

1.5-3 Discuss the biquinary system, which uses alternate two- and five-
state devices.

1.6 Some Particular Codes

The binary code is awkward for human beings to use. Apparently,
people prefer to make a single discrimination among many things.
Evidence for this is the size of the usual alphabets, running from about
16 to 36 different letters (in both upper- and lowercase) as well as the
decimal system, with 10 distinct symbols. Thus for human use it is often
convenient to group the binary digits, called birs, into groups of three
at a time, and call them the octal code (base 8). This code is given in
Table 1.6-1.

TABLE 1.6-1 Octal Code
Binary Octal

000
001
010
011
100
101
110
i1

=1 N LA R N e D

In the octal representation numbers are often enclosed in paren-
theses with a following subscript 8. For example, the decimal number
25 is written in octal as

(B,

Thus in America, Christmas is Halloween:

Dec 25 = Qct 31
(25)10 = (31)g

As an exampie, in Table 1.7-1 of the ASCII code in the next section
we have written the octal digits in the left-hand column rather than the
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binary digits. The translation from octal to binary is so immediate that
there is little trouble in going cither way.

Occasionally, the binary digits are grouped in fours to make the
hexadecimal code (Table 1.6-2). Since computers usually work in bytes.
which are usually 8 bits each (there are now 9-bit bytes in some com-
puters), the hexadecimal code fits into the machine architecture better
than does the octal code., but the octal seems to fit better into human
psychology. Thus neither code has a clear victory over the other in
practice.

TABLE 1.6-2 Hexadecimal Code

Binary Hexadecimal

0060
0001
0010
0011
0100
0101
0110
0111
1600
1001
1010
1011
1100
1101
1110
1111

THTAOAP PO E WO

Exercises
1.6-1 Since 28 = 3%, compare base 2 and base 3 computers.

1.6-2 Make a multiplication table for octal numbers.

1.6-3 From Table 1.6-2, what is the binary representation of D6?
Anms. 11010110

1.7 The ASCIHI Code

Given an information source, we first consider an encoding of it. The
standard ASCII code (Table 1.7-1). which represents alphabetic, nu-
meric, and assorted other symbols, is an example of a code. Basically,
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TABLE 1.7-1 Seven-Bit ASCHI Code

Octal  Char- Octal  Char- Octal Char- Octal Char-
Code acter Code acter Code acter Code  acter
000 NUL 040 SP 100 @ 140 h
001 SOH 041 { 101 A 141 a
002 STX 042 " 102 B 42 b
003 ETX 043 # 103 C i43 c
004 EOT 044 $ 104 D 144 d
005 ENOQ 045 % 105 E 145 e
006 ACK 046 106 F 146 f
007 BEL 047 ' 107 G 147 g
010 BS 050 ( 110 H 150 h
011 HT 051 } 111 i 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FF 054 ‘ 114 L 154 i
015 CR 055 - 115 M 155 m
016 SO 056 . 116 N 156 n
07 SI 057 Ve 117 O 157 o
020 DLE 060 0 120 P 160 P
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 5
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 Vv 166 v
027 ETB 067 7 127 w 167 w
030 CAN 070 8 130 X 170 x
031 EM 071 9 131 Y 171 y
032 SUB 072 : 132 Z 172 z
033 ESC 073 : 133 [ 173 {
034 FS 074 < 134 ~\ 174 i
035 GS 075 = 135 ] 175 }
036 RS 076 > 136 ° 176 -
037 us 077 ? 137 B 177 DEL

this code uses 7 binary digits (bits). Since (as noted already) computers
work in bytes, which are usually blocks of 8 bits, a single ASCII symbol
often uses 8 bits. The €ighth bit can be set in many ways. It is usually
set so that the total number of 1's in the eight positions is an even

number (or else an odd number-—--see Chapter 2).

Sometimes it is

always set as a 1 so that it can be used as a timing source. Finally, K
may be left arbitrary and no use made of it. To convert to the modified
ASCII code used by the LT33 8-bit teletype code, use 7-bit ASCIL code

+ (200).
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The purpose of the even number of 1's in the eight positions is that
then any single error, a 0 changed into a 1 or a 1 changed into a 0, will
be detected, since after the change there will be, in total, an odd number
of 1's in the whole eight positions. Thus we have an error-detecting
code that gives some protection against errors. Perhaps more important,
the code enables the maintenance to be done much more easily and
reliably since the presence of errors is determined by the machine itself,
and to some extent the source of the errors can actually be located by
the code.

We shall frequently use the check of an even (or odd) number of
V’s. It is called a parity check, since what is checked is only the parity
(the evenness or oddness) of the number of 1's in the message. Many
computers have a very useful instruction that computes the parity of the
contents of the accurmulator.

We are now in a better position to understand the ASCII code
(Table 1.7-1). The ASCII has a source alphabet of

27 = 128
possible characters (symbols). These characters are represented (en-
coded) inside a computer in the binary code. An even-parity check can
be used to set the eighth position of the 8-bit bytes of the ASCII code.
The three printed symbols of Tabie 1.7-1 are in the octal code. As an
example

127 =1 010 111

(where we have dropped the first 2 bits of the first octal symbol). For
an even-parity check this would be 127 = 11 010 111.

Exercises

1.7-1 Write the letters P and p in binary.

1.7-2 To what does 01 010 010 correspond?

1.7-3 Using base 4 code, write out the lowercase ASCII alphabet.

1.7-4 Write out the uppercase ASCII alphabet in base 16.

1.8 Some Other Codes

Angother familiar code is the Morse code, which was once widely used.
Part of the code is given in Table 1.8-1. The dash is supposed to be
three times the length of the dot.  Although the Morse code may appear
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TABLE 1.8-1 Morse Code

NXg<cCoHvmoRoZZr AT "1 OoTOnUOA >
g

to be encoded in a binary code, it is, in fact, a ternary (radix 3, r = 3)
code, having the symbols dot, dash, and space. The space between
dots and dashes in a single letter is 1 unit of time, between letters it is
3 time units, and between words it is 6 time units.

We now make a brief digression to introduce a notation. We will
continuaily need the binomial coefficients

Cin. k rl
R Y,

They count the number of ways a set of k items can be selected from

aset of n items. We have adopted the old-fashioned notation C(n, k)

because it is easily produced on a typewriter, it is easily set in print,

and it can be gracefully handled by most computers. The currently

popular notation
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is difficuit for most equipment to handle and is awkward when it appears
in running text.

The Morse code is clearly a variable-length code that takes advan-
tage of the high frequency of occcurrence of some letters, such as “E,”
by making them short, and the very infrequent letters, such as *J,”
relatively longer. However, the problems that arise when trying to
recognize the words of a variable-length code are great enough in this
case 10 cause almost complete replacement of the Morse code by the
van Duuren code, which uses three out of seven positions filled with 1's
and the other four with ('s. There are C(7, 3) = 35 possible words in
this code, and as with the 8-bit ASCII code, the van Duunren code permits
the detection of many types of errors since the receiver knows exactly
the number of 1's that should be in the received message unit of seven
time slots.

Another widely used simple code is the 2-out-of-5 code. As the
name implies, two out of five positions are filled with 1’s. In this code
there are, very conveniently, exactly C(5, 2) = 10 possible symbols.
One of the many ways of associating the code symbols with the numerical
values of the decimal digits is the 01247 code, which is a weighted code
where we attach weights 0, 1, 2, 4, and 7 to the successive columns of
the code. The corresponding decimal digit is the sum of the weights
where the 1°s occur, with the sole exception that the combination 4, 7
is taken as 0. The code is given in Table 1.8-2. Again, any single error
in a message can be recognized because it will have an odd number of
I’s in it.

Exercises

1.8-1 Table 1.8-2 is one assignment of number values to the 10 possible
symbols of the 2-out-of-5 code; how many possible 2-out-of-5
codes can there be? Ans. 10

TABLE 1.B-2 The 2-Out-Of-5 Code

012 47 Decimal Corresponds to:
11000 1 0+1
10100 2 0+ 2
01100 3 1+72
10010 4 0+4
01010 5 1+ 4
001t 10 6 2+4
1000t 7 0+7
01001 8 1+ 7
00101 9 2+7
0 0 011 0 4 +7
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1.8-2 Write 125 in the 2-out-of-5 code.
Ans. 11000 10100 01010

1.8-3 Of ail possible 7-bit odd-parity symbols, how many are not used
in the van Duuren code? Ans. 29

1.9 Radix r Codes

As noted earlier, most systems of representing information in computers
(and other machines) use two states, although the Morse code is an
exampie of a signaling system with three symbols in the underlying
alphabet. The reason for the dominance of two-symboi signaling sys-
tems is that two-state devices tend to be more reliable than multistate
devices. On the other hand, human beings clearly work better with
multistate systems—witness the letters of the alphabet, topether with
the various punctuation symbols and the decimat digits. Thus it is
necessary at times to consider codes with r symbols in their alphabets.
For the Morse code, r = 3,

The English language alphabet uses 26 letters, both upper- and
lowercase, plus miscellaneous punctuation marks. Occasionally, you
see a system in which there are exactly the 26 letters, the 10 decimal
digits, and a space, a total of 37 symbols. We examine this important
code in Scction 2.7,

In more abstract notation we assume a source alphabet S consisting
of ¢ symbois 5y, s;, . . ., 5,. These are, in turn, represented in some
other symbols, say the binary code. We may, therefore, either think
of the ASCII code as having r = ¢ = 27 = 128 symbols s, 55, . . .,
5128, Of we may think of each symbol as being a block of 8 binary digits
with 1 extra bit appended to the 7 necessary bits,

1.10 Escape Characters

When sending information it is usually necessary to control, from the
source end, the remote equipment that is being used. For example, we
have to tell the equipment what to do with the information that is being
sent. Therefore, it is necessary to have a number of reserved symbols
to which the remote equipment responds. “End Of Message™ is such
a symbol; another might be “Carriage Return™; another a “Shift Type
Font” from lower- to uppercase or back again; and stili another might
be “Repeat Last Message.” In the ASCII code the entire first column
of the table is devoted to special characters.

How can this controt be done if we do not wish to restrict the
information that can be sent through the system? If, for example, we
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were using binary digits as numbers in our message, how do we avoid
those combinations of bits that are controi symbols for the remote equip-
meni? 1f by chance our stream of binary numbers happened to contain
such a reserved symbol, then the equipment would respond to the re-
served symbol when we did not want it to do so. Evidently, some kind
of restriction on what can be sent is necessary, but the question is: How
can this be done with the least pain to the user of the system?

One way this could be done is to add an extra binary digit to each
block of digits, using, say, a O if it is message and a 1 if it is a contro]
instruction. As can be seen, this will waste a good deal of channel
capacity if the control words are rarety used. Furthermore, it does not
solve the problem of relaying control words through one piece of equip-
ment to another piece of equipment.

In one form of FORTRAN, the aspostrophe (') is used to delimit
a string of characters. For example, the string of symbols ABC is written

‘ABC!

In the FORTRAN processing, the apostrophes are stripped off and the
string ABC emerges.

If the string happens to contain an apostrophe, such as the string
FINNEGAN’S WAKE, you need to write

'FINNEGAN'"S WAKE'

The processing strips off the first of the pair but lets through the one
immediately following.

To see how to write the underlying program of the FORTRAN
compiler, we use a (slightly extended) state diagram, which is widely
used in finite automata theory. Each state consists of READ NEXT
SYMBOL foilowed by WHAT TO DO. We have three states to con-
sider: (1) the normal state of processing FORTRAN text, (2} the usual
inside-the-string state, and (3) the inside-the-string state that looks for
an immediately succeeding apostrophe. The state diagram is shown in
Figure 1.10-1. 1If the system has more than one reserved symbol, slight
variations on this diagram will handle them.

In the field of logic this problem is known as the metalanguage
problem: How does one talk about the language itself, especially when
one has to use essentially the same language to do the tatking? In
practice we use voice accents (quote marks) to indicate that we are
talking about the language itself, and we leave them out when we are
merely talking. There are other formal devices for solving this common
problem that arises in computer science and in other fields of information
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Copy ' 1 1
Normal Copy Special
State State State

Figure 1.10-1 Reserved symbol automata

handling and processing, and these may also be adapted to this common,
vexatious problem.

In controlling a digital computer the failure to distinguish between
the various levels of metalanguages is a source of constant confusion.
A FORTRAN program and the instruction to COMPILE it are in dif-
ferent languages. A pregram requires two end marks, one for the
metalanguage level of COMPILE to indicate the end of the source
program and to stop the compilation process, and one for the FOR-
TRAN program to be used at RUN TIME to end the actual compu-
tation.

Exercise

1.10-1 Describe in detail how you would encode *Help!' to get through
the FORTRAN-type system described in the text.
Ans. "Help!™

1.11 Outline of the Course

We have introduced the main topics as well as a number of codes with
varying properties, and now have a basis for discussing the material the
course is to cover.

In Chapters 2, 3, and 11 we look at ways of channel-encoding
information (messages, sources of symbols) so that any errors made in
going through a channel, up to a given level, may be detected and/or
corrected at the terminal end without recourse to the source. For a



18 Ch. 1/ Introduction

detected but uncorrectable error, we might call for a repeat of the
message, hoping to get it correct the next time. In general, the error-
detecting and error-correcting capability will be accomplished by adding
some digits to the message, thus making the message slightly longer.
The main problem is to achieve the required protection against the
inevitabie errors (noise) in the channel without paying too high a price
in adding extra digits. This is encoding for the channel.

In Chapters 4 and 5 we focus on source encoding. The compression
of messages is important for efficiency. In transmission through space
the shorter message will use the signaling equipment for a shorter time;
for storage problems less storage will be needed for the compressed
code. This is source encoding. In Chapters 4 and 5 we Jook at this
side of the problem and examine ways to reduce the amount of infor-
mation being sent. We do this by examining the structure of the mes-
sages being sent.  When there is a great deal of structure in the infor-
mation being sent, a good deal of message compression can be achieved,
and hence greater efficiency results. Since there are so many properties
that messages can have which allow message compression, we can look
at only a few of the most common ones. We restrict our attention to
general methods and must peglect the many special, trick methods,
which are often fairly easy to invent.

In Chapter 6 we introduce the central concept of the entropy of a
source of information and show how it is connected with the concept
of the maximum amount of information that can be sent through a given
channel. Thus we get a bit closer to the concept of exactly what in-
formationis. The first of Shannon’s encoding theorems is for a noiseless
channel, and is fairly c¢asy to prove. The second theorem, presented
in Chapter 10, discusses sending information through a noisy channel
and is much more difficult to prove. Fortunately, the simple binary
symmetric channel is the realistic case, and for this case the proof is easy
to understand. The proof in the more general case is more difficuit,
and is only sketched.

Shannon’s two theorems set bounds on what enceding can accom-
plish. Unfortunately, the second of his theorems is somewhat noncon-
structive and does not tell us how in practice to achieve the bounds
indicated. The result is not useless since it indicates where we can
expect to achieve large improvements in a signaling system and where
we can expect at best only small improvements.

The definition of a channel in information theory is often not a
practical one and we need other ways of assessing this central concept
of channel capacity for transmitting information. Therefore, Appendix
A looks briefly at how, in practice, we measure the channel capacity of
a signaling system, especially for continuous signals.
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We remind the reader that while we often use the language of
“signaling from here to there,” all of it is applicable to *“signating from
now to then” through some storage medium. In this case it is often
the first of Shannon’s theorems (the noise-free one) that is important.

Traditionally, the development of both coding and information the-
ory is done in as elegant and general a way as possible——usually highly
abstract, with many fancy mathematical symbols, and devoid of practical
aspects. This approach is not necessary, and we regularly pause to show
how what we are talking about is reflected in common sense and in
actual practice, and how it suggests going about the design of future
systems. We also try to make the proofs of the results as intuitively
obvious as possible rather than merely mathematically elegant. Along
the way we introduce many small, practical details that are important
when designing a whole system.

But let us be clear about the approach we are adopting. When
there are so many different highly evolved and highly involved signaling
systems now in use, and so many new ones over the immediate horizon,
it is impractical to take them up one at a time. 1t is necessary to take
an overview approach and concentrate on the fundamentals that seem
most likely to be relevant for understanding both past and future sig-
naling systems. Indeed, this is the only reasonable approach to any
rapidly changing field of knowledge. The approach through special
cases simply leaves the student surprised by tomorrow’s system. Thus,
of necessity, the treatment is, at times, abstract and avoids many of the
messy details of current systems.



Chapter 2

Error-Detecting Codes

2.1 Why Error-Detecting Codes?

We first examine channel encoding. The problem is to design codes
that will compensate for the inevitable noise that is in all realistic chan-
nels. More and more often we require very reliable transmission through
the channel, whether it be through space when signaling from here to
there (transmission), or through time when signaling from now to then
{storage). Experience shows that it is not easy to build equipment that
is highly reliable. By “highiy reliable” consider how much computing
a modern computer does in 1 hour. At one operation per microsecond
it does 3.6 billion (10”) operations in 1 hour (and each operation involves
many individual components). By comparison there are less than 3.16
billion seconds in 100 years (more than your probable lifetime).  Sim-
ilarly, reliable transmission systems require very high reliability of their
individual components. Reliability in the transmission of words of hu-
man languages is one thing; for transmission of computer programs it
is something clse-—hence the importance of detecting errors. Fur-
thermore, as already noted, error detection is a great aid in high-quality
maintenance. Without error detection, a large digital system soon be-
comes unmaintainable.

If repetition is possible, then it is frequently sufficient merely to
detect the presence of an error. When an error is detected we simply
repeat the message, the operation, or whatever was being done, and
with reasonable luck it will be right the second {or even possibly the
third} time (see Section 2.5).
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It is obviously not possible to detect an error if every possible
symbol, or set of symbols, that can be received is a legitimate message.
It is possible to catch errors only if there are some restrictions on what
is a proper message. The problem is to keep these restrictions on the
possible messages down to ones that are simple. In practice, “simple”
has in the past tended to mean “easily computable,” but it could in the
future mean “easily looked up.” In this chapter we investigate the
problem of designing codes such that at the receiving end, any single,
isolated error can be detected. In Chapter 3 we consider correcting at
the receiving end the errors that occur in the message.

2.2 Simple Parity Checks

The simplest way of encoding a binary message to make it error detecting
is to count the number of 1's in the message, and then append a final
binary digit chosen so that the entire message has an even number of
I’s in it. The entire message is therefore of even parity. Thus to
(n ~— 1) message positions we append an nth parity-check position. At
the receiving end the count of the number of 1’s is made, and an odd
number of 1’s in the entire n positions indicates that at least one error
has occurred.

Evidently, in this code a double error cannot be detected. Nor
can any even number of errors be detected. But any odd number of
errors can be detected. If (1) the probability of an error in any one
binary position is assumed to be a definite number p, and (2) errors in
different positions are assumed to be independent, then for n much tess
than 1/p, the probable number of single errors is approximately np.
The probability of a double error is approximately n(n ~ 1)p?72, which
is approximately one-half the square of single error. From this it follows
that the optimal Iength of message to be checked depends on both the
reliability desired (the chance of a double error going undetected) and
the probability of a single error in any one position, p. For more details,
see Section 2.4.

Counting the number of 1’s and selecting an even number is equiv-
alent to working in a modulo 2 arithmetic. *‘Modulo 2” means that
every number is divided by 2 (the modulus) and only the remainder is
kept. In this arithmetic (whichcounis 0, 1,0,1, . . .) we count moduio
2 the number of 1’s in the (n — 1) message positions and then put this
sum into the sth position. Thus there are an even number of 1’s in the
# positions sent. This even-parity check is generally used in the theory.
In practice, it is occasionally convenient to adopt an odd-parity check
so that the message of all 0’s is not a legitimate message. The changes
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necessary in the theory are sufficiently easy to make that we will continue
to use even-parity checks throughout the theory.

To actually find the parity of a string of 0’s and 1's we can use a
two-state finite automaton (Figure 2.2-1). We start in the state 0, and
each 1 in the message causes a change in the state. The final state at
the end of the message gives the parity count.

Figure 2.2-1 Parity count circuit

Many computers have an instruction that directly counts the pumber
of I’s in the accumulator register. The right-hand digit of this sum is
the required count modulo 2. If this or an equivalent instruction is not
available, then logically adding (exctusive OR, XOR; see Section 2.8)
one half of the message to the other half preserves the parity count in
the sum. Repeated use of this observation halves at each step the length
of the message and will produce the required sum modulo 2 of all the
I's in the accumulator. Thus about “the first integer greater than or
equal to log,n™ logical additions will be needed.

2.3 Error-Detecting Codes

It is common practice to break up a long message in the binary alphabet
into runs (biocks) of (n — 1) digits each, and to append one binary digit
to each run, making the block that is sent # digits long. The finai block
may need to be padded out with (’s. This produces the redundancy of

n 1

where the redundancy is defined as the number of binary digits actually
used divided by the minimum necessary. The excess redundancy is
Ii(n — 1).

Clearly, for low redundancy we want to use long messages. But
for high reliability short messages are better. Thus the choice of the
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length n for the blocks of message to send for a given probability of
error p is an engineering compromise between two opposing forces.

The 2-out-of-5 code mentioned in Section 1.8 is an example of an
error-detecting code with n = 5 that uses an even-parity check. The
van Duuren 3-out-of-7 code is another such code, but uses odd parity.
Neither uses ail the symbols it could. A variant is the word count
occasionally used in sending telegrams.

Many other examples of this simple kind of encoding for error
detection occur in practice. For example, when making a memory
transfer to tape, drum, or disk, the logical sum of all the words being
transferred can be appended as a check word. See Ref. [W] for hard-
ware realizations.

2.4 Independent Errors; White Noise

We have already mentioned (Section 2.2) the model usually assumed
for errors in a message: (1) an equal probability p of an error in each
position, and (2) an independence of errors in different positions. This
is called “white noise” in (a poor) analogy with white light, which is
supposed to contain uniformly all the frequencies that are detected by
the human eye. The theory for this case is very easy to understand.
But in practice there are often reasons for errors to be more common
in some positions in the message than in others, and it is often true that
errors tend to occur in bursts and not be independent (a common power
supply, for example, tends to produce a correlation among errors; so
does a nearby lightning strike; see Section 2.6).

It is only fair to note that due to the rapid pace of technological
change, it is not possible at the design stage to have much of an idea
about the noise patterns of errors that will actually occur, so that white
noise is often a reasonable assumption.

The probability of an error in any one position is p; hence the
probability of no error is 1 — p. From the assumed independence of
the errors, that is, for white noise, the probability of no error in the n
positions 1s

(1 - py
The probability of a single error in the n positions is

np(l — py"!
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The probability of k errors is given by the kth term in the binomial
expansion

1=[1~-p)+pl"=(Q0-p)y +np(l -~ py!
n{n ~ 1)

3
2

pPQ-py+...+p

For example, the probability of exactly two errors is

f..(.."m.é_:wl)..p:!(l ~ py-?

We can get a formula for the probability of an even number of
errors (0, 2,4, . . .) by adding the following two binomial expansions
and dividing by 2:

i

1= 00 - p) + b = 3 Cn 0Pt~ prt

il
NEE

[ = p) = Pl = 3 (~DAC(n, AL~ pr*

i

(The [ ] in the next equation means “‘greatest integer in.”)

L opy )
lm..*:,_,(}._imﬂ = zo C(n, 2m)p>(1 — py' =" (2.4-1)

The probability of an odd number of errors (which will always be de-
tected) is 1 minus this number.

The probability of no errors is the first term (m = 0) of the series
(2.4-1). Therefore, to get the probability of an undetected error, we
drop the first term of (2.4-1), to get

{n/2}

.21 C(n, 2m)p?™(1 ~ p)y*~2" (2.4-2)

Usually, only the first few terms are of any importance in evaluating
this formula.

Exercises

241 If p = 0.001 and n = 100, what is the probability of no error?
Ans. exp (— 1%
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2.4-2 If p = 0.001 and n = 100, what is the probability of an undetected
error?

2.4-3 If p = 0.01 and you want the probability of an undetected error
to be 0.005, what is the maximum length » that you can use?
Ans. n = 10 but almost n = 11

2.4-4 For smail p and arbitrary n, do Exercise 2.4-1. Ans. exp (~np)

2.5 Retransmission of Message

When an error is detected, it is often possible to ask for a retransmission,
a recomputation, or repeat of the process being done. For example,
in the Bell Relay Computers the code used for representing the decimal
digits was a 2-out-of-5 code, and whenever an error was detected, a
second, and even a third trial was made. On the Model 6 Relay Com-
puter, if after the third trial the message was still not acceptable, then
the whole probiem was dropped and the next one taken up, in the hope
that the defective part would not be used in the new problem.

When reading magnetic tapes it is the custom to use at least an
error-detecting code, and to call for repeated readings of the tape if the
parity checks are viclated. How many repetitions to use depends on
your model for the error. If you think that the error is due to a slight
loss of magnetization, then with luck a subsequent trial will read the
tape correctly; but if you think it is due to a more permanent failure,
then repetitions will probably occur until another, independent error
occurs, so that then the parity check is met. You will therefore get a
message with two errors in it, rather than the right message! Thus the
strategy of “detect an error, and if one is found, call for one or more
repetitions™ is sound only if the type of error you expect is transient.

Parity checks have long been used in computers, in both hardware
and software (Ref. [W]). For example, in the early days of unreliable
drum storage, every WRITE on the drum was followed by the logical
sum of all the registers that were used for the message being stored on
the drum. This check sum was then stored in a final register of the
block on the drum. The drum was next read back and checked to see
if the message was written properly. Only then was the information
being stored released from the machine’s storage registers. When later
the drum was read, the parity check (the logical sum of all the registers
being stored) was again computed to see if the sum was identically zero.
If not, retrials were made to read it again. This method depends on
the fact that x + x = 0 for logical addition.
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2.6 Simple Burst Error-Detecting Codes

Noise (errors) often occur in bursts rather than in isclated positions in
the received message. Lightning strikes, power-suppiy fluctuations, and
loose flakes on a magnetic surface are all typical causes of a burst of
noise.

Suppose that from measurements in the field we agree on the max-
imum length L of any burst we are to detect. For case of discussion
(since the changes necessary to handle other cases are easy to invent)
assume that the burst length L is the accumulator word length of the
computer. We have only to select the appropriate error-detecting code
(or error-correcting code of Chapter 3) and instead of compulting parity
checks over the bit positions, we compute parity word checks over the
corresponding word positions. In effect, we work in words, not bits,
and have L independent (interleaved) codes, one over each bit position
in the word (see Section 3.8). If a burst covers the end of one word
and the beginning of another, stili no two errors will be in the same
code since we assumed that any burst length k was (0 = k < L).

Thus we can send messages through noise that is “bursty” provided
that we recognize the noise pattern and design for it. For reliable
hardware, see Ref. [W].

Example. If thc message is

Fatl 1980

this can be encoded in ASCII in a burst code as follows (no parity check
is used here):

F=106=01 000 110
a= 141 = 01 100 001
1 =154 =01 101 100
1=154 =01 101 100
sp = 040 = 00 100 000
1 =061 =00 110 001
9 =071 =00 111 001
8 =070 = 00 111 000
0 = 060 = 00__ 110000

Check sum = 00 000 111 = BEL
The encoded message is therefore
Fall 1980BEL
where BEL is the single ASCH symbol 00 000 111.
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Exercise

2.6-1 Given the message

101 01010
011 00110
000 11110
110 00110
111 10101

add the appropriate check to form a burst error-detecting code
of word length 1 byte. Ans. 111 00001

2.7 Alphabet Plus Number Codes: Weighted Codes

The codes we have discussed so far have generally assumed a simple
form of white noise. This is very suitable for many types of machines,
although in serial transmission the loss of a symbol (or the insertion of
an extra one) is a common error in some systems, and is not caught by
such codes, hence causes a loss of synchronization.

When dealing with human beings, another type of noise is more
appropriate. People have a tendency to interchange adjacent digits of
numbers; for example, 67 becomes 76. A second common error is 10
double the wrong one of a tripie of digits, two adjacent ones of which
are the same; for example, 667 becomes 677, merely a change of one
digit. These are the two most common human errors in arithmetic.
In a combined alphabet/number system, the confusion of “oh” and
“zero” is very common,

A rather frequent situation is to have an alphabet, plus space, plus
the 10 decimal digits as the complete set of symbols to be used. This
amounts to 26 + 1 + 10 = 37 symbols in the sending alphabet.
Fortunately, 37 is a prime number and we can use the folowing method
for error checking. We weight the symbols with weights 1, 2, 3, . ..
beginning with the check digit of the message. We reduce the sum
modulo 37 (divide by 37 and take the remainder) so that a check symbol
can be sejected that wilt make the sum 0 modulo37. Note that a “blank™
at the end, as a check symbol, is not the same as nothing.

It is easy to compute that an interchange of adjacent digits will be
detected, and that doubling the wrong digit (which is the changing of a
single symbol) will also be detected. If the interchanged digits are the
kth and (k + 1)st, their original sum,

ks + (k + 1)55.4
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becomes
(k + Vs, + kspyy
and the change
ks, + (k + Dsepq ~ (K + 1)8 — Kkspyq = Spiq — 5

cannot be divided by 37 with a remainder O unless s, = s,,,. A similar
argument applies to the interchange of any two digits, adjacent or not
(assuming a message length less than 37). Many other interchanges can
also be caught. The change of “oh” to “zero” is the change of a single
symbol, Such a code is very useful when human beings are involved
in the process. Notice that the length of the message being encoded is
not fixed, and can exceed 37 symbols if necessary (although special
precautions are then required). This type of encoding can be used on
credit cards, the names of some kinds of items in inventory, and so on.
The probability that a random encoding will get through the input check
is %. Thus by using this simple parity check, forgery attempts will be
caught about 97% of the time.

When the check symbol is the “space,” this can sometimes be
awkward. If it is awkward, then frequently the whole label, say an
inventory name, can be dropped and a new label chosen in its place (a
loss of about # of the possible inventory names results).

To find the weighted check sum easily, note that if you compute
the running sum of a sct of 7 numbers, and then sum these again, you
wiil have the first number entered into the final sum # times, the next
number 1 — 1 times, the next n — 2 times, and so on, down 1o the last
number, which will get into the final total only once. Thus you have
the required weighted sum of the numbers that correspond to the sym-
bols of the alphabet being used.

If this “summing the sum™ seems mysterious, consider the message
WXxyz

Message Sum Sum of sum
w w w
X w+x 2w + x
y w+x+y 3w+ 2x + y
z wtx+y+z w + 3x + 2y + 2

where we see the weighted sum emerging. This is sometimes knowp
as “progressive digiting.”
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Example. 1f0 = 0,1 = 1,2 =2, ...,9=9,A =10,B = 11,
., Z = 35, bl = 36, then encode
A6 T
We proceed as follows:
Sum Sum of Sum
A =10 10 10
6= 6 16 26
bl = 36 52 78
T e 7 59 137
X = X 59 + x 196 + x
5
37V196 + x
185
11 + x

Since 11 + x must be divisible by 37, it follows that
x=371-11=26=Q
The encoded message is therefore
A6 TQ

To check at the receiver that this is a legitimate encoded message, we
proceed as follows;

A 10 x5 = 50
6 6 xX4= 24
bl 36 x 3 = 108
7 Tx2= 14
Q 26 x 1 = 26

Sum =222 = 37 x 6 =0 modulo 37

The method of encoding used in this section is an example of en-
coding for Auman beings rather than for the conventional white noise.
We see how dependent the encoding method chosen is on the assumed
noise. It is necessary to emphasize this point because the theory so
often tacitly assumes the presence of white noise that the reader is apt
to forget this basic assumption when involved with an elegant, complex
code.
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Exercises

2710 =0,1=1,...,9=9 A =10,B =11, .. ,Z = 35,
bl = 36, encode

B23F mod 37
Ans. B23F9
2.7-2 In the same code as that of Example 2.7-1, is
K9K9

a correct message?

2.8 Review of Modular Arithmetic

Because we are often going to use parity checks, we need to get a firm
grasp on the arithmetic of the corresponding manipulations. We have
seen that mod 2 addition (“mod” is an abbreviation for “modulo™) is
the arithmetic that the simpie binary parity checks use and is the same
as logical addition (exclusive OR; XOR). The rules for this form of
addition are

0+0=0
0+1=1
1+0=1
1+1=0

There are no numbers other than 0 and 1 in the system. If we choose
to work in normal arithmetic, then we merely divide the result by 2 and
take the remainder. When we later come to the algebra of linear equa-
tions and polynomials, where the coefficients are from the mod 2 number
system, we will have the same table for addition. For multiplication
we have the rules

ODx 0=
0x1

1 x0
1 x1

il

i
- o o <

It

Thus muttiplication is the logical AND of computing.
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Occasionally, we will work modulo some other number than 2.
For example, in the preceding section we used numbers modulo 37.
Generally, the theory in any prime base p (such as 37} is very much like
that of base 2, and we need not go into the details here. You have
only to read the preceding paragraph and make simple changes to under-
stand the corresponding arithmetic and algebra. For addition and sub-
traction mod p, we divide every number by p and take the positive
remainder.

For mutitiplication mod m (not a prime) we must be more careful.
Suppose that we have the numbers a and b congruent to a’ and b" modulo
the modutus . This means that

a modm

i

b=p' modm
or
a~=a + km

b=b + kym

I

for some integers k, and k,. For the product ab we have

ab = a'b’ + a'kyn + b'km + ki km?

ab = a'b’ modm

Now consider the particular case

]

a = 15, b= 12, m = 10

We have

a' =5, b =12
and

ab = a'b’ = () mod 10

But neither a nor b is congruent to zero! Only for a prime modulus do
we have the important property that if a product is zero, then at least one
factor is zero. Hence the importance of a prime modulus. Now we
see why 37 was so convenient a number in Section 2.7.

Modular arithmetic should be clearly understood, especially the
need for a prime modujus, because in Chapter 11 we will face the
problem of constructing a corresponding modular algebra. In the next
section, we therefore give yet another example of this type of encoding.
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2.9 ISBN Book Numbers

The International Standard Book Number (ISBN) now appears on most
textbooks. It is (usually) a 10-digit code that publishers assign to their
books. A typical book will have

0-1321-25714

although the hyphens may appear in different positions. (The hyphens
are of no importance.) The 0 is for United States and some other
English-speaking countries. The 13 is for Prentice-Hall, the publisher.
The next six digits, 21-2571, are the book number assigned by the pub-
lisher, and the final digit is the weighted check sum, as in Section 2.6.
Modulo 10 wili not work, since 10 is a composite number. Thus they
use the check sum modulo 11, and are forced to allow an X if the required
check digit is 10. As before, this could be avoided by giving up 1 of
the possible book names.
Searching around, 1 found the ISBN

0-1315-2447-X

To check that this number is a proper 1SBN, we proceed as follows:

0
1 1 1
3 4 5
1 5 10
5 10 20
2 12 32
4 16 48
4 20 68
7 27 95
X=10 37 132=(11) x (12) = 0 mod 11

It checks!

Here again we see a simple error-detecting code designed for human
use rather than for computer use. Evidently, such codes have wide
applicability.
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Exercises

2.9-1 Check the ISBN 0-13165332-6.
2.9-2 Check the ISBN 0-1391-4101-4.
2.9-3 Consider the ISBN 07-028761-4. Does it make sense?

2.9-4 Check the ISBNs in your current textbooks.



Chapter 3

Error-Correcting Codes

3.1 Need for Error Correction

For channel encoding, simple error detection with repetition is often
not enough. The immediate question is: If a computer can find out
that there is an error, why can it not find out where it is? The answer
is that by proper encoding this can, indeed, be done. For example, we
can write out, or do, each thing three times, and then take a vote. But
as we shall see, much more efficient methods are available. As an
example of the use of an error-correcting code. when information is sent
from space probes to Earth, the signaling time is so long that by the
time an error can be discovered, the source may long since have been
erased. The codes currently used are very sophisticated and can correct
many simuitaneous errors in a block.

Error correction is also very useful in the typical storage (memory)
system. Many organizations, for example, store much of their infor-
mation on magnetic tapes. Over the years the quality of the recording
gradually deteriorates, and the time comes when some of it cannot be
read reliably.  'When this happens, the original source of the information
is often no longer available and therefore the information stored on the
tape is forever lost. If some error-correction ability is incorporated into
the encoding of the information, the corresponding types of errors can
be corrected.

Error comrection has long been used and can be incorporated into
the hardware. For example, the old NORC computer had a simple
type of error correction for isolated errors that occurred on its cathode-
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ray-tube storage device. Often, it is only the storage device that uses
the emror correction. The STRETCH computer that IBM built “to
stretch the state of the art” had single-error correction and double-error
detection (Section 3.7) throughout much of the computer. On the
STRETCH acceptance test it has been claimed that an error in a circuit
developed in the first few minutes and that the error-correcting circuits
fixed up the errors for the rest of the hour. Currently, most high-
density magnetic recording uses some form of error correction, as does
hi-fi digital recording of music. As the components get smaller, solid-
state memories generally go to error-correcting codes. See Ref. [W}]
for hardware checking.

The error correction capability can be in the software as well as in
hardware. We mentioned earlier that error-detection programs for drum
storage were in the software. Error correction could also be used there.
In many other places, correcting codes are built into the software. The
software approach has the advantage that the error correction can more
easily be put on the important parts of the information and omitted
from the less important parts. Furthermore, only as experience reveals
the weaknesses of the computer system is it known where error pro-
tection is most needed as well as how much is needed. Only after
simulation of error protection in software has proved that it handles the
problem should it be added to the system in the form of hardware.
However, error correction in software will clearly use a lot of computer
time.

3.2 Rectangular Codes

The first, and simplest, error-correcting codes are the triplication codes,
where every message is repeated three times and at the receiving end
a majority vote is taken. It is obvious that this system will correct
isolated single errors. However, it is also obvious that this encoding
system is very inefficient. Three computers in parallel with the asso-
ciated ‘“‘compare and interrupt if necessary circuits”™ is expensive.
Therefore. we look for better methods of encoding information so that
a single error can be corrected.

The next simplest error-correcting codes are the rectangular codes,
where the information is arranged, in principle, although not necessarily
in fact, in the form of an m — 1 by n — 1 rectangle (Figure 3.2-1). A
parity-check bit is then added to each row of m - 1 bits to make a total
of m bits. Similarly, a check bit is added for cach column. Whether
or not the final corner bit is used has little importance; for even-parity
checking, the parity sum of its row and its column are the same. Thus



36 Ch. 3} Error-Correcting Codes

m:l
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O = message position
X = check position

Figure 3-2.1 Rectangular codes

the original code of (;m — 1)(n — 1) bits of the rectangie becomes an
array of mn bits. The redundancy is therefore 1 + U/(m — 1) + 1/
(n — 1) + 1/(m — 1)(n — 1). For a given size mn, the redundancy
will be smaller the more the rectangle approaches a square. For square
codes of side n, we have (n ~ 1)* bits of information and 2n — 1 bits
of checking along the sides.

A rectangular code, for example, was the code that the NORC
computer used for its cathode-ray storage tubes. Rectanguiar codes
often are used on tapes (Refs. [B2}, [W]). The longitudinai parity
checks are on the individual lines, and an extra line is put at the end of
the block to form the vertical parity check. Unfortunately, the machine
designer rarely lets the user get at the parity-check information so that

by using suitable software programs the isolated error could be
corrected.

Exercises

3.2-1 Discuss various possible rectangular codes for 24 message bits.
3.2-2 Discuss the use of the corner check bit. Prove that for even-
parity checks it checks both row and column. Discuss the use of

odd-parity checks in this case.

3.2-3 Compare an #” code with an (7 ~ 1)(r + 1) code.
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3.3 Triangular, Cubic, and n-Dimensional Codes

Thinking about rectangular codes soon suggests a triangular code, where
each element on the diagonal (and there are only # of them if the entire
triangle has n bits on a side) is set by a parity check covering both its
own row and its own column (Figure 3.3-1). Thus for a given size we

Figure 3-3.1 Triangular codes

lower the redundancy we use. The trdangular array of bits of infor-
mation has n(n — 1)/2 bits with n bits added for the checks. Thus the
redundancy is 1 + 2/(n — 1).

A triangular code of side n has

nin ~ 1)

3 message and n check bits

When we compare a trianpular code with a square code for a given
number of parity check-bits we find that the triangular code has more
message bits. We have included the cubic code in Table 3.3-1.

TABLE }3.3-1 Comparison of Three Codes

Square Triangular Cubic

Message Check Message  Check Message  Check
n (n—1F 2n~1 n(n — 1)2 n -3n+23n~2
2 1 3 1 2 4 4
3 4 5 3 3 20 7
4 9 7 6 4 % | 10
5 16 9 10 5 112 13
6 25 11 15 6 200 16
7 36 13 21 7 324 19
B 49 15 28 B 490 22
9 64 17 36 9 704 25
10 B1 19 45 10 972 28
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Once we have found a better code than the simple rectangular ones,
we are led to ask the question: What is the best that we can do with
respect to keeping down the redundancy? For a cube we can check
each plane in three dimensions (Figure 3.3-2) by a single bit on the

Figure 3-3.2 Cubic code, showing only one plane and its check
position

corresponding edge. The three intersecting edges of check bits use
3n - 2 positions out of the n* total positions sent. The excess redun-
dancy is roughly 3/n? extra bits.

If the use of three dimensions is better than two dimensions, then
would not going to still higher dimensions be better? Of course, we
do not mean to arrange the bits in three-dimensicnal or higher space;
we only imagine them so arranged to calculate the proper parity checks.
A little thought about checking over the three-dimensional planes in
four-dimensional space will lead to (approximately) an excess redun-
dancy of 4/n*.  We soon come to the conclusion that the highest possibie
dimensionai space might be the best, and we want a total of 2" bits of
which (n + 1) are checks (one check in each direction plus the common
comer bit). There would be, therefore, (n + 1) parity checks. If they
were suitably arranged in some order, then they would give a number
called the syndrome, which we would get by writing a 1 for each failure
of a parity check, or a 0 when it is satisfied. These (n + 1) bits form
an(n + 1)-bit number, and this number (the syndrome) can specify any
of 27+ things—more than the 2" locations of the corresponding single
error plus the fact that no emror occurred. Notice that the check bits,
as in the simple error-detecting codes, are equally protected with the
message bits. All the bits sent enter equally-—none is treated specially.

However, we see that there are almost twice as many states in the
syndrome as are needed to indicate when the entire message is correct
plus the position of the error if one occurs, Thus there is almost a
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factor of 2 in the loss of efficiency. Nevertheless, this suggests a new
approach to the problem of designing an error-correcting code, which
we take up in the next section.

Exercises

3.3-1 Make a triangular code of 10 message positions.
3.3-2 Discuss in detail the four-dimensional 2 x 2 X 2 x 2 code.

3.3-3 Compare the three codes of Tabie 3.3-1 that use approximately
10 check bits.

3.4 Hamming Error-Correcting Codes

In this section we adopt an algebraic approach to the probiem that was
started in the preceding section—finding the best encoding scheme for
single-error correction for white noise. Suppose that we have m inde-
pendent parity checks, By “independent” we mean, of course, that no
sum of any combination of the checks is any other check—remember
that they are to be added in our moduio 2 number system! Thus the
three parity checks over positions

Check1: 1, 2, 5, 7
2; 5, 7, 8, .9
31, 2, 8. 9

are dependent checks since the sum of any two rows is the third. The
third parity check provides no new information over that of the first
two, and is simply wasted effort.

The syndrome which results from writing a 0 for each of the m
parity checks that is correct and a 1 for each failure can be viewed as
an m-bit number and can represent at most 2™ things. We need to
represent the state of all the message positions being correct, plus the
location of any single error in the n bits of the message. Thus we must
have the inequality

n=zn+ 1 (3.4-1)

Can such a code be found? We will show how to build ones that
exactly meet the equality condition. They represent a particular so-
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lution to the problem of designing a suitable code and are known as
Hamming codes.

The simple, underlying idea of the Hamming code is that the syn-
drome shall give the actual position (location) of the error, with alt 0’s
in the syndrome meaning no error. What positions should the parity
checks use? Let us look at the binary representations of the position
numbers (Table 3.4-1). Evidently, if the syndrome is to indicate the
position of an error when it occurs, every position that has a 1 in the
last position of its binary representation must be in the first parity check
(see the extreme right-hand column of the table). Think carefully why
this must be true. Stmilarly, the second parity check must be tripped
by those positions that have a 1 in the sccond-lowest position in its
binary representation; and so on.

TABLE 3.4-1 Check Positions

Position Binary Representation
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010

Thus we see that the first parity check covers positions 1, 3, 5, 7,
9,11,13,15, . . . ;thesecond, 2, 3, 6,7, 10, 11, 14, 15, . . . ; the third,
4,5,6,7,12,13, 14,15, . . . ; the next, §, 9, 10, 11, 12, 13, 14, 15, 24,
25, ... ; and so on.

To iliustrate what we have just said (se¢ Table 3.4-2), let us design
a simple error-correcting code for four binary digits. We must have
2m = n + 1 and we easily see that 2* = (4 + 3) + 1 = §. Therefore,
we will need to have m = 3 parity checks, and this gives 7 = n = total
of message plus parity-check positions. The positions to use to set the
parity checks wilt for convenience be picked as 1, 2, and 4. Thus the
information message positions are 3, 5, 6, and 7.
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TABLE 3.4-2 Epcoding a 4-Bit Message and Locating Error

Encode

1 2 4 5 6 7 Position

3

1 - 011 Message
011001 1 Encode

X

0

Error

0 0 1 1 Receive

Locate error

Check 1 1 357
00 01 Fals—s1
Check2 2 3 6 7
1 011 Fals—1
Check3 4 5 6 7
0011 Correct — 0
Syndrome = 0 1 1 = 3 —» position of error

Correct {add 1 into the error position)
1 Correct etror
0110011 Corrected message

To encode the information message, | write the message in the
positions 3, 5, 6, 7 and compute the parity checks in positions, 1, 2, 4.
Let this message be, say, __1_011; the spaces are where the parity checks
are to go. The first parity check, which goes in position 1, is computed
over positions 1, 3, 5, 7, and looking at the message I see that position
lgetsa(. Inowhave0_1_011. The second parity check, over positions
2,3, 6,7, sets position 2 as a 1. [ then have 011_011 as the partially
encoded message. The third parity check is over positions 4, 5, 6, 7,
and looking at what I have, I see that position 4 must get a 0. Thus
the final encoded message is 0110011,

To see how the code corrects an isolated error, suppose that when
the message 0110011 is sent, the channel removes the 1 in the third
position from the left. The corrupted message is then 0100011, For
the receiving end, you apply the parity checks in order. The first, over
positions 1, 3, 5, 7, evidently fails, so the lowest-order digit of the
syndrome is a 1. The second parity check, over 2, 3, 6, 7, fails, so the
second digit of the syndrome is 1. The third parity check, over 4, 5,
6,7, succeeds, so the highest-order digitisa 0. Looking at the syndrome
as a binary number, you have the decimal number 3. Thus you change
(logically add 1) the symbol in position 3 from the received 0 to a 1.
The resulting sequence of 0's and 1’s is now correct, and when you strip
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off the checking bits 1, 2, and 4, you have the original information
message 1011 in positions 3, 5, 6, and 7.

Note that the check positions are equally corrected with the message
positions. The code is uniform in its protection; once encoded there is
no difference between the message and the check digits. The cute part
of the Hamming code is the numerical ease of both the encoding and
the code correction based on the syndrome at the received end. Also,
note that the syndrome indicates the position of the error regardless of
the message being sent; logically adding a 1 to the bit in the position
given by the syndrome corrects the received message, where, of course,
the syndrome “all 0’s” means that the entire message has no errors.

The redundancy in the example of four message bits with three
check bits seems high. But if we took 10 check bits, we have, from
equation (3.4-1), 2% = 10 + message positions + 1, or 1024 — 11
= 1013 = message positions. This shows that the excess redundancy
rises like log, of the number of message positions.

Exercises

3.4-1 Discuss the Hamming code using four checks.

3.4-2 Discuss the Hamming code for two checks. Ans. Triplicate code
3.4-3 Show that 1111111 is a correct message.

3.44 Correct 1001111 and decode,

3.4-5 Locate the error in 011100010111110, where we have used four
checks as in Exercise 3.4-1. What is the correct message?

3.4-6 What is the probability that a random sequence of 2 — 1 0’s and
1's will be a code word? Ans. 1/2m

3.5 Equivalent Codes

The example above is one way of encoding a message. There are many
other equivalent codes. Tt should be obvious that any interchange of
the positions of the code will leave us with a code that is only trivially
different. Similarly, if we were to complement (change s to 1's and
1's to (’s) all the digits appearing in a certain position, then again we
would have a trivially different code.
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We can, if we wish, use this observation about the interchange of
positions to move ali the check bits to the end of the message (see Figure
3.5-1). For the arrangement we have the permutation

I—5
2—= 6
3—1
4—7
5—2
6— 3

17— 4

# (1) 35 7
22 (2) 3 6 7

#3 &5 6 7
1 2 3 4 &5 6 7 @

Figure 3-5.1 Hamming code positions

Of course, the syndrome that emerges must also be changed by the same
table. This permutation makes the “masking”™ of the message to get
the parity checks, and to make the correction, less simple in appearance,
but it is exactly the same amount of work by the computer, since for
each check bit we still mask the reccived message to get the check bit
by the “parity sum.” Where we place the check bit is also chanpged.
Although the meaning of the syndrome has its position changed, the
syndrome is stifl essentially the same and refers to a unique place. The
position to logically add the correcting bit is therefore changed, but that
can be found cither by a formula or by a table lookup, which enters the
table with the syndrome, and the entry in the table is the word with a
1in the position to be corrected. Of course, for a long code a message
might be two or more words long. The table size is proportional to n.
The original Hamming code used computing power rather than table
lookup, and, in general, for very long codes this is necessary.

One advantage of putting the check bits at the trailing end rather
than distributed throughout the message is that sorting on the encoded
message will give the same result as on the original messages.

As an alternative to decoding a message, you could, in these days
of cheap, large memories, simply use the message as the address and
look up the encoded message. Similarly, the encoding process could
be a table lookup using addresses as long as the message of the encoded
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biock. Such methods, being rapid, tend to emphasize short blocks with
higher redundancy than the mor¢ elaborate process of encoding (as given
above), which works on arbitrarily long messages (although, of course,
the longer the message, the more parity checks must be computed-—in
parallel if you have the available equipment).

Exercise

3.5.1 In the n = 15 code, discuss in detail the encoding and decoding
if the four parity checks are moved to positions 12, 13, 14,
and 15.

3.6 Geometric Approach

We have just given an aigebraic approach to error-correcting codes.
A different, equivalent approach to the topic is from n-dimensional
geometry. In this model we consider the string of # 0’s and 1’s as a
point in n-dimensional space. Each digit gives the value of the corre-
sponding coordinate in the n-dimensional space (where we are assuming
that the encoded message is exactly n bits long). Thus we have a cube
in n-dimensional space; each vertex is a string of n 0’s and 1's. The
space consists only of the 2" vertices; there is nothing else in the space
of all possible messapes except the 2° vertices. This is sometimes called
a “vector space.”

Each vertex is a possible received message, but only selected ver-
tices are to be original messages. A single error in a message moves
the message point along one edge of the imagined cube to an imme-
diately adjacent point. If we require that every possible originating
message be at least a distance of two sides away from any other message
point, then it is clear that any single error will move a message only one
side away and leave the received message as an illepitimate message.
If the minimum distance between message points is three sides of the
cube, then any single error will leave the received message closer to the
original message than to any other message and thus we can have single
€rror correction,

Effectively, we have introduced a distance function, which is the
minimum number of sides of the cube we have to traverse to get from
one point to another. This is the same as the number of bits in the
representations of the two points that differ.  Thus the distance can be
looked on as being the number of 1’s in the logical difference, or sum,
of the two points. It is a legitimate distance function since it satisfies
the foHowing three conditions:
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ok
.

The distance from a point to itself is 0.

2. The distance from point x to point y is the same as the distance
from y to x and is a positive number.

3. The triangle inequality holds—-the sum of two sides (distance

from a to ¢ plus the distance from ¢ to b) is at least as great as

the length of the third side (the distance from a to b).

This distance function is usually called the Hamming distance. 1t is the
distance function for binary white noise.

Using this distance function, we can define varicus things in the
space. In particular, the surface of a sphere about a point is the sct of
points a given distance away. The surface of sphere of radius 1 about
the point (0, 0, 0, . . ., 0) is the set of all vertices in the space which
are one unit away, that is, all vertices that have only one 1 in their
coordinate representation (see Figure 3.6-1). There are C(n, 1) such
points.

{1.,0

0,1, 1)

(0,0,0 {0,0,1)
Figure 3-6.1 Three-dimensional spheres about (0, 0, 0) and (1, 1, I}

We can express the minimum distance between vertices of a set of
message points in terms of the error correctability possible. The min-
imum distance must be at least 1 for uniqueness of the code (Table
3.6-1). A minimum distance of 2 gives single-error detectability. A
minimum distance of 3 gives single-error comrectability; any single error
leaves the point closer to where it was than to any other possible mes-
sage. Of course, this minimum-distance code could be used instead for
double-error detection. A minimum distance of 4 will give both single-
error correction plus double-error detection. A minimum distance of
5 would allow double-error correction.  Conversely, if the required de-
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TABLE 3.6-1 Meaning of Minimum Distance

Minimum
Distance Meaning

1 Uniqueness

2 Single-error detection

3 Single-error correction (or double-error
detection)

4 Single-error correction plus double-error
detection (or triple-error detection)

5 Double-error correction

etc.

gree of detection or correction is to be achicved, the corresponding
minimum distance between message points must be observed.

In the case of single-error correction with the minimum distance of
3, we can surround each message point by a unit sphere and not have
the spheres overlap. The volume of a sphere of radius 1 is the center
plus the n points with just one coordinate changed, a volume of 1 + .
The total volume of the n-dimensional space is clearly 2", the number
of possible points. Since the spheres do not overlap, the maximurmn
number of message positions & must satisfy

Total volume
Volume of a sphere

Z maximum number of spheres

or
2!!
&k -

paet =2 (3.6-1)
Since

n=m+k

2tk = 2% + 1)

or

27z (n+ 1)

This is the same inequality as we derived from the algebraic approach,
equation (3.4-1).
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We can now sec the restrictions for higher error correction. Thus
for double-error correction we must have a minimum distance of 3, and
we can put nonoverlapping spheres of radius 2 about each message
position. The volume of a sphere of radius 2 is the center position plus
the n positions a distance 1 away, plus those with two coordinates out
of the n changed, which is the binomial coefficient C(n, 2} = n{n — 1)/
2. Dividing the total volume of the space, 2", by the volume of these
spheres gives an upper bound on the number k of possible code message
positions in the space

2" >
1+n+nn— 1)2

2% (3.6-2)

It does not mean that this number can be achieved, only that this is an
upper bound. Similar inequalities can be written for larger spheres.

When the spheres about the message points completely exhaust the
space of 2”7 points, leaving no points outside some sphere, the code is
called a perfect code. Such codes have a high degree of symmetry (in
the geometric mode] each point is equivalent to any other point) and a
particularly simple theory. In only a comparatively few cases do perfect
codes exist. They require that the inequalities be equalities.

Exercises

3.6-1 Extend the bounds of (3.6-1) and (3.6-2) to higher error-correcting
codes.

3.6-2 Make a table for the bound for double-error correction of equation
3.62y(n = 3,4,5,...,11).

3.7 Single-Error-Correction Plus
Double-Error-Detection Codes

It is seldom wise to use only single-error correction, because a double
error would then fool the system in its attempts to correct, and the
system would use the syndrome to correct the wrong place; thus there
would be three errors in the decoded message. Instead, a single-error-
correction pius a double-detection code makes a reasonably balanced
system for many (but not all) situations. The condition for the double
detection is that the minimum distance must be increased by 1; it must
be 4.
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To make a double-error-detecting code from a single-error-
correcting code, we add one more parity check (and one more position):
this check is over the whole message. Thus any single error will still
produce the right syndrome and the added panty check will give a 1.
A double error will now cause a nonzero syndrome, but leave this added
parity check satisfied. This situation can then be recognized as a double
error; namely, some syndrome appears, but the extra parity check is
still correct (Table 3.7-1). It is easy to sce that two points which were

TABLE 3.7-1 Double-Error Detection

Original New

Syndrome Parity Check Meaning
0 0 Correct
0 1 Error in added position
Something 1 Original meaning
Something 0 Double error

at the minimum distance of 3 from each other in the original code had
a different number of 1's in them, modulo 2.  Thus their corresponding
extra parity checks would be set differently, increasing the distance
between them to 4.

The argument we have just given applies to both the algebraic and
geometric approaches, and shows how the two tend to complement each
other. We have not yet given any constructive method for finding the
higher error-correcting codes; we¢ have only given bounds on them.
Chapter 11 is devoted to the elements of their construction. The full
theory for error-correcting codes has been developed over the years and
is very compiex, so we will only indicate the general approach.

Notice that the theory assumes that the correcting equipment is
working properly; it is only the errors in the received (computed) mes-
sage that are being handled.

Exercise

3.7-1 Show that the argument to get extra error detection can be applied
to any odd minimum distance to get the next-higher (even) min-
imum distance.
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3.8 Hamming Codes Using Worids

On many computers it is difficult to get at the individual bits of infor-
mation, but the computer words are readily available. We can therefore
think of the parity checks as being whole words; we logicaily add, not
bits, but words. The logical sum over all the selected words plus the
check should give a word with all ’s, and any failure marks the failure
of the parity check. If we have, for example, a single-error-correcting
code, then we get the location of the wrong word and can reconstruct
it easily by, if nothing else, looking at the bits of the parity checks. 1t
should be clear that we could simply add the parity-check failure word
to the word in the jocation of the erroneous word to get the correct
word. In this fashion we can correct the errors in any one word, whether
it is one, two, . . . , or all the bits of the word that are wrong.

A mixed system results when you use the parity check on the ASCII
code bits. The ASCII parity check locates the word with the error and
the single-error-detecting parity word over all the words gives the po-
sition in the word that is wrong. Again, you simply add the parity check
to the word that is wrong to do the correction. This amounts to a
rectangular code. It will correct any odd number of errors in a single
word.

3.9 Applications of the Ideas

In Section 1.2 we claimed that not only were the ideas in the text directly
useful but they also had wider general application—we used evolution
as an example.

The central idea of error detection and correction is that the mean-
ingful messages must be kept far apart (in the space of probable errors)
if we are to handle errors successfully. If two of the possible messages
are not far enough apart, one message can be carried by an error (or
errors) into the other, or carried at least so close that at the receiving
end we will make a mistake in identifying the source.

In assigning names to variables and labels in a FORTRAN, COBOL,
ALGOL, Pascal, Ada, and other high-level language, the names should
be kept far apart; otherwise, an intellectual “slip of the pen” or a typical
¢rror in keying in the name can transfer one name to another meaningful
name. If the names are made to differ in at least two positions, single
typos wili be caught by the assembler. Thus the use of short mnemonic
names should be tempered by the prudent need to protect oneself against
small slips.
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If you estimate the time to locate an error in miswriting a name
against the time to add one or more characters to all the names while
writing the original program, you wil sce that using longer-than-mini-
mum names is probably a very wise idea—but it is unlikely that this
computation will convince many people to do so! Minimal-length names
are the source of much needless confusion and waste of time, yours and
the machine’s.

The distance function in the Hamming codes is based completely
on white noise. Sections 2.7 and 2.9 are included to emphasize that
the proper distance function to use depends in some cases on the psy-
chological distance between the names as well as more uniformly random
keystroke errors.

3.10 Summary

We have given the fundamental nature of error detection and error
correction for white noise, namely the minimum distance between mes-
sage points that must be observed. We have given methods for con-
structing codes for:

Single-error detecting min. dist. = 2
Single-error correction min. dist, =3
Single-error correction + double-error detection min. dist, = 4

Their design is easy, and they are practical to construct in software
or in hardware chips. They can compensate for weak spots in a system,
or can be used throughout an entire system, to get reliable performance
out of unreliable parts. One need not put up with poor equipment
performance, but the price is both in storage (or time of transmission)
and equipment (or time) to encode and possible correct. You do not
get something for nothing!  The codes also make valuable contributions
to maintenance since they pinpoint the error, and the repairmen will
not try fixing the wrong things (meaning *“fix” what is working right and
ignore what is causing the error!). A more widespread use of the idea
of distance between messages was sketched in Section 3.9,

The use of such codes, and more highly developed codes, is rapidly
spreading as we get faster and smaller integrated-circuit components.
Increasingty, in VLSI (very large system integration) chips the code is
part of the hardware.



