
ChaDter 13 

Rate Distortion Theory 

The description of an arbitrary real number requires an infinite number 
of bits, so a finite representation of a continuous random variable can 
never be perfect. How well can we do? To frame the question 
appropriately, it is necessary to define the “goodness” of a 
representation of a source. This is accomplished by defining a distortion 
measure which is a measure of distance between the random variable 
and its representation. The basic problem in rate distortion theory can 
then be stated as follows: given a source distribution and a distortion 
measure, what is the minimum expected distortion achievable at a 
particular rate? Or, equivalently, what is the minimum rate description 
required to achieve a particular distortion? 

One of the most intriguing aspects of this theory is that joint 
descriptions are more efficient than individual descriptions. It is simpler 
to describe an elephant and a chicken with one description than to 
describe each alone. This is true even for independent random variables. 
It is simpler to describe X1 and X2 together (at a given distortion for 
each) than to describe each by itself. Why don’t independent problems 
have independent solutions? The answer is found in the geometry. 
Apparently rectangular grid points (arising from independent descrip- 
tions) do not fill up the space efficiently. 

Rate distortion theory can be applied to both discrete and continuous 
random variables. The zero-error data compression theory of Chapter 5 
is an important special case of rate distortion theory applied to a 
discrete source with zero distortion. 

We will begin by considering the simple problem of representing a 
single continuous random variable by a finite number of bits. 
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13.1 QUANTIZATION 

This section on quantization motivates the elegant theory of rate distor- 
tion by showing how complicated it is to solve the quantization problem 
exactly for a single random variable. 

Since a continuous random source requires infinite precision to repre- 
sent exactly, we cannot reproduce it exactly using a finite rate code. The 
question is then to find the best possible representation for any given 
data rate. 

We first consider the problem of representing a single sample from 
the source. Let the random variable to be represented be X and let the 
representation of X be denoted as X(X). If we are given R bits to 
represent X, then the function X can take on 2R values. The problem is 
to find the optimum set of values for X (called the reproduction points or 
codepoints) and the regions that are associated with each value X. 

For example, let X - NO, (T’), and assume a square-d error distortion 
measure. In this case, we wish to find the function X(X) such that X 
takes on at most 2R values and minimizes E(X - X(XN2. If we are given 
1 bit to represent X, it is clear that the bit should distinguish whether 
X > 0 or not. To minimize squared error, each reproduced symbol should 
be at the conditional mean of its region. This is illustrated in Figure 
13.1. Thus 

ifxr0, 
(13.1) - I d %, ifx<O. 
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Figure 13.1. One bit quantization of a Gaussian random variable. 
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If we are given 2 bits to represent the sample, the situation is not as 
simple. Clearly, we want to divide the real line into four regions and use 
a point within each region to represent the sample. But it is no longer 
immediately obvious what the representation regions and the recon- 
struction points should be. 

We can however state two simple properties of optimal regions and 
reconstruction points for the quantization of a single random variable: 

l Given a set of reconstruction points, the distortion is minimized by 
mapping a source random variable X to the representation X(w) 
that is closest to it. The set of regions of %’ defined by this mapping 
is called a Voronoi or Dirichlet partition defined by the reconstruc- 
tion points. 

l The reconstruction points should minimize the conditional expected 
distortion over their respective assignment regions. 

These two properties enable us to construct a simple algorithm to find 
a “good” quantizer: we start with a set of reconstruction points, find the 
optimal set of reconstruction regions (which are the nearest neighbor 
regions with respect to the distortion measure), then find the optimal 
reconstruction points for these regions (the centroids of these regions if 
the distortion is squared error), and then repeat the iteration for this 
new set of reconstruction points. The expected distortion is decreased at 
each stage in the algorithm, so the algorithm will converge to a local 
minimum of the distortion. This algorithm is called the Lloyd algorithm 
[ 1811 (for real-valued random variables) or the generaked Lloyd aZ- 
gorithm [80] (for vector-valued random variables) and is frequently used 
to design quantization systems. 

Instead of quantizing a single random variable, let us assume that we 
are given a set of n i.i.d. random variables drawn according to a 
Gaussian distribution. These random variables are to be represented 
using nR bits. Since the source is i.i.d., the symbols are independent, 
and it may appear that the representation of each element is an 
independent problem to be treated separately. But this is not true, as 
the results on rate distortion theory will show. We will represent the 
entire sequence by a single index taking ZnR values. This treatment of 
entire sequences at once achieves a lower distortion for the same rate 
than independent quantization of the individual samples. 

13.2 DEFINITIONS 

Assume that we have a source that produces asequenceX,,X,,...,X, 
i.i.d. -p(x), x E 35 We will assume that the alphabet is finite for the 
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proofs in this chapter; but most of the proofs can be extended to 
continuous random variables. 

The encoder describes the source sequence X” by an index f,(X”> E 
{1,2,. . . , ZnR}. The decoder represents X” by an estimate p E @, as 
illustrated in Figure 13.2. 

Definition: A distortion function or distortion measure is a mapping 

d:%‘x&-R+ (13.2) 

from the set of source alphabet-reproduction alphabet pairs into the set 
of non-negative real numbers. The distortion d(x, i) is a measure of the 
cost of representing the symbol x by the symbol i. 

Definition: A distortion measure is said to be bounded if the maximum 
value of the distortion is finite, i.e., 

d 
def 

max = max d(x,i)<m. 
XEBe”, i&t 

(13.3) 

In most cases, the reproduction alphabet k is the same as the source 
alphabet %‘. Examples of common distortion functions are 

l Hamming (probability of error) distortion. The Hamming distortion 
is given by 

d&i) = 
0 ifx=i 
1 ifx#? (13.4) 

which results in a probability of error distortion, since Ed(X, @ = 
Pr(X #X). 

l Squared error distortion. The squared error distortion, 

d(x, i) = (3~ - i>2 , (13.5) 

is the most popular distortion measure used for continuous al- 
phabets. Its advantages are its simplicity and its relationship to 
least squares prediction. But in applications such as image and 

fnw9 E (1,2,...Pl 
P > Encoder > Decoder ,‘- & 

Figure 13.2. Rate distortion encoder and decoder. 
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speech coding, various authors have pointed out that the mean 
squared error is not an appropriate measure of distortion as ob- 
served by a human observer. For example, there is a large squared 
error distortion between a speech waveform and another version of 
the same waveform slightly shifted in time, even though both would 
sound very similar to a human observer. 

Many alternatives have been proposed; a popular measure of distor- 
tion in speech coding is the Itakura-Saito distance, which is the relative 
entropy between multivariate normal processes. In image coding, how- 
ever, there is at present no real alternative to using the mean squared 
error as the distortion measure. 

The distortion measure is defined on a symbol-by-symbol basis. We 
extend the definition to sequences by using the following definition: 

Definition: The distortion between sequences xn and in is defined by 

d(x”,P) = ; $ d(xi, &) . 
11 

(13.6) 

So the distortion for a sequence is the average of i;he per symbol 
distortion of the elements of the sequence. This is not the only reason- 
able definition. For example, one may want to measure distortion 
between two sequences by the maximum of the per symbol distortions. 
The theory derived below does not apply directly to this case. 

Definition: A (2nR, n) rate distortion code consists of an encoding 
function, 

f, : Z”+ {1,2,. . . , 2nR} , (13.7) 

and a decoding (reproduction) function, 

g,:{1,2 ,..., znR}+P. 

The distortion associated with the (2nR, n) code is defined as 

D = Ed(X”, g,( f, (x” 1)) 3 

(13.8) 

(13.9) 

where the expectation is with respect to the probability distribution on 
X, i.e., 

D = c p(x”) dtx”, g,( f,b” ))) . 
xn 

(13.10) 
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The set of n-tuples g,(l), g,(2), . . . , g,(2’?, denoted bY e(l), . l -3 
p~2”~), constitutes the codebook, and f,‘(l), . . . , f,‘<2’? are the 
associated assignment regions. 

Many terms are used to describe the replacement of X” by its 
quantized version p(w). It is common to refer to * as the vector 
quantization, reproduction, reconstruction, representation, source code, 
or estimate of X”. 

Definition: A rate distortion pair (R, D) is said to be achievable if there 
exists a sequence of (2”R, n) rate distortion codes ( f,, g, 1 with 
lim,,, E&X”, g,( fn,cx” ))I 5 D. 

Definition: The rate distortion region for a source is the closure of the 
set of achievable rate distortion pairs (R, D). 

Definition: The rate distortion function R(D) is the infimum of rates R 
such that (R, D) is in the rate distortion region of the source for a given 
distortion D. 

Definition: The distortion rate function D(R) is the inflmum of all 
distortions D such that (R, D) is in the rate distortion region of the 
source for a given rate R. 

The distortion rate function defines another way of looking at the 
boundary of the rate distortion region, which is the set of achievable 
rate distortion pairs. We will in general use the rate distortion function 
rather than the distortion rate function to describe this boundary, 
though the two approaches are equivalent. 

We now define a mathematical function of the source, which we call 
the information rate distortion function. The main result of this chapter 
is the proof that the information rate distortion function is equal to the 
rate distortion function defined above, i.e., it is the infimum of rates that 
achieve a particular distortion. 

Definition: The information rate distortion function R"'(D) for a 
source X with distortion measure d(x, LC) is defined as 

R"'(D) = 
p(ilx) : 

min 
pWp(ilx)d(x, 

I(X, 2) (13.11) 
i&D 

where the minimization is over all conditional distributions p(i)x) for 
which the joint distribution p(x, i) = p(x)p(ilz) satisfies the expected 
distortion constraint. 
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Paralleling the discussion of channel capacity in Chapter 8, we 
initially consider the properties of the information rate distortion func- 
tion and calculate it for some simple sources and distortion measures. 
Later we prove that we can actually achieve this function, i.e., there 
exist codes with rate R”‘(D) with distortion D. We also prove a converse 
establishing that R 1 R”‘(D) for any code that achieves distortion D. 

The main theorem of rate distortion theory can now be stated as 
follows: 

Theorem 13.2.1: The rate distortion function for an i.i.d. source X with 
distribution p(x) and bounded distortion function d(x, i) is equal to the 
associated information rate distortion function. Thus 

R(D) = R”‘(D) - - min I(X, 2) (13.12) 
p(i(x): C(,,i) p(x)pdi.lzMz, ?ED 

is the minimum achievable rate at distortion D. 

This theorem shows that the operational definition of the rate distor- 
tion function is equal to the information definition. Hence we will use 
R(D) from now on to denote both definitions of the rate distortion 
function. Before coming to the proof of the theorem, we calculate the 
information rate distortion function for some simple sources and distor- 
tions. 

13.3 CALCULATION OF THE RATE DISTORTION FUNCTION 

13.3.1 Binary Source 

We now find the description rate R(D) required to describe a 
Bernoulli(p) source with an expected proportion of errors less than or 
equal to D. 

Theorem 13.3.1: The rate distortion function for a Bernoulli( p> source 
with Hamming distortion is given by 

O~D~min{p,l-p}, 
D>min{p,l-p}. (13.13) 

Proof: Consider a binary source X - Bernoulli(p) with a Hamming 
distortion measure. Without loss of generality, we may assume that 
p < fr . We wish to calculate the rate distortion function, 

R(D) = min Icx;&. (13.14) 
p(ilr) : cc,, ij p(le)p(ilx)m, i)=D 

Let 69 denote modulo 2 addition. Thus X$X = 1 is equivalent to X # X. 
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We cannot minimize 1(X, X) directly; instead, we find a lower bound and 
then show that this lower bound is achievable. For any joint distribution 
satisfying the distortion constraint, we have 

WC a = H(X) - H(X@) 
= H(p) - H(XcBX(2) (13.16) 

H(p)-H(Xa32) (13.17) 

IH(p)--H(D), (13.18) 

since Pr(X #X) I D and H(D) increases with D for D 5 f . Thus 

R(D)zH(p)-H(D). (13.19) 

We will now show that the lower bound is actually the rate distortion 
function by finding a joint distribution that meets the distortion con- 
straint and has 1(X, X) = R(D). For 0 I D 5 p, we can achieve the value 
of the rate distortion function in (13.19) by choosing (X, X) to have the 
joint distribution given by the binary symmetric channel shown in 
Figure 13.3. 

We choose the distribution of X at the input of the channel so that the 
output distribution of X is the specified distribution. Let r = Pr(X = 1). 
Then choose r so that 

r(l-D)+(l-r)D=p, (13.20) 

or 

(13.21) 

P-D 
1-W 

1-D 
0 

1 
1-D 

0 l-p 

X 

1 P 

Figure 13.3. Joint distribution for binary source. 
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I(x;~=HGX)-H(XI~=H(p)-H(D), (13.22) 

and the expected distortion is RX # X) = D. 
If D 2 p, then we can-achieve R(D) = 0 by letting X = 0 with probabili- 

ty 1. In this case, Z(X, X) = O-and D = p. Similarly, if D 2 1 - p, we cm 
achieve R(D I= 0 by setting X = 1 with probability 1. 

Hence the rate distortion function for a binary source is 

OrD= min{p,l-p}, 
D> min{p,l-p}. (13.23) 

This function is illustrated in Figure 13.4. Cl 

The above calculations may seem entirely unmotivated. Why should 
minimizing mutual information have anything to do with quantization? 
The answer to this question must wait until we prove Theorem 13.2.1. 

13.3.2 Gaussian Source 

Although Theorem 13.2.1 is proved only for discrete sources with a 
bounded distortion measure, it can also be proved for well-behaved 
continuous sources and unbounded distortion measures. Assuming this 
general theorem, we calculate the rate distortion function for a Gaus- 
sian source with squared error distortion: 

Theorem 13.3.2: The rate distortion function for a N(0, u2) source with 
squared error distortion is 

1 2 
+%, OsDsg2, 

(13.24) 
0, D>U2. 

I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

D 

Figure 13.4. Rate distortion function for a binary source. 
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proof= Let X be -N(O, a’). By the rate distortion theorem, we have 

R(D) = min I(X, 2) . (13.25) 
flilx) : E(2-m2sD 

As in the previous example, we first 6nd a lower bound for the rate 
distortion function and then prove that this is achievable. Since 
E(X - a2 5 D, we observe 

Z(X, 2) = h(X) - h(X(X) (13.26) 

1 
= 2 log(27re)(r2 - h(X - XIX) 

2 f log(27re)cr2 - h(X - X) 

1 
2 2 log(27re)02 - h(N(0, E(X - 2)“)) 

1 
= 5 log(27re)(r2 - f log(2ne)E(X - X)” 

(13.27) 

(13.28) 

(13.29) 

(13.30) 

1 1 
2 2 log(2?re)(r2 - 2 log(2we)D (13.31) 

1 
= 2 log $ , (13.32) 

where (13.28) follows from the fact that conditioning reduces entropy 
and (13.29) follows from the fact that the normal distribution maximizes 
the entropy for a given second moment (Theorem 9.6.5). Hence 

R(D)? f log;. (13.33) 

To find the conditional density fliI%) that achieves this lower bound, 
it is usually more convenient to look at the conditional density fix Ii>, 
which is sometimes called the test channel (thus emphasizing the 
duality of rate distortion with channel capacity). As in the binary case, 
we construct flx)i) to achieve equality in the bound. We choose the joint 
distribution as shown in Figure 13.5. If D I cr2, we choose 

x=x+2, k-N(0,a2-D), Z-yNtO,D), (13.34) 

i-,V(0,a2- D)+~+-X-N(0,02) 

Figure 13.5. Joint distribution for Gaussian source. 
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where X and 2 are independent. For this joint distribution, we calculate 

I(X,k)= flog;, (13.35) 

and E(X-X)2 = D, thus achieving the bound in (13.33). If D > a2, we 
choose X = 0 with probability 1, achieving R(D) = 0. 
Hence the rate distortion function for the Gaussian source with squared 
error distortion is 

1 
R(D) = 

z log ; , OsDscr2, 
(13.36) 

0, D>a2, 

as illustrated in Figure 13.6. Cl 

We can rewrite (13.36) to express the distortion in terms of the rate, 

D(R) = a22-2R. (13.37) 

Each bit of description reduces the expected distortion by a factor of 4. 
With a 1 bit description, the best expected square error is a2/4. We can 
compare this with the result of simple 1 bit quantization of a N(0, a2) 
random variable as described in Section 13.1. In this case, using the two 
regions corresponding to the positive and negative real lines and repro- 
duction points as the centroids of the respective regions, the expected 
distortion is r-2 a2 = 0.3633~~. (See Problem 1.) As we prove later, the 
rate distortion=limit R(D) is achieved by considering long block lengths. 
This example shows that we can achieve a lower distortion by consider- 
ing several distortion problems in succession (long block lengths) than 
can be achieved by considering each problem separately. This is some- 
what surprising because we are quantizing independent random vari- 
ables. 

3 

2.5 

-0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

D 

Figure 13.6. Rate distortion function for a Gaussian source. 
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13.3.3 Simultaneous Description of Independent Gaussian 
Random Variables 

Consider the case of representing m independent (but not identically 
distributed) normal random sources XI, . . . , Xm, where Xi are 
-JV(O, CT:>, with squared error distortion. Assume that we are given R 
bits with which to represent this random vector. The question naturally 
arises as to how we should allot these bits to the different components to 
minimize the total distortion. Extending the definition of the informa- 
tion rate distortion function to the vector case, we have 

R(D) = min 
f(imlxm) :EdtXm,~m,zsD 

I(X”; 2”)) (13.38) 

where d(xm, irn ) = Cr!, (xi - &>2. Now using the arguments in the previ- 
ous example, we have 

I(X”;X”) = h(X”) - h(X”IX”) (13.39) 

= 2 h(Xi) - 2 h(xiIXi-1,2m) 
i=l i=l 

1 ~ h(Xi)- ~ h(Xi(~i) 
i=l i=l 

=E I(Xi;X) i 
i=l 

12 R(D ) i 
i=l 

=~l(;log$+, 

(13.40) 

(13.41) 

(13.42) 

(13.43) 

(13.44) 

where Di = E(Xi - pi)’ and (13.41) follows from the fact that condition- 
ing reduces entropy. We can achieve equality in (13.41) by choosing 
f(36mI~m) = ~~=l f(Xil~i) an in (13.43) by choosing the distribution of d 
each pi - &(O, 0; - Di >, as in the previous example. Hence the problem 
of finding the rate distortion function can be reduced to the following 
optimization (using nats for convenience): 

R(D)=EA~D gmax . 
1 i-l 

Using Lagrange multipliers, we construct the functional 

(13.45) 

J(D)=2 ‘ln’+h$ Di, 
i=l2 Di i=l 

(13.46) 
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and differentiating with respect to Di and setting equal to 0, we have 

or 

aJ 11 -= 
aDi 

-gE+A=O, (13.47) 
i 

Di = A’ . (13.48) 

Hence the optimum allotment of the bits to the various descriptions 
results in an equal distortion for each random variable. This is possible 
if the constant A’ in (13.48) is less than a; for all i. As the total 
allowable distortion D is increased, the constant A’ increases until it 
exceeds C: for some i. At this point the solution (13.48) is on the 
boundary of the allowable region of distortions. If we increase the total 
distortion, we must use the Kuhn-Tucker conditions to find the mini- 
mum in (13.46). In this case the Kuhn-Tucker conditions yield 

aJ 1 1 
a= -2D,+A, (13.49) 

where A is chosen so that 

ifDi<uB, 
(13.50) 

ifDi?uP. 

It is easy to check that the solution to the 
given by the following theorem: 

Kuhn-Tucker equations is 

Theorem 13.3.3 (Rate distortion for a parallel Gaussian source): Let 
Xi - N(0, Uf), i = 1,2, . . . , m be independent Gaussian random variables 
and let the distortion measure be d(xm, irn) = Cr=, (Xi - 3;i)2. Then the rate 
distortion function is given by 

m 1 
R(D)=2 zlog$ 

i=l i 

where 

if ACuB, 

if Aru$, 

where A is chosen SO that Ill=, Di = D. 

(13.51) 

(13.52) 

This gives rise to a kind of reverse “water-filling” as illustrated in 
Figure 13.7. We choose a constant A and only describe those random 
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2 
'i 

4 04 7 O6 

D3 D, 
Ds 

xi x2 x3 x4 x5 x6 

Figure! 13.7. Reverse water-filling for independent Gaussian random variables. 

variables with variances greater than A. No bits are used to describe 
random variables with variance less than A. 

More generally, the rate distortion function for a multivariate normal 
vector can be obtained by reverse water-filling on the eigenvalues. We 
can also apply the same arguments to a Gaussian stochastic process. By 
the spectral representation theorem, a Gaussian stochastic process can 
be represented as an integral of independent Gaussian processes in the 
different frequency bands. Reverse water-filling on the spectrum yields 
the rate distortion function. 

13.4 CONVERSE TO THE RATE DISTORTION THEOREM 

In this section, we prove the converse to Theorem 13.2.1 by showing that 
we cannot achieve a distortion less than D if we describe X at a rate less 
than R(D), where 

R(D) = min I(X, 2) . (13.53) 
p(ilx): c p(x)p(iIrkz(x, i)sD 

dr,i) 

The minimization is over all conditional distributions p(;ls) for which 
the joint distribution p(x, i) = p(x)& 1~) satisfies the expected distortion 
constraint. Before proving the converse, we establish some simple 
properties of the information rate distortion function. 

Lemma 13.4.1 (Convexity of R(D)): The rate distortion function R(D) 
given in (13.53) is a non-increasing convex function of D. 

Proof: R(D) is the minimum of the mutual information over increas- 
ingly larger sets as D increases. Thus R(D) is non-increasing in D. 

To prove that R(D) is convex, consider two rate distortion pairs 
(R,, D, ) and (R2, D,) which lie on the rate-distortion curve. Let the joint 
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distributions that achieve these pairs be pl(x, i) =p(x)p,(ilx) and 
p&, i) = p(z)&lx). Consider the distribution pA = Ap, + (1 - A)JQ. 
Since the distortion is a linear function of the distribution, we have 
D( p,) = AD, + (1 - A)D,. Mutual information, on the other hand, is a 
convex function of the conditional distribution (Theorem 2.7.4) and 
hence 

IJX; 2) 5 AIJX; k) + ( 1 - A)I,.JX; X) . 

Hence by the definition of the rate distortion function, 

ND, 11 IJZ ti 

5 AI& %) + (1 - A)l,$X; X) 

= AR(D,) + (1 - A)R(D,), 

which proves that R(D) is a convex function of D. Cl 

The converse can now be proved. 

(13.54) 

(13.55) 

(13.56) 

(13.57) 

Proof: (Converse in Theorem 13.2.1): We must show, for any source 
X drawn i.i.d. -p(x) with distortion measure d(x, i), and any (2RR, n) 
rate distortion code with distortion ID, that the rate R of the code 
satisfies R 2 R(D). 

Consider any (2”“, n) rate distortion code defined by functions f, and 
g,. Let P = &X”) = g,( &(X”)) be the reproduced sequence corre- 
sponding to X”. Then we have the following chain of inequalities: 

‘2 i H(Xi) - H(X”IP) 
i=l 

~ ~ H(xi) - ~ H(XiI~,Xi-l, 
i=l i=l 

~ ~ H(x,)- ~ H(XiI$) 
i=l i=l 

(13.58) 

(13.59) 

(13.60) 

(13.61) 

(13.62) 

9x1) (13.63) 

(13.64) 
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= i: I(xi;s> i (13.65) 
i=l 

~ ~ R(Ed(Xi, ~ )) i 
i=l 

=n~ ’ R(Ed(Xi,ff )) 
i=l n 

i 

(h) 
2 nR(x ~ Ed(Xi,~i)) 

rl 

(13.66) 

(13.67) 

(13.68) 

‘2 nR(Ed(X”, p)> (13.69) 

= nR(D), (13.70) 

where 

(a) follows from the fact that there are at most 2nR p’s in the range 
of the encoding function, 

(b) from the fact that p is a function of X” and thus H(* IX” ) = 0, 
(c) from the definition of mutual information, 
(d) from the fact that the Xi are independent, 
(e) from the chain rule for entropy, 
(f) from the fact that conditioning reduces entropy, 
(g) from the definition of the rate distortion function, 
(h) from the convexity of the rate distortion function (Lemma 13.4.1) 

and Jensen’s inequality, and 
(i) from the definition of distortion for blocks of length n. 

This shows that the rate R of any rate distortion code exceeds the rate 
distortion function R(D) evaluated at the distortion level D = Ed(X”, p) 
achieved by that code. 0 

13.5 ACHIEVABILITY OF THE RATE DISTORTION FUNCTION 

We now prove the achievability of the rate distortion function. We begin 
with a modified version of the joint AIZP in which we add the condition 
that the 
measure. 

pair of sequences be typical with respect to the distortion 

Definitions Let p(x, i) be a joint probability distribution on E x & and 
let d(x, i) be a distortion measure on aP x %, For any E > 0, a pair of 
sequences (x”, in) is said to be distortion e-typical or simply distortion 
typical if 
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1 
--; log&?)-H(X) <E 

1 
-;logp(?)-H(X) <E 

1 
-; logp(x”,i”)-H(X,& <e 

(13.71) 

(13.72) 

(13.73) 

]dW, i”) - Ed(X, %)I < E (13.74) 

The set of distortion typical sequences is called the distortion typical set 
and is denoted A:‘,. 

Note that this is the definition of the jointly typical set (Section 8.6) 
with the additional constraint that the distortion be close to the expec- 
ted value. Hence, the distortion typical set is a subset of the jointly 
typical set, i.e., At;f’, CA:‘. If <xi, pi> are drawn i.i.d -p(x, 12), then the 
distortion between two random sequences 

d(X”,P)= i $l d(Xi,*i) 
i 

(13.75) 

is an average of i.i.d. random variables, and the law of large numbers 
implies that it is close to its expected value with high probability. Hence 
we have the following lemma. 

Lemma 13.5.1: Let (Xi, pi) be drawn i.i.d. - p(x, i). Then Pr(Al;f’, )+ 1 
us n-*a. 

Proof: The sums in the four conditions in the definition of Agjc are 
all normalized sums of i.i.d random variables and hence, by the law of 
large numbers, tend to their respective expected values with probability 
1. Hence the set of sequences satisfying all four conditions has probabili- 
ty tending to 1 as n- 00. Cl 

The following lemma is a direct consequence of the definition of the 
distortion typical set. 

Lemma 13.5.2: For all (x”, i”) E A:‘,, 

p($t) ~p~~~I~n)2-“(z(X;t)+3~) . (13.76) 

Proof: Using the definition of A:‘,, we can bound the probabilities 
p(x”), p(P) and ~(2, i”) for all (2, P) E A:‘,, and hence 
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pw, i”) Jwp3 = &?a) (13.77) 

pw, 3) 
=Pop(x”)p(~n) (13.78) 

2- n(H(X, a,-,, 
ql(a2- n(H(X)+c) -nvzUE)+E) 2 

(13.79) 

= p(? )2 n(Z(X; tj+3rj 
2 (13.80) 

and the lemma follows immediately. Cl 

We also need the following interesting inequality. 

Lemma 13.5.3: For 0 5 x, y 5 1, n > 0, 

(13.81) 

Proof: Let f(y) = e-’ - l+y. Thenf(O)=O andf’(y)= -eeY+l>O 
for y > 0, and hence fly) > 0 for y > 0. Hence for 0 I y I 1, we have 
1- ySemY, and raising this to the nth power, we obtain 

(1 -y)” IemY”. (13.82) 

Thus the lemma is satisfied for x = 1. By examination, it is clear that the 
inequality is also satisfied for x = 0. By differentiation, it is easy to see 
that g,(jc) = (1 - my)” is a convex function of x and hence for 0 5 x 5 1, we 
have 

(1 - xy>” = gym (13.83) 

5 Cl- x)g,(O) + 3cg,w (13.84) 

= (1 - X)1 + x(1 -y)” (13.85) 

51 --x +xemyn (13.86) 

51 -x+ee-yn. Cl (13.87) 

We use this to prove the achievability of Theorem 13.2.1. 

Proof (Achievability in Theorem 13.2.1): Let XI, X,, . . . , Xn be 
drawn i.i.d. - p(x) and let d(x, i) be a bounded distortion measure for 
this source. Let the rate distortion function for this source be R(D). 
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Then for any D, and any R > R(D), we will show that the rate distortion 
pair (R, D) is achievable, by proving the existence a sequence of rate 
distortion codes with rate R and asymptotic distortion D. 

Fix p(i Ix), where p(ilx) achieves equality in (13.53). Thus 1(X; X) = 
R(D). Calculate p(i) = C, p(x)p(i)x). Choose S > 0. We will prove the 
existence of a rate distortion code with rate R and distortion less than or 
equal to D + 6. 

Generation of codebook. Randomly generate a rate distortion 
codebook % consisting of 2nR sequences p drawn i.i.d. - lly=, ~(32~). 
Index these codewords by w E { 1,2, . . . , 2nR}. Reveal this codebook 
to the encoder and decoder. 

Encoding. Encode X” by w if there exists a w such that (X”, p(w)) E 
Al;f’,, the distortion typical set. If there is more than one such w, 
send the least. If there is no such w, let w = 1. Thus nR bits suffice 
to describe the index w of the jointly typical codeword. 

Decoding. The reproduced sequence is x”(w). 
Calculation of distortion. As in the case of the channel coding 

theorem, we calculate the expected distortion over the random 
choice of codebooks %’ as 

fi = Exn, .d(X”, p) 

where the expectation is over the random choice of codebooks and 
over X”. 

For a tied codebook %’ and choice of E > 0, we divide the sequences 
xn E 8” into two categories: 

l Sequences xn such that there exists a codeword p(w) that is 
distortion typical with xn, i.e., d(x”, Z(w)) <D + E. Since the total 
probability of these sequences is at most 1, these sequences contrib- 
ute at most D + E to the expected distortion. 

l Sequences xn such that there does not exist a codeword e(w) that 
is distortion typical with xn. Let P, be the total probability of these 
sequences. Since the distortion for any individual sequence is 
bounded by d,,,, these sequences contribute at most P,d,,, to the 
expected distortion. 

Hence we can bound the total distortion by 

Ed(X”, *(X”>> 5 D + E + P,d,,, , (13.89) 

which can be made less than D + S for an appropriate choice of E if P, is 
small enough. Hence, if we show that P, is small, then the expected 
distortion is close to D and the theorem is proved. 
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Cchhtion of P,. We must bound the probability that, for a random 
choice of codebook % and a randomly chosen source sequence, there is no 
codeword that is distortion typical with the source sequence. Let J( % ) 
denote the set of source sequences xn such that at least one codeword in 
%’ is distortion typical with xn. 

Then 

This is the probability of all sequences not well represented by a code, 
averaged over the randomly chosen code. By changing the order of 
summation, we can also interpret this as the probability of choosing a 
codebook that does not well represent sequence xn, averaged with 
respect to p(x”). Thus 

Let us define 

1 
K(x”, in) = 

if (x”, i”) EA~‘~ , 

0 if (x”, i”) $ZAg’, . 

(13.91) 

(13.92) 

The probability that a single randomly chosen codeword x” does not 
well represent a fixed xn is 

p~(x:*>$@;) = Pr(K(x:p) = o) = I - &(in)~xn, in), (13.93) 

and therefore the probability that 2”R independently chosen codewords 
do not represent xn, averaged over p(x”), is 

P,=&(x”) c PM) 
Xn v :x” $JC%, 

(13.94) 

= c po[ 1 - c p(?)K(xn, ??I”“. (13.95) 
xn P 

We now use Lemma 13.5.2 to bound the sum within the brackets. From 
Lemma 13.5.2, it follows that 

2 p(.p)K(=zn, in) 2 c p(~n(Xn)2-n(z(x;a)+3.)~(x~, i”) , (13.96) 
i” in 

and hence 
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P, 5 c $I&“)( 1 - 2-“(z(X;t)+3’) c p@yx”)K~x”, in)) 
anR 

. (13.97) 
x” 2” 

We now use Lemma 135.3 to bound the term on the right hand side of 
(13.97) and obtain 

( > 

2”R 

1-2- n(ZLY; A)+3c) 2 p(,plx~)K(;r:~, p) 
i” 
( 1 - c p(.pIxn)&~, p) + e-(2-n"(x;9)+3e)2nR) . (13.98) 

in 

Substituting this inequality in (13.971, we obtain 

p, 5 1 - 2 &“)p(i”Ixn)K((xn, i”) + e-2-n(z(X;k)+3t)2nR. (13.99) 

The last term in the bound is equal to 

e 
-cp(R-ZW,bP-Se) 

9 (13.100) 

which goes to zero exponentially fast with n if R > 1(X, a + 3~. Hence if 
we choose p@(r) to be the conditional distribution that achieves the 
minimum in the rate distortion function, then R > R(D) implies R > 
1(X, X) and we can choose E small enough so that the last term in (13.99) 
goes to 0. 

The first two terms in (13.99) give the probability under the joint 
distribution p(x”, P) that the pair of sequences is not distortion typical. 
Hence using Lemma 13.5.1, 

I - c c p(xR, in )IC(X”, in ) = PI-W”, p ) @;‘, 1 (13.101) 
Xn 12n 

<E (13.102) 

for n sufficiently large. Therefore, by an appropriate choice of l and n, 
we can make P, as small as we like. 

So for any choice of 6 > 0 there exists an c and n such that over all 
randomly chosen rate R codes of block length n, the expected distortion 
is less than D + S. Hence there must exist at least one code %* with this 
rate and block length with average distortion less than D + 8. Since 6 
was arbitrary, we have shown that (R, 0) is achievable if R > R(D). Cl 

We have proved the existence of a rate distortion code with an 
expected distortion close to D and a rate close to R(D). The similarities 
between the random coding proof of the rate distortion theorem and the 
random coding proof of the channel coding theorem are now evident. We 
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will explore the parallels further by considering the Gaussian example, 
which provides some geometric insight into the problem. It turns out 
that channel coding is sphere packing and rate distortion coding is 
sphere covering. 

Channel coding for the Gaussian channel. Consider a Gaussian chan- 
nel, Yi = Xi + Zi, where the Zi are i.i.d. - N(0, N) and there is a 
power constraint P on the power per symbol of the transmitted 
codeword. Consider a sequence of n transmissions. The power 
constraint implies that the transmitted sequence lies within a 
sphere of radius a in W. The coding problem is equivalent to 
finding a set of ZnR sequences within this sphere such that the 
probability of any of them being mistaken for any other is small- 
the spheres of radius a around each of them are almost 
disjoint. This corresponds to filling a sphere of radius vm 
with spheres of radius a. One would expect that the largest 
number of spheres that could be fit would be the ratio of their 
volumes, or, equivalently, the nth power of the ratio of their radii. 
Thus if M is the number of codewords that can be transmitted 
efficiently, we have 

(13.103) 

The results of the channel coding theorem show that it is possible 
to do this efficiently for large n; it is possible to find approximately 

codewords such that the noise spheres around them are almost 
disjoint (the total volume of their intersection is arbitrarily small). 

Rate distortion for the Gaussian source. Consider a Gaussian source 
of variance a2. A (2nR, n) rate distortion code for this source with 
distortion D is a set of 2nR sequences in W such that most source 
sequences of length n (all those that lie within a sphere of radius 
w) are within a distance m of some codeword. Again, by the 
sphere packing argument, it is clear that the minimum number of 
codewords required is 

The rate distortion theorem shows that this minimum rate is 
asymptotically achievable, i.e., that there exists a collection of 
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spheres of radius m that cover the space except for a set of 
arbitrarily small probability. 

The above geometric arguments also enable us to transform a good code 
for channel transmission into a good code for rate distortion. In both 
cases, the essential idea is to fll the space of source sequences: in 
channel transmission, we want to find the largest set of codewords 
which have a large minimum distance between codewords, while in rate 
distortion, we wish to find the smallest set of codewords that covers the 
entire space. If we have any set that meets the sphere packing bound for 
one, it will meet the sphere packing bound for the other. In the 
Gaussian case, choosing the codewords to be Gaussian with the appro- 
priate variance is asymptotically optimal for both rate distortion and 
channel coding. 

13.6 STRONGLY TYPICAL SEQUENCES AND RATE DISTORTION 

In the last section, we proved the existence of a rate distortion code of 
rate R(D) with average distortion close to D. But a stronger statement is 
true-not only is the average distortion close to D, but the total 
probability that the distortion is greater than D + S is close to 0. The 
proof of this stronger result is more involved; we will only give an 
outline of the proof. The method of proof is similar to the proof in the 
previous section; the main difference is that we will use strongly typical 
sequences rather than weakly typical sequences. This will enable us to 
give a lower bound to the probability that a typical source sequence is 
not well represented by a randomly chosen codeword in (13.93). This 
will give a more intuitive proof of the rate distortion theorem. 

We will begin by defining strong typicality and quoting a basic 
theorem bounding the probability that two sequences are jointly typical. 
The properties of strong typicality were introduced by Berger [281 and 
were explored in detail in the book by Csiszar and Kiirner [83]. We will 
define strong typicality (as in Chapter 12) and state a fundamental 
lemma. The proof of the lemma will be left as a problem at the end of 
the chapter. 

Definition: A sequence xn E SE’” is said to be c-strongly typical with 
respect to a distribution p(x) on Z!Y if 

1. For all a E S? with p(a) > 0, we have 

(13.106) 

2. For all a E % with p(a) = 0, N(alxn) = 0. 
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N(alxn) is the number of occurrences of the symbol a in the sequence 
X”. 

The set of sequences xn E Z’” such that xn is strongly typical is called 
the strongly typical set and is denoted Afn’(X) or AT’“’ when the random 
variable is understood from the context. 

Definition: A pair of sequences (x”, y” ) E Z” x 9” is said to be E- 
strongly typical with respect to a distribution p(x, y) on %’ X ??I if 

1. For all (a, b) E 2 x 3 with p(a, b) > 0, we have 

iN(a, bIxn, y”)-pb,W <- 
l&l 

? (13.107) 

2. For all (a, b) E 8? x 9 with p(a, b) = 0, N(a, bIxn, y”) = 0. 

N(o, bIxn, Y”) is the number of occurrences of the pair (a, b) in the 
pair of sequences (xn, y”). 

The set of sequences (x”, y” ) E %? x ?V such that (xn, yn ) is strongly 
typical is called the strongly typical set and is denoted AT’“‘(X, Y) or 
A*(n) . 

‘From the definition, it follows that if (x”, y” > E AT’“‘(X, Y), then 
xn E Af’(X). 

From the strong law of large numbers, the following lemma is 
immediate. 

Lemma 13.6.1: Let (Xi, Yi) be drawn i.i.d. - p(x, y). Then Pr(Af”‘)+ 1 
as n+m. 

We will use one basic result, which bounds the probability that an 
independently drawn sequence will be seen as jointly strongly typical 
with a given sequence. Theorem 8.6.1 shows that if we choose X” and Y” 
independently, the probability that they will be weakly jointly typical is 
4- nzcx; Y) 

. The following lemma extends the result to strongly typical 
sequences. This is stronger than the earlier result in that it gives a 
lower bound on the probability that a randomly chosen sequence is 
jointly typical with a fixed typical xn. 

Lemma 13.6.2: Let Yl, Y2, . . . , Y, be drawn i.i.d. -II p(y). For xn E 
A z(“‘, the probability that (x”, Y”) E AT’“’ is bounded by 

2- n(Z(X; Y)+E,) I pdcxn, yn) EA;(n)) I g-n(ZcX; Y)-El) , (13.108) 

where E, goes to 0 as E --, 0 and n+ 00. 
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Proof: We will not prove this lemma, but instead outline the proof in 
a problem at the end of the chapter. In essence, the proof involves 
finding a lower bound on the size of the conditionally typical set. Cl 

We will proceed directly to the achievability of the rate distortion 
function. We will only give an outline to illustrate the main ideas. The 
construction of the codebook and the encoding and decoding are similar 
to the proof in the last section. 

Proof: Fix p(iIx). Calculate p(i) = C, p($p(~?I;1~). Fix E > 0. Later we 
will choose E appropriately to achieve an expected distortion less than 
D + 6. 

Generation of codeboolz. Generate a rate distortion codebook % con- 
sisting of ZnR sequences p drawn i.i.d. -llip(lZi). Denote the 
sequences P(l), . . . , P(anR). 

Encoding. Given a sequence X”, index it by w if there exists a w such 
that (X”, x”(w)) E Afn), the strongly jointly typical set. If there is 
more than one such w, send the first in lexicographic order. If there 
is no such w, let w = 1. 

Decoding. Let the reproduced sequence be k(w). 
Calculation of distortion. As in the case of the proof in the last 

section, we calculate the expected distortion over the random 
choice of codebook as 

D = Ex,,, ,d(X”, p) 

= E, c p(x” )d(xn, %‘Yxn )I 

= 2 p;n)E,d(x:*l, 
xn 

(13.110) 

(13.111) 

where the expectation is over the random choice of codebook. 

For a fixed codebook %, we divide the sequences xn E 8?” into three 
categories as shown in Figure 13.8. 

l The non-typical sequences xnFAe . I(n) The total probability of these 
sequences can be made less than E by choosing n large enough. 
Since the individual distortion between any two sequences is boun- 
ded by d,,,, the non-typical sequences can contribute at most Ed,,, 
to the expected distortion. 

l Typical sequences xn E AT’“’ such that there exists a codeword &’ 
that is jointly typical with x”. In this case, since the source sequence 
and the codeword are strongly jointly typical, the continuity of the 
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Figure 13.8. Classes of source sequences in rate distortion theorem. 

distortion as a function of the joint distribution ensures that they 
are also distortion typical. Hence the distortion between these xn 
and their codewords is bounded by D + Ed,,,, and since the total 
probability of these sequences is at most 1, these sequences contrib- 
ute at most D + ~d,,.,~~ to the expected distortion. 

l Typical sequences xn E AT’“’ such that there does not exist a 
codeword p that is jointly typical with x”. Let P, be the total 
probability of these sequences. Since the distortion for any individu- 
al sequence is bounded by d,,,, these sequences contribute at most 
P,4nax to the expected distortion. 

The sequences in the first and third categories are the sequences that 
may not be well represented by this rate distortion code. The probability 
of the first category of sequences is less than E for sufficiently large n. 
The probability of the last category is P,, which we will show can be 
made small. This will prove the theorem that the total probability of 
sequences that are not well represented is small. In turn, we use this to 
show that the average distortion is close to D. 

Cakulation of P,. We must bound the probability that there is no 
codeword that is jointly typical with the given sequence X”. From 
the joint AEP, we know that the probability that X” and any x” are 
jointly typical is A 2-nz(x’ “!- Hence the expected number of jointly 
typical x”(w) is 2nR2-nz’x’x’, which is exponentially large if R > 
I(X, X). 

But this is not sufficient to show that P, + 0. We must show that the 
probability that there is no codeword that is jointly typical with X” goes 
to zero. The fact that the expected number of jointly typical codewords is 
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exponentially large does not ensure that there will at least one with 
high probability. 

Just as in (13.93), we can expand the probability of error as 

I’, = c p(xn)[l - Pr((x”, ?, E Afn))12”R . 
xn EAT(~) 

(13.112) 

From Lemma 13.6.2, we have 

Substituting this in (13.112) and using the inequality (1 - x)” 5 eVnx, we 
have 

(13.114) 

which goes to 0 as n + a if R > 1(X, & + Ed. Hence for an appropriate 
choice of E and n, we can get the total probability of all badly repre- 
sented sequences to be as small as we want. Not only is the expected 
distortion close to D, but with probability going to 1, we will find a 
codeword whose distortion with respect to the given sequence is less 
than D+6. Cl 

13.7 CHARACTERIZATION OF THE RATE DISTORTION 
FUNCTION 

We have defined the information rate distortion function as 

R(D)= min m a , (13.115) 
Polx):q+)P Wq(ildd(z, i&D 

where the minimization is over all conditional distributions @Ix) for 
which the joint distribution p(~)&?Ix) satisfies the expected distortion 
constraint. This is a standard minimization problem of a convex func- 
tion over the convex set of all q(i 1~) I 0 satisfying C, &IX) = 1 for all x 
and CQ(~~X)JI(X)C&X, i) 5 D. 

We can use the method of Lagrange multipliers to find the solution. 
We set up the functional 

J(q) = c c p(x)q(iIx) log qG Ix> 
x i c 

X 

p(x)q(iIx) + A T c PWW~k a 32 
(13.116) 

(13.117) 
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where the last term corresponds to the constraint that @Ix) is a 
conditional probability mass function. If we let q(i) = C, p(x)q(iIx) be 
the distribution on X induced by &C lx), we can rewrite J(a) as 

J(q) = c c pWqG Ix> log $ + AC c p(x)q(iIx)&x, i) (13.118) 
x i 2 i 

+ c dx>C qelx) - (13.119) 
x i 

DifYerentiating with respect to &fix), we have 

+pw - c p(r’)q(~lx’)--&p~x) + Ap(xMx, i) 
x’ 

+ v(x) = 0 . (13.120) 

Setting log p(x) = ~(x>/p(x>, we obtain 

p(x)[ log s + h&x, i> + log /&L(x) 1 = 0 (13.121) 

(13.122) 

Since C, q(i(x) = 1, we must have 

p(x) = 2 q(i)e-*d’“, i, 
P 

(13.123) 

q@e 
-Ad(x, i) 

qcqx) = 
c, q(i)e-Wd l 

Multiplying this by p(x) and summing over all x, we obtain 

-hd(x, i) 

q(i) = q(i) 2 p(x)e r c;, q(~t)e-kW” ’ 

If q(i) > 0, we can divide both sides by q(i) and obtain 

p&k 
-I\d(r, i) 

c z c,, q(~/)e-WW = 1 

(13.124) 

(13.125) 

(13.126) 

for all i E &‘. We can combine these @‘I equations with the equation 
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defining the distortion and calculate h and the I@ unknowns q(i). We 
can use this and (13.124) to find the optimum conditional distribution. 

The above analysis is valid if all the output symbols are active, i.e., 
q(i) > 0 for all i. But this is not necessarily the case. We would then 
have to apply the Kuhn-Tucker conditions to characterize the minimum. 
The inequality condition a(i) > 0 is covered by the Kuhn-Tucker condi- 
tions, which reduce to 

aJ =0 if q(iJz)>O, 

aq(ild 20 if q(iJx)=O. 
(13.127) 

Substituting the value of the derivative, we obtain the conditions for the 
minimum as 

p(de 
-A&x, i) 

c x & q(~‘)e-Ad’“, i’) =1 if q(i)>O, 

p We 
-h&x, if) 

c x c;, q(Jl’)e-“d’“’ i’) sl if q(i) = 0 . 

(13.128) 

(13.129) 

This characterization will enable us to check if a given q(i) is a solution 
to the minimization problem. However, it is not easy to solve for the 
optimum output distribution from these equations. In the next section, 
we provide an iterative algorithm for computing the rate distortion 
function. This algorithm is a special case of a general algorithm for 
finding the minimum relative entropy distance between two convex sets 
of probability densities. 

13.8 COMPUTATION OF CHANNEL CAPACITY AND THE RATE 
DISTORTION FUNCTION 

Consider the following problem: Given two convex sets A and B in .% n as 
shown in Figure 13.9, we would like to the find the minimum distance 
between them 

d min = aEyipE, &a, b) , (13.130) 
, 

where d(a, b) is the Euclidean distance between a and b. An intuitively 
obvious algorithm to do this would be to take any point x E A, and find 
the y E B that is closest to it. Then fix this y and find the closest point in 
A. Repeating this process, it is clear that the distance decreases at each 
stage. Does it converge to the minimum distance between the two sets? 
Csiszhr and Tusnady [85] have shown that if the sets are convex and if 
the distance satisfies certain conditions, then this alternating minimiza- 
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Figure 13.9. Distance between convex sets. 

tion algorithm will indeed converge to the minimum. In particular, if the 
sets are sets of probability distributions and the distance measure is the 
relative entropy, then the algorithm does converge to the the minimum 
relative entropy between the two sets of distributions. 

To apply this algorithm to rate distortion, we have to rewrite the rate 
distortion function as a minimum of the relative entropy between two 
sets. We begin with a simple lemma: 

Lemma X3.8.1: Let p(x)p( ylx) be a given joint distribution. Then the 
distribution r(y) that minimizes the relative entropy D( p(x)p( yIx)ll p(x) 
r(y)) is the marginal distribution r*(y) corresponding to p( ~1x1, i.e., 

D(p(x)p(y(x)l(p(x)r*(y)) = 7% D(p(dp( yIdIIpW-( yN , 
(13.131) 

where r*(y) = C, p(x)p( y lx). Also 

ZE Fy PWP(Y Id log $$ = c p(x)p( ylx) log $$ , (13.132) 
, x9 Y 

pWp( y Id 
r*(3cly) = c, p(x)p( y Jx) * 

proof: 

D( pWp( yldJI pWr( yN - D(pWp( yIx)ll pWr*( yN 

(13.133) 

= c PCX)P(Y lx> log $g;;jy (13.134) 
x9 Y 
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(13.136) 

(13.137) 

10. (13.139) 

The proof of the second part of the lemma is left as an exercise. cl 

We can use this lemma to rewrite the minimization in the definition 
of the rate distortion function as a double minimization, 

R(D) = min min 2 2 p(3G)q(32~x)log $i!$ l 

r(i) q(iJx): c p(x)q(iIx)d(x, 3iMD z p 

(13.140) 

If A is the set of all joint distributions with marginal p(x) that satisfy 
the distortion constraints and if B the set of product distributions 
p(~)r($ with arbitrary r(i), then we can write 

We now apply the process of alternating minimization, which is called 
the Blahut-Arimoto algorithm in this case. We begin with a choice of A 
and an initial output distribution r(i) and calculate the q(ilx) that 
minimizes the mutual information subject to a distortion constraint. We 
can use the method of Lagrange multipliers for this minimization to 
obtain 

r(i)e 
-h&x, i) 

q(qx) = c; r(.$e-wG) . (13.142) 

For this conditional distribution q(ilx), we calculate the output dis- 
tribution r(32) that minimizes the mutual information, which by Lemma 
13.31 is 

(13.143) 

We use this output distribution as the starting point of the next 
iteration. Each step in the iteration, minimizing over q( l I l ) and then 
minimizing over r( l > reduces the right hand side of (13.140). Thus there 
is a limit, and the limit has been shown to be R(D) by Csiszar [791, 
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where the value of D and R(D 1 depends on h. Thus choosing A appropri- 
ately sweeps out the R(D) curve. 

A similar procedure can be applied to the calculation of channel 
capacity. Again we rewrite the definition of channel capacity, 

(13.144) 

as a double maximization using Lemma 13.8.1, 

&lY) 
c = Fx$YF c c r(jc)p(yld log r(x) . 

32 Y 
(13.145) 

In this case, the Csiszar-Tusnady algorithm becomes one of alternating 
maximization-we start with a guess of the maximizing distribution r(x) 
and find the best conditional distribution, which is, by Lemma 13.8.1, 

(13.146) 

For this conditional distribution, we find the best input distribution r(x) 
by solving the constrained maximization problem with Lagrange multi- 
pliers. The optimum input distribution is 

n,c q(x 1 y))p’y’x) 
r(X) = c, rl,( q(xJy))p’y’x) ’ 

(13.147) 

which we can use as the basis for the next iteration. 
These algorithms for the computation of the channel capacity and the 

rate distortion function were established by Blahut [37] and Arimoto 
[ll] and the convergence for the rate distortion computation was proved 
by Csiszar [79]. The alternating minimization procedure of Csiszar and 
Tusnady can be specialized to many other situations as well, including 
the EM algorithm [88], and the algorithm for finding the log-optimal 
portfolio for a stock market 1641. 

SUMMARY OF CHAPTER 13 

Rate distortion: The rate distortion function for a source X-p(r) and 
distortion measure d(x, i) is 

R(D) = min 1(x; a , (13.148) 
p(Xlx): C(,,i) p(x)p(iIx)d(x, i)SD 
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where the minimization is over all conditional distributions p(i]x) for which 
the joint distribution p(r, i) = p(x)p(~~;lx> satisfies the expected distortion 
constraint. 

Rate distortion theorem: If R > R(D), there exists a sequence of codes 
&X”) with number of codewords IXY l )I I 2”R with E&X”, X’YX”))-, D. If 
R <R(D), no such codes exist. 

Bernoulli source: For a Bernoulli source with Hamming distortion, 

R(D)=H(p)-H(D). (13.149) 

Gaussian source: For a Gaussian source with squared error distortion, 

R(D)=;log$. (13.150) 

Multivariate Gaussian source: The rate distortion function for a mul- 
tivariate normal vector with Euclidean mean squared error distortion is 
given by reverse water-filling on the eigenvalues. 

PROBLEMS FOR CHAPTER 13 

1. One bit quantization of a single Gaussian random variable. Let X- 
Jw, a21 and let the distortion measure be squared error. Here we do 
not allow block descriptions. Show that the optimum reproduction 
points for 1 bit quantization are -+ flu, and that the expected 
distortion for 1 bit quantization is %? a”. 

Compare this with the distortion rate bound D = a22 -2R for R = 1. 

2. Rate distortion function wit? infinite distortion. Find the rate distortion 
function R(D) = min 1(X, X) for X - Bernoulli ( i ) and distortion 

1 

0, x=i, 
d(Q)= 1, x=l,i=O, 

00, x=0$=1. 

3. Rate distortion for binary source with asymmetric distortion. Fix p(xli) 
and evaluate 1(X,X) and D for 

X- Bern(l/2), 

0 a 
d(x,c,)= b o . [ I 

(R(D) cannot be expressed in closed form.) 

4. Properties of R(D). Consider a discrete source X E %’ = { 1,2, . . . , m} 
with distribution pl, p2, . . . , p, and a distortion measure d(i, j). Let 
R(D) be the rate distortion function for this source and distortion 
measure. Let d’(i, j) = d(i, j) - wi be a new distortion measure and 
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let R’(D) be the corresponding rate distortion function. Show that 
R’(D) = R(D + W ), where ti = C piwi, and use this to show that there 
is no essential loss of generality in assuming that min, c&i, i) = 0, i.e., 
for each x E 8, there is one symbol 2 which reproduces the source 
with zero distortion. 

This result is due to Pinkston [209]. 

5. Rate distortion for uniform source with Hamming distortion. Consider a 
source X uniformly distributed on the set { 1,2, . . . , m}. Find the rate 
distortion function for this source with Hamming distortion, i.e., 

d(x, i) = 
{ 

0 ifx=i, 
1 ifx#i. 

6. Shannon lower bound for the rate distortion function. Consider a source 
X with a distortion measure d(x, i) that satisfies the following proper- 
ty: all columns of the distortion matrix are permutations of the set 
W,, 4,. . . , d,}. Define the function 

4(D)= glax H(p). 
P’Cizl PidisD 

(13.151) 

The Shannon lower bound on the rate distortion function [245] is 
proved by the following steps: 
(a) Show that 4(D) is a concave function of D. 
(b) Justify th e following series of inequalities for 1(X; X) if 

Ed(X, k) 5 D, 

1(x; % = H(X) - H(X@) (13.152) 

= H(X) - 2 p(i)H(X@ = i) 
i 

(13.153) 

1 H(X) - c p(i)+(D,) 
i 

(13.154) 

(13.155) 

rH(X)- 4(D), (13.156) 

where Di = C, p(x]i)d(x, i). 
(c) Argue that 

R(DkH(X)-4(D), (13.157) 

which is the Shannon lower bound on the rate distortion function. 
(d) If in add t i ion, we assume that the source has a uniform dis- 

tribution and that the rows of the distortion matrix are permuta- 
tions of each other, then R(D) = H(X) - 4(D), i.e., the lower 
bound is tight. 
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7. Erasure distortion. Consider X- Bernoulli( i ), and let the distortion 
measure be given by the matrix 

Calculate the rate distortion function for this source. Can you suggest 
a simple scheme to achieve any value of the rate distortion function 
for this source? 

8. Bounds on the rate distortion function for squared error distortion. 
For the case of a continuous random variable X with mean zero and 
variance a2 and squared error distortion, show that 

h(X) - i log(2?re)D I R(D) I f log $ . (13.159) 

For the upper bound, consider the joint distribution shown in Figure 
13.10. Are Gaussian random variables harder or easier to describe 
than other random variables with the same variance? 

Figure 13.10. Joint distribution for upper bound on rate distortion function. 

9. Properties of optimal rate distortion code. A good (R, D) rate distortion 
code with R = R(D) puts severe constraints on the relationship of the 
source X” and the representations x”. Examine the chain of 
inequalities (13.58-13.70) considering the conditions for equality and 
interpret as properties of a good code. For example, equality in 
(13.59) implies that p is a deterministic function of X”. 

10. Probability of conditionally typical sequences. In Chapter 8, we calcu- 
lated the probability that two independently drawn sequences X” and 
Y” will be weakly jointly typical. To prove the rate distortion 
theorem, however, we need to calculate this probability when one of 
the sequences is fixed and the other is random. 

The techniques of weak typicality allow us only to calculate the 
average set size of the conditionally typical set. Using the ideas of 
strong typicality on the other hand provides us with stronger bounds 
which work for all typical X” sequences. We will outline the proof that 
Pr{(x”, Y”) E AT’“‘} = 2-nz(X’ y, for all typical x~. This approach was 
introduced by Berger [28] and is fully developed in the book by 
Csiszar and Korner [83]. 
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Let (Xi, Yi> be drawn i.i.d. -p(z, y). Let the marginals of X and Y 
be p(x) and p(y) respectively. 
(a) Let A*(“) be the strongly typical set for X. Show that c 

IA;‘“‘I & 2nH(X) (13.160) 

Hint: Theorem 12.1.1 and 12.1.3. 
(b) The joint type of a pair of sequences W, y” ) is the proportion of 

times (xi, yi) = (a, b) in the pair of sequences, i.e., 

pxn,Yn(a, b) = $(a, b( x”, y”) = i &$,I I(xi = a, yi = b) * (13.161) 

The conditional type of a sequence y” given xR is a stochastic 
matrix that gives the proportion of times a particular element of 
9 occurred with each element of 8 in the pair of sequences. 
Specifically, the conditional type V,,,,,(b Icz) is defined as 

Nb, blx”, Y”) 
V,~,,dbb) = jQlxn) * (13.162) 

Show that the number of conditional types is bounded by (n + 
l)l”lPl . 

(c) The set of sequences y” E 9” with conditional type V with respect 
to a sequence zn is called the conditional type class Tv(x” ). Show 
that 

(n + ~),*,,~, 2nH(Y’X) 5 IT”(X”>I 5 2nH(Y’X) . (13.163) 

(d) The sequence yn E W is said to be e-strongly conditionally typical 
with the sequence xn with respect to the conditional distribution 
V( - I . ) if the conditional type is close to V. The conditional type 
should satisfy the following two conditions: 
i. For all (a, b) E aP x 91 with V(bla)> 0, 

; IN(a, blx: y”) - V(bla)N(alx”)l~ 6 . (13.164) 

ii. N(a, blx”, y”) = 0 for all (a, b) such that V(bla) = 0. 

The set of such sequences is called the conditionally typical set 
and is denoted AT’“’ (Ylx”). Show that the number of sequences y” 
that are conditionally typical with a given xn E ZP is bounded by 

?t(W(Y(X)-cl) I IA;‘“‘(ylx”)l 5 (n + l)1~11~Y12n(N(Y1X)+cl) , 

(13.165) 
where E~--,O as E+O. 
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(e) For a pair of random variables (X, Y) with joint distribution 
p(x, y), the e-strongly typical set AT’“’ is the set of sequences 
(x”, y”) E En X ??/” satisfying 
i. 

/ iN(a, blx”, Y”) --da, WI< & (13.166) 

for every pair (a, b) E %’ x 3 with p(a, b) > 0. 
ii. N(a,b~x~,y”)=Oforall(a,b)~%‘~~withp(a,b)=O. 

The set of E-strongly jointly typical sequences is called the E- 
strongly jointly typical set and is denoted Af”‘(X, Y). 
Let (X, Y) be drawn i.i.d. -p(x, y). For any xn such that there 
exists at least one pair (x”, y”) E AT’“‘(X, Y), the set of sequences 
y” such that (x”, y”) EAT(~) satisfies 

(n + ;),%,,%, 2n(H(YIX)-G(c)) I I{ yR: (x”, y”) E AT’“‘} 1 

I(n + 1) I~11912n(H(YlX)+S(s)) , 

(13.167) 

where US+ 0 as E + 0. In particular, we can write 

2 n(ff(YIX)-+ I I{yn:(xn, y”) eAT( 5 24H(Y1X)+4, 

(13.168) 

where we can make Q. arbitrarily small with an appropriate 
choice of E and n. 

(f) Let Y1, Y2,. . . , Y, be drawn i.i.d. -np(yi>. For xn EA:(~‘, the 
probability that (x”, Y”) E AT’“’ is bounded by 

2- nU(X; Y)+e3) 5 I+((~“, y”) E AT’“‘) 5 2-n(z(X; y)-s3) , (13.169) 

where Ed goes to 0 as E+ 0 and n+a. 

HISTORICAL NOTES 

The idea of rate distortion was introduced by Shannon in his original paper 
[238]. He returned to it and dealt with it exhaustively in his 1959 paper [245], 
which proved the first rate distortion theorem. Meanwhile, Kolmogorov and his 
school in the Soviet Union began to develop rate distortion theory in 1956. 
Stronger versions of the rate-distortion theorem have been proved for more 
general sources in the comprehensive book by Berger [27]. 
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The inverse water-filling solution for the rate-distortion function for parallel 
Gaussian sources was established by McDonald and Schultheiss [190]. An itera- 
tive algorithm for the calculation of the rate distortion function for a general i.i.d. 
source and arbitrary distortion measure was described by Blahut [37] and 
Arimoto [ll] and Csiszar [79]. This algorithm is a special case of general 
alternating minimization algorithm due to Csiszar and Tusnady [85]. 


