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Cédex 4, France; ‡Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; §Eurobios, 9 Rue de Grenelle, 75007 Paris, France; ¶Center for
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The origins of large-scale spatial patterns in biology have been an
important source of theoretical speculation since the pioneering
work by Turing (1952) on the chemical basis of morphogenesis.
Knowing how these patterns emerge and their functional role is
important to our understanding of the evolution of biocomplexity
and the role played by self organization. However, so far, conclu-
sive evidence for local activation–long-range inhibition mecha-
nisms in real biological systems has been elusive. Here a well-
defined experimental and theoretical analysis of the pattern
formation dynamics exhibited by clustering behavior in ant colo-
nies is presented. These experiments and a simple mathematical
model show that these colonies do indeed use this type of mech-
anism. All microscopic variables have been measured and provide
the first evidence, to our knowledge, for this type of self-organized
behavior in complex biological systems, supporting early conjec-
tures about its role in the organization of insect societies.

Many biological systems display large-scale features involv-
ing some characteristic scale that is much larger than the

size of its individual components (1). These structures are
observed in a broad range of systems and scales, from animal
coats (2), shell patterns (3, 4), and neural structures (5) to the
spatial distribution of individuals in ecosystems (6). In many
cases, they reflect functionality and adaptation and in all of
them, they provide clues for the underlying rules that generate
them. In most cases, it is clear that the information available to
individual units is gathered from a local neighborhood much
smaller than the resulting structures, suggesting some type of
amplification mechanism that relies on collective behavior.

The first theoretical explanation of these types of structures
was suggested in 1952 by Alan Turing (1, 7, 8). The basic
mechanism at work involves local amplification of fluctuations
(activation) and long-range inhibition and actually falls within a
general class of mechanisms (9–12). These mechanisms have
been identified in physical (13) and chemical (14) systems, in
ecosystems (2, 6, 10, 15–18) and morphogenesis (2–5, 11, 19–26).
In the slime mold (27, 28), the evidence is also strong. Critics
have argued that a proof requires the identification and mea-
surement of the microscopic mechanisms at work, and this is
obviously a rather difficult task in biology.

In this context, it was early suggested that social insects might
actually use these types of mechanisms to build their nests (29,
30) and produce a wide variety of spatiotemporal structures
(31–34). Here we use social insects and their behavioral patterns
of organization as our reference system. We follow a standard
approach, using a well-defined and controlled experimental
setup in which the whole set of parameters can be measured and
therefore all of the microscopic rules can be identified. We show
that the formation of cemeteries in ants (35–38) falls within the
family of local activation–long range inhibition (LALI) processes
originally suggested by Gierer and Meinhardt (9), the inhibition
resulting from the depletion of the substrate. In experiments
carried out with the ant Messor sancta, we confirm the presence

of self-organization dynamics as responsible for the regular
structures generated by the clustering process, and a mathemat-
ical model is presented, consistently reproducing the experimen-
tal observations.

Methods
Colony Collection and Ant Maintenance. Experiments were carried
out with colonies of the ant M. sancta. Ants were collected in
southwestern France, near Narbonne, and then reared in the
laboratory at 25°C with 12 h light�12 h dark. Colonies were
housed in several glass test tubes placed in 27 � 27-cm plastic
boxes whose sides were coated with Fluon to prevent ants from
escaping. Ants were provided with water in the form of moist
cotton, fed ad libitum with a mixture of seeds and twice a week
with bits of crickets.

Experiments. The experimental arena is a circular structure (of
two possible diameters, Ø � 25 or 50 cm) below which the nest
box is located. The ants can access the arena by climbing on a
wood rod placed in a hole at the center of the arena and
randomly walk to the periphery. The experimental setup was
designed to reduce the problem to a one-dimensional system
with periodic boundary conditions: because the ants exhibit
strong thigmotactism (a tendency to follow the inner walls), their
paths can be considered to be confined to one dimension.
Corpses are initially homogeneously distributed along the pe-
riphery, close to the inner wall (Fig. 1a). Two different initial
numbers of corpses are used in both arena sizes: 100�200 and
200�400 for the small and large arena, corresponding to 127 and
255 corpses m�1, respectively. The average size of the corpses is
3 mm, the initial mean distance between them being 4.9 and 0.9
mm for the small and high density, respectively. The duration of
the experiments was set to 24 hr with the small arena and 48 hr
with the large arena. Fifteen replications were performed for
each density with the small arena and 25 replications with the
large arena. Another set of 10 experiments was performed with
the large arena and a small initial number of corpses corre-
sponding to 13 corpses m�1 to test the existence of a critical
density of corpses. The duration of these experiments was set to
24 hr. The floor of the arena was washed with diluted alcohol and
hexane before each experiment.

Recording and Data Analysis. The experiments were videotaped by
means of a Sony (Tokyo) DCR-VX1000E high-definition cam-
era allowing the regular sampling of the aggregation process.
Two seconds of images were recorded every 10 min. A video
analysis was then performed with a specially designed software
that calculated the position and the size of the piles at each time
interval. Two neighboring corpses are considered to belong to
the same pile when the distance between them is less than 1.5
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mm (half the average size of a corpse). A pile is defined as a
cluster of at least five corpses. The individual behavior of ants
was studied with a separate set of experiments. The spontaneous
probabilities for an ant to drop a corpse or to make a U-turn
during walking were estimated by calculating the regression line
of the survivorship curves of these events. The probabilities of
picking up and dropping a corpse as a function of the size of the
pile encountered by an ant were estimated by a series of
experiments during which piles with predefined sizes were
created. The size of the piles was kept constant during these
experiments. Ants’ trajectories were digitized by using a GrafBar
GP-7 sonic digitizer (Science Accessories, Southport, CT). We
put a glass plate over the active area of the digitizer and placed
behind it a 13-inch video monitor. As an ant moved on the
screen, it was followed with the digitizer cursor, and its path was
input into a microcomputer as a series of X-Y Cartesian coor-
dinates at a rate of five points per second. Because the speed at
which the ants were moving on the screen was relatively slow,
ants could be followed with the videotapes played at normal
speed. Digitized trajectories were used to compute the running
velocity of ants, defined as the ratio of total trajectory length
over the time the animal spent moving during the trajectory.

Results
Clustering Behavior: Collective and Individual Levels. After having
reached the arena, workers pick up corpses and drop them to
form piles. After a few hours, several clusters are formed. Over
time, some clusters grow and others disappear, leading to an
apparent steady state with a stable number of clusters over the
duration of the experiment (Fig. 1 b–d). The sigmoidal growth
of surviving clusters, an illustration of which is given in Fig. 2,
suggests that cluster formation is autocatalytic. The number of
clusters initially grows to reach a maximum after about 3 hr and
then decreases and stabilizes.

The above results suggest a LALI mechanism: because the
addition of corpses to a cluster is more likely as the cluster
increases in size, cluster growth is locally self-enhancing and is
inhibited by the depletion of corpses in the cluster’s neighbor-
hood. This type of LALI model, coined ‘‘activator-substrate’’ (9),
has been suggested in the formation of certain seashell patterns
(4). To confirm this conjecture, the underlying microscopic rules
have to be identified. Observation of the ants’ behavior shows

that workers pick up or drop corpses with a probability that
depends on the local density (c) of corpses. Picking up and
dropping probabilities and their functional form have been
estimated from experimental data (Fig. 3 a and b). Unladen ants
pick up corpses with a probability that decreases with cluster size,
whereas corpse-carrying ants drop corpses with a probability
that increases with cluster size. The latter ants are also charac-
terized by a spontaneous dropping probability that has been
estimated from experimental data (Fig. 3c). Trajectory mea-
surements show that the ants move randomly along the arena’s
periphery (one-dimensional random walk) and allow the iden-
tification of two additional microscopic characteristics: individ-
ual velocity and mean free path. The mean velocity of ants is
� � 1.6 � 0.7 cm�s�1 (n � 25), and for such parameter range,
random walk can be shown to be only little influenced by the
velocity distribution. Further discussion will therefore assume a
constant velocity of walking at the average velocity value. Ants
are also characterized by a constant probability per unit of time
of making a U-turn during their walk (0.10 s�1), and the
corresponding mean free path (l � 15.8 cm) is significantly
smaller than the size of the arena’s periphery (78.5 and 157.1 cm
for the arena sizes used in the experiments).

Model Description. These estimates of microscopic behavioral
parameters and the response functions have been used to build
a macroscopic mathematical model that falls within the activa-
tor-substrate class of LALI models, which thus confirmed our
previous assumptions. The model involves two variables: the
density of corpse-carrying ants a(x, t) and the density of corpses
c(x, t), where x and t stand for space and time, respectively. � is
the density of noncarrying ants. At any given time, their pro-
portion in experiments is large (��(a � �) � 0.94 � 0.07,
estimated over 135 observations; mean density �� � SD � 20.0 �
7.0 m�1). Because of the diffusion process resulting from the
random walk of noncarrying ants, � is assumed to remain
uniform and constant over time in the model. Ants’ behavior
can then be approximated by the following reaction–diffusion
equations:

�c
�t

� ��c, a� [1]

Fig. 1. An example of aggregation dynamics observed for an arena of Ø �
50 cm and with n � 400 corpses. (a) At t � 0; (b) after 6 h; (c) after 12 h; (d) after
45 h.

Fig. 2. An example of growth of a surviving cluster of corpses for an arena
of Ø � 25 cm and with n � 100 corpses.
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�a
�t

� � ��c, a� � D
�2a
�x2 , [2]

where �(c, a) is the sum of three terms:

��c, a� � v � kda
Ç

I

�
�1a�c

�2 � �cÇ
II

�
�3�c

�4 � �cÇ
III

� . [3]

In Eq. 3, v is the linear velocity of the ants, part I represents
spontaneous dropping (with kd the spontaneous dropping rate
per laden ants), and parts II and III represent density-dependent
dropping and picking, respectively. I and II are proportional to
the density of corpse-carrying ants (a), and III is proportional to
noncarrying ants (�). �1, �2, �3, and �4 are empirical constants.
�c is a nonlocal term that introduces a short-range interaction
between workers and corpses:

�c �
1

2	 �
x�	

x�	

c�z� dz ,

where 	 is a small radius of perception within which workers can
detect corpses (dedicated experimental measurements lead to a
characteristic radius of 0.5 cm 
 	 
 1.0 cm). The dropping rate

per laden ants (II) increases with �c and reaches the asymptotic
value v�1. The picking rate per noncarrying ants (III) results
from the presence of noncarrying ants picking available corpses.
It decreases when �c increases. Therefore, according to III,
cluster size acts as a negative feedback on the picking rate,
because �c is a local indicator of cluster size. As a result of II and
III, clusters form, and their growth inhibits the further growth of
other clusters. A standard stability analysis, where a perturbation
around the unique homogeneous steady state (cs, as) is intro-
duced (c � cs � 	c0e
t�i�x; a � as � 	a0e
t�i�x), leads to the
characteristic equation:


2 � ��� � � � D�2�
 � �D�2 � 0 , [4]

where

� �
sin��	�

�	
� �2�1as

��2 � cs�
2 �

�3�cs

��4 � cs�
2� �

�3�

��4 � cs�

� � kd �
�1cs

��2 � cs�
.

Solving Eq. 4 for 
 yields the rate of growth 
(�) of the
perturbation for a given wave number �. Here 
(�) exhibits a
finite range of unstable modes that includes the marginally stable
mode 
(0) � 0 (Fig. 4). This is a well-known property of systems
involving a conservation law. Furthermore, as is usual with such
models, the most unstable wave number, that is the one for which

(�) is maximum, is proportional to corpse density. In other
words the analysis predicts (i) that in the vicinity of the homo-
geneous state, doubling corpse density should lead to twice as
many piles; this situation may change over time as the system
relaxes away from the homogeneous state as other unstable wave
numbers may become amplified; (ii) that doubling the arena’s
diameter while keeping the density constant should lead to twice
as many piles; (iii) that a critical density of corpses exists (cc �
46 corpses m�1) below which no aggregation occurs.

Fig. 3. Density-dependent probabilities of dropping (a) and picking (b) a
corpse, as estimated from experiments and theoretical fittings of the drop-
ping and picking rates (continuous line). The total number of ants dropping
and picking up corpses for each size of pile is indicated in brackets. The
theoretical fitting is obtained by using the Eqs. 1–3. A pile of corpses is
introduced in the theoretical setup to reproduce the experimental procedure.
The fraction of corpse-carrying ants crossing the pile and dropping their load
gives the rate of dropping for this pile. This fraction is computed for different
pile sizes. The comparison between this theoretical fraction and the corre-
sponding experimental one provides an estimate of the parameters of the
dropping function �1 and �2. The same procedure is used to adjust the picking
rate (�3 and �4), for which the fraction of laden ants leaving the cluster was
measured. Adjusted values �1 � 31.75 m�1, �2 � 1,000 m�1, �3 � 3.125 m�1 and
�4 � 50 m�1 were obtained with kd � 0.75 m�1, � � 40��Ø�m�1, 	 � 1 cm, v �
1.6. 10�2 m�s�1, l � 15.8 10�2 m and D � v 1�2 � 1.3�10�3 m2�s�1 (see Eqs. 2 and
3). (c) The natural log of the proportion of ants (n � 127) still carrying a corpse
as a function of the distance covered since they had picked it up. The rela-
tionship is best described by the natural log of the proportion of ants that did
not yet dropped the corpse they carry � � kdx with kd � 0.75 m�1 (r2 � 0.975;
x is the distance in m).

Fig. 4. Stability analysis of the steady states. Solution of the characteristic
equation as a function of the wave number � for the experimental conditions
Ø � 25 cm, 100 corpses and 200 corpses. The parameter values are those of Fig.
3 legend.

Theraulaz et al. PNAS � July 23, 2002 � vol. 99 � no. 15 � 9647

EC
O

LO
G

Y
PH

YS
IC

S



Comparison of the Model’s Predictions with Experimental Results. As
shown in Fig. 5, the dynamics of the average number of piles with
time and the time at which the maximum number of piles is reached
given by the model are in close agreement with the experiments in
the four conditions studied. In particular, predictions of the stability
analysis are confirmed in the initial phase (up to maximum pile
number): (i) doubling the density leads to a doubling of the number
of piles; (ii) doubling the arena’s diameter, whereas keeping the
same density also leads to twice as many piles; (iii) in experiments
performed with an initial density of corpses (13 corpses m�1) below,
no stable clusters were observed. In situations where several piles
coexist after 24 or 48 hr (far from the homogenous state), although
no strict regularity may be noticed, a critical distance exists between
two consecutive piles below which only one of them can ‘‘survive’’
in the long term as shown in Fig. 6. After 24 hr, with the small arena
and whatever the initial density of corpses, the presence of two
consecutive piles within 20 cm of each other is very unlikely. In any
case, the distance between piles is never less than 10 cm. The most
frequent distribution, with piles located on opposite sides of the
arena, is observed in 50% of the cases. The corresponding theo-
retical distribution is not significantly different from the experi-
mental one, and both distributions differ significantly from a
random distribution (Fig. 6).

Discussion
The observation of cemetery formation in ant colonies suggests
a LALI mechanism based on individual worker behavior. It is a
peculiar example of such mechanisms in that it involves animal

behavior and not physical and chemical morphogens. All of the
behavioral parameters of the corresponding model were quan-
tified in dedicated experiments. When loaded with the experi-
mental parameter values, the model not only leads to the
formation of patterns that reproduce the properties of cemetery
formation, but also predicts how the pattern is affected by such
experimental characteristics as corpse density and arena size.
Experiments aimed at testing the model’s predictions show that
the predictions are indeed satisfied. This is a strong indication
that the formation of cemeteries in ants is an example of LALI
morphogenesis, which makes it one of the first convincing
documented biological examples and certainly the first involving
higher organisms. Our work should encourage researchers to
look for such mechanisms in other collective behavioral patterns
such as network formation (33, 34), nest construction (29–31,
39), or herd patterns (40, 41), where it could be easier to identify
the underlying activation and inhibition mechanisms than in
other systems.
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