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Making predictions in the multiverse
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Abstract: I describe reasons to think we are living in an eternally inflating multiverse

where the observable “constants” of nature vary from place to place. The major obstacle

to making predictions in this context is that we must regulate the infinities of eternal

inflation. I review a number of proposed regulators, or measures. Recent work has

ruled out a number of measures by showing that they conflict with observation, and

focused attention on a few proposals. Further, several different measures have been

shown to be equivalent. I describe some of the many nontrivial tests these measures

will face as we learn more from theory, experiment, and observation.
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1. Introduction

Weinberg’s successful prediction of the cosmological constant [1] suggests that we are

living in a very large universe where the “constants” of nature vary from place to place.

In the years since Weinberg’s prediction, advances in string theory have lent theoretical

support to this idea. While string theory is a unique 11-dimensional theory with no free

parameters, it seems to contain a huge landscape of solutions with 4 large dimensions

and 7 tiny dimensions [2]. At the energy scales we can access, these different solutions

look like distinct 4-dimensional theories with different values for the physical constants,

such as the cosmological constant Λ and the Higgs mass.
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Furthermore, eternal inflation occurs naturally in the string landscape. Starting

from finite initial conditions, eternal inflation produces an arbitrarily large spacetime

volume in the inflating false vacuum. Inflation ends locally, producing “pocket uni-

verses” where the fields settle into one of the vacua. Globally, inflation never ends,

and all of the vacua of string theory are produced as pocket universes within a vast

eternally inflating cosmology often called the multiverse.

If the fundamental theory produces such a large universe where the low-energy

laws of physics vary from place to place, how are we to make predictions? First, it

is natural to use the anthropic principle. In this context the anthropic principle is

simply a controversial name for a mundane selection effect: when we are predicting the

results of an observation, we can focus on the parts of the multiverse where observations

can occur. More precisely, if we had complete knowledge of the multiverse, the relative

probability of two different observations is given by counting the number of observations

of each type,
pA
pB

=
NA

NB

. (1.1)

For example, to predict the value of Λ we count the number of observations of different

values in the multiverse.

In this setting, the constants we observe may be fine-tuned from the conventional

point of view. For example, Λ is 123 orders of magnitude smaller than its natural value.

However, we expect our observations will not appear fine-tuned among regions where

observations occur. Weinberg’s prediction that Λ would be detected soon was based

on this assumption.

Because computing the cosmological constant requires a theory of quantum gravity,

one could hope that the observed value of Λ will turn out to be conventionally natural,

without appealing to anthropic selection in the multiverse. However, there are a number

of other parameters such as the charge of the electron that appear fine-tuned for life,

providing additional evidence for the multiverse.

It is disappointing that the fundamental theory gives only a probabilistic predic-

tion for quantities like Λ, because we will never be able to measure the value of Λ in

other parts of the multiverse. But our disappointment does not mean that the the-

ory is wrong. In fact, we already accept that a fundamental theory may give only a

probabilistic prediction for a quantity that we can only measure once: for example, the

our best theory of the early universe gives only a statistical prediction for the ` = 3

modes in the CMB. But no one questions the moral integrity of the theory of slow

roll inflation as a result. What is needed for the theory of the multiverse to take its

place as a well-accepted physical theory is simply better theoretical control and more

opportunities to compare with experiment.
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The major obstacle of principle to implementing the program of making predictions

by counting observations in the multiverse is the existence of divergences. Eternal

inflation produces not just a very large universe, but an infinite universe containing

an infinite number of pocket universes, each of which is itself infinite. Therefore both

the numerator and the denominator of (1.1) are infinite. We can define the ratio by

regulating the infinite volume, but it turns out that the result is highly regulator-

dependent.

There are two possible conclusions: either the proposal (1.1) is fundamentally ill-

defined, or quantum gravity gives a way of defining it. It would seem that since string

theory is a consistent theory of quantum gravity, it should be able to answer if and how

equation (1.1) is defined. Unfortunately, this question is not yet tractable. We have

an exact nonperturbative description of spacetimes with Λ < 0 that are asymptotically

Anti-de Sitter (AdS) in terms of a dual conformal field theory, the famous AdS/CFT

correspondence. Similarly, Matrix theory is a nonperturbative description of space-

times with Λ = 0 and Minkowski asymptotics. But we do not have the corresponding

description of spacetimes with Λ > 0 and eternally inflating asymptotics; even more

generally, we do not have a rigorous description of any cosmology. One reason for this

difficulty is that the asymptotic behavior of eternal inflation- more and more pocket

universes in the future- is much more complicated than the asymptotic behavior of AdS

spacetimes, which do not fluctuate near the boundary.

Because we lack the tools to address eternal inflation in a completely rigorous way

within string theory, our understanding necessarily relies on approximations. It would

be extremely interesting to develop the necessary tools to conclusively establish the ex-

istence or absence of the multiverse. An alternative is to take a more phenomenological

approach, trying to understand some predictions of the theory before it is completely

worked out. I will mention some hints that quantum gravity does regulate equation

(1.1) in section 3. This is fortunate because I am not aware of any other proposal for

how to make predictions in the context of the landscape.

The first step in making any prediction in eternal inflation is to regulate the in-

finities to make (1.1) well-defined. A procedure for regulating the infinities is called a

measure. I will focus on geometric cutoffs: measures that supplement the semiclassical

treatment of eternal inflation with a prescription for cutting off the infinite spacetime

volume. In section 3 I will describe a number of simple measure proposals and their

properties. Several of these proposals preserve a property that makes eternal inflation

particularly attractive for making predictions: the late-time behavior is independent

of the initial conditions, so all we need to know about the initial conditions is that

they allow eternal inflation to occur. The late-time attractor behavior, however, does

depend on the choice of cutoff.
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In section 4, I will describe some steps towards deriving the measure from quan-

tum gravity. Fortunately, as I will discuss in section 5, we have discovered surprising

equivalences between proposals that sound very different. Furthermore, some of the

reasonable proposals conflict strongly with observation and can be ruled out. This

finally leaves us with only two or three distinct proposals.

Then I describe, in section 6, the many future tests that proposals will have to

pass, emphasizing that all extant proposals could easily be ruled out in the near future.

Finally I conclude with a brief summary of the status of measure proposals.

As a prelude, in section 2 I describe a simple set of assumptions leading to the

conclusion that eternal inflation occurs in our past.

This is a personal review of the state of the field, reflecting my own prejudices and

ignorance. In particular, I have not made an effort to cite every relevant paper on the

subject. Where I have included citations I have tried to refer to useful references rather

than original work. This may irritate my friends who work on eternal inflation, but it

will hopefully lead to a more readable article.

2. Is eternal inflation in our past?

It sounds contradictory to ask whether eternal inflation is in our past, since eternal

processes never end. But in the theory of eternal inflation, some regions of spacetime

do stop inflating. The question is whether a long period of eternal inflation occurred

before our pocket universe formed.

In this section I will spell out a set of assumptions that leads to the conclusion that

eternal inflation is in our past. While many readers will find this a boring exercise,

some physicists believe the conclusion is obviously wrong. Therefore, I think it is worth

stating the assumptions clearly. Those who are already convinced that eternal inflation

is in our past can skip this section.

Assumption 1: The potential allows eternal inflation to occur. For simplicity,

we focus here on eternal inflation that occurs in a metastable false vacuum. In order

for the landscape to allow eternal inflation to occur, it must contain at least one false

vacuum whose decay rate is slower than its Hubble expansion rate,

Γ . H4 . (2.1)

Because the decay of a metastable vacuum is a nonperturbative process, Γ is naturally

exponentially small. Further, string theory seems to contain a very large number of

metastable false vacua. It would take a vast conspiracy to avoid having at least one

vacuum that satisfies the bound above.
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Assumption 2: Initial conditions. Suppose the theory contains a false vacuum

whose decay rate is slow enough to satisfy (2.1). For eternal inflation to get started,

we need to begin with several Hubble volumes that are (a) in the false vacuum and

(b) are dominated by vacuum energy. The required initial conditions are generic in

the technical sense: arbitrary small perturbations of the initial conditions will still

allow eternal inflation to occur. Therefore the initial conditions that allow for eternal

inflation form an open set in the set of all initial conditions.

Of course in a sense the initial conditions allowing for eternal inflation are very

special. We do not know the correct theory of inital conditions, so it is hard to say

how special they are. What I will assume is that the theory of initial conditions gives a

nonzero probability to begin in the open set of initial conditions that allows for eternal

inflation to begin.

I also assume that the initial conditions are spatially finite. If the initial conditions

are defined on an infinite spatial slice, we already have a problem of infinities before

even considering the dynamics of eternal inflation.

Assumption 3: Typicality. In determining where in the multiverse we are living,

we make the assumption of typicality: we are equally likely to be anywhere consistent

with our data. This is called the “principle of indifference.”

With our assumptions, there is a finite probability for eternal inflation, which

results in an infinite number of observations, so we can ignore any finite number of

observations.1 Then to make predictions we can focus on the eternally inflating branch

of the wave function. Within this branch, again we can ignore the finite number of

observations that occur at early times. Thus with these assumptions a long period of

eternal inflation is in our past.

3. Predictions in Eternal Inflation

Having argued that we are living during the late time era of eternal inflation, what are

the predictions? If inflation were not quite eternal, but just led to an extremely large

spacetime, the natural way to make predictions would be to count the number of events

1This conclusion relies on an assumption about how to implement the typicality assumption when

there is a probability distribution over how many observations occur [4]. I advocate first constructing

the ensemble of probabilities and then using typicality within that wider ensemble. Page calls this

choice observational averaging. As a simple example, suppose our theory is that God flips a fair coin,

and if it is heads he makes one earth, while if it is tails he makes two earths that are far apart. Suppose

we are about to do some observations that will determine whether there is another earth out there.

I conclude the probability of observing another earth is 2/3. This turns out to be a controversial

conclusion among philosophers; it is one version of the “sleeping beauty paradox.”
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of different types, as in equation (1.1). However, this prescription becomes ambiguous

if inflation is truly eternal.

One possibility at this point is to conclude that the ratios we want to compute

are just not gauge invariant, and we are thinking about the problem wrong. From the

point of view of semiclassical gravity this is the obvious conclusion because no principle

within the theory gives a preferrred way of defining (1.1).

However, there are some hints that in quantum gravity the ratio NA/NB may be

well-defined. The infinities causing the ratio to be ill-defined come from counting events

in causally disconnected regions of spacetime. We have learned from studying black

holes that attempting to use semiclassical quantum gravity in causally disconnected

regions of spacetime can lead to confusion. In the case of black holes, semiclassical

analysis led to the conclusion that black holes destroy information. Even though the

analysis seemed to be in a regime of low curvatures where semiclassical gravity is a

good approximation, we now know that in a full theory of quantum gravity evolution

is unitary.

The lesson I and many others take away from black hole physics is that semiclassical

gravity can be trusted only within a single causal diamond. For a given worldline, the

causal diamond is the region of spacetime that can send signals to and receive signals

from the wordline; it is the largest region that can be probed in principle by a single

observer.

In de Sitter space, the exponential expansion causes spatially separated points

to fall out of causal contact with each other. The infinities of eternal inflation arise

from these spacetime regions that are out of causal contact with each other, so the

analogy with black holes suggests that the infinities are figments of our semiclassical

imaginations2. Given this encouragement and a dearth of other proposals, we will

pursue the idea that eternal inflation is the right machine for making predictions from

the string theory landscape.

3.1 Local Measures

The causal diamond measure. The causal diamond cutoff of Bousso [5] is moti-

vated by the lessons of black hole physics. This cutoff keeps only those events occuring

within a single causal diamond.

One still must specify the initial conditions for the diamond. The simplest option is

to say that the specification of initial conditions is a separate problem from the measure

problem. Another possibility is to define a rule for going from the global picture of the

eternally inflating spacetime to an ensemble of causal diamonds.

2An exception is the causal patch of a worldline that enters a Minkowkski vacuum, which can

contain an infinite number of observations. I will return to this example later.
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The most basic question is whether the causal diamond cutoff succeeds in regulating

the infinities. The answer is yes, as long as the proper time along the central worldline is

finite; then the volume of the causal diamond will be finite. However, for any reasonable

choice of initial conditions there is a nonzero probability for a worldline to tunnel to

a supersymmetric Λ = 0 bubble. Once inside the Λ = 0 bubble, it is believed that

there is a nonzero probability for the worldline to attain infinite proper time [6]. These

infinite worldlines lead to divergences, as Bousso already realized in his original paper,

so the measure is defined to count only worldlines of finite length.

The causal diamond cutoff regulates the infinities of eternal inflation so strictly

that the late-time attractor behavior disappears as well. The number of events of

different types computed according to the causal diamond cutoff depends on the choice

of initial conditions. So this cutoff is NOT a prescription for understanding the attractor

behavior of eternal inflation. Instead, it tells us that the attractor behavior is an artifact

of the same global picture that gave us infinity in the first place.

There are two simple variations on the causal diamond cutoff that are not quite as

well motivated from black hole physics:

• The apparent horizon measure. This cutoff includes those events within the

apparent horizon of the central geodesic [8], rather than keeping the entire causal

diamond. This measure is very similar to the causal diamond measure and has

not received as much attention, so I will not discuss it further here.

• The fat geodesic measure. Finally, instead of keeping all events within the

causal diamond, one can only keep those events within a fixed physical volume

centered on the geodesic [15]. This proposal was motivated by an equivalence to

a global cutoff, and we will discuss it more in the next section.

The census taker cutoff. An alternative to throwing out the causal diamonds that

become infinitely large is to focus on them. The “census taker cutoff” is the most

famous unpublished cutoff prescription [7]. Consider a worldline that ends in a hat,

and therefore has infinite length. Counting everything within the causal diamond of

this worldline is less infinite than the entire global multiverse, but it is still infinite.

However, suppose we just count all events that can send a signal to the central worldline

before proper time τ . This is a finite set. We can now take the limit τ →∞.

It is plausible that the probabilities defined in this way are independent of initial

conditions. This prescription has the advantage of keeping the attractor behavior of

eternal inflation while restricting to a single causally connected region. As far as anyone

knows, the census taker cutoff is not ruled out by observation.
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However, there is one major aesthetic problem that accounts for the fact that it

has not been published. Imagine that we are trying to send a signal to the census taker.

We need to arrange to live in a region of spacetime near the Λ = 0 bubble. We want

to send a signal through the domain wall that separates us from the Λ = 0 bubble.

It turns out that our ability to be counted in the census depends crucially on the

behavior of the domain wall between our bubble and the Λ = 0 bubble. Because the

Λ = 0 bubble has smaller vacuum energy, we know that a free falling observer inside

the Λ = 0 bubble will see the domain wall accelerate away from him. However, it can

still accelerate towards us or away from us; it is a counterintuitive feature of general

relativity that the domain wall can appear to accelerate away as seen from both sides.

If the domain wall tension is low enough, it will accelerate towards us. In this case it

is not difficult to be counted, because the domain wall could well come into our future

lightcone.

However, if the tension is too big, then the domain wall will accelerate away from

us, and the region of our vacuum that can send signals to the census taker will have

only a microscopic thickness. For our value of the cosmological constant, the critical

tension that divides these two behaviors is

T ∼
√

Λ

GN

∼ (GeV)3 (3.1)

It seems absurd that whether we are counted in the census depends on such details as

the tension of a particular domain wall. To put it another way, the census taker cutoff

would predict that the domain wall between our vacuum and a supersymmetric Λ = 0

vacuum is very likely to have a small tension. This dependence on arcane details makes

the census taker cutoff aesthetically unattractive.

The census taker description of eternal inflation [9] still may be a valuable one,

but probably not in the simple sense of only counting events that take place within the

census taker’s backward lightcone.

3.2 Global Measures

Historically, the local measures were only developed long after the global time cutoffs.

The idea of a global time cutoff is to pick some preferred global time variable in the

multiverse. We first count only events that happen before some cutoff time t0, then

take the limit t0 →∞. Assuming the initial conditions are finite, there is only a finite

spacetime volume before a finite time t0, so this procedure succeeeds in regulating the

infinities; in all known cases the limit t → ∞ is well-behaved. Several of these cutoffs

were introduced by Linde and collaborators in 1993 [10], although the precise procedure

for making predictions was only clarified later.
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The proper time cutoff. Perhaps the simplest definition is to use the proper time

as a cutoff [10]. Begin with a finite spacelike initial surface Σ0 that we will define to

be τ = 0, and erect a congruence of timelike geodesics orthogonal to that surface. The

time at some other point is given by the proper time from the initial surface, measured

along the geodesic in the congruence that connects the given point to the initial surface.

We first count all events before some proper time τ0, then take the limit τ0 →∞. The

resulting probabilities will be independent of the initial conditions.

There are various possible technical issues with this definition; for example, we have

to decide how to define the time if there are two geodesics connecting the given point to

the initial surface, as will happen to the future of caustics. These issues are not worth

worrying about because this proposal has more severe problems: namely, it suffers from

the “youngness problem” [11, 12]. This cutoff predicts that we are incredibly unlikely

to live at such a late time, 13.7 billion years after our local big bang. The probability

to live only, say, 13 billion years after the big bang is larger by the enormous factor

exp (1060) [12]. Therefore, the proper time cutoff conflicts with observation.

Linde and collaborators have attempted to modify the proper time cutoff to resolve

this conflict with observation [13]. I personally have not been able to understand from

their work a relatively simple, well-defined modification that brings the cutoff into

agreement with observation.

The scale factor time cutoff. The scale factor cutoff is defined similarly to the

proper time cutoff, by considering the same geodesic congruence orthogonal to an initial

surface Σ0. Now, however, the time is measured by the expansion rather than by the

proper time. Along a geodesic, the scale factor time is defined by

dt = Hdτ (3.2)

where τ is the proper time and H is the local expansion of the geodesic congruence.

Roughly, this means that time advances by one e-folding everywhere. This cutoff first

appeared (as far as I know) in the work of Linde and collaborators in 1993 [10], and

was first defined carefully by De Simone, Guth, Salem, and Vilenkin in 2008 [14].

Again, the definition (3.2) brings up various technical questions. In this case I will

mention them because they are the worst aspect of this cutoff procedure. The main

issue is that the above definition becomes ambiguous in the future of caustics. In the

future of a caustic, defining the time by the above equation is not unique because there

is more than one geodesic leading to the point under consideration. [14] made a choice

for what to do, but a result is that in order to compute the current scale factor time

we need to understand the intricacies of geodesic motion around our galaxy [15]. The

proposal does not conflict with observation as far as we know, but it just seems wrong
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volume (p)

p

Σ0

i+
future boundary hat

ε

Figure 1: To compute the lightcone time of an event, construct its future lightcone and

project back to the initial surface Σ0 along the geodesic congruence. The resulting volume

on Σ0 gives the lightcone time of the event. Figure courtesy of Raphael Bousso.

that the predictions should depend on the gory details of the motion of geodesics in

our galaxy. I will return briefly in section 4 to how the proposal might be modified to

avoid this issue.

The lightcone time cutoff. The lightcone time cutoff makes use of the same geodesic

congruence described above. To find the time at some spacetime point, construct its

future lightcone. The future lightcone will capture some of the geodesics, as shown

in figure 3.2. Following these captured geodesics back to the initial surface, find the

volume ε of the captured geodesics on the initial surface. The lightcone time is related

to the volume by

t ≡ −1

3
log ε . (3.3)

This time variable was first defined by Vilenkin and collaborators [16] in the more

restricted context of counting the number of bubbles of each type. In that context it

is extremely natural to consider the geodesics in the future lightcone because bubbles

expand out from the nucleation point at the speed of light. It was first proposed as a

cutoff- that is, as a rule for counting any type of event- by Bousso [17].

There is a sense in which the lightcone time is better defined than the scale factor

time: no ambiguity arises in computing the volume when the geodesic congruence has

caustics. Similarly, the lightcone time of an event depends only weakly on details of

geodesic motion since most of the geodesics in the future lightcone never enter galaxies.

(See however [18] for possibly significant effects of structure formation.)

– 10 –



On the other hand, Vilenkin has complained that lightcone time suffers from a

problem he calls “shadows of the future”: the lightcone time of an event depends on

what happens in the future of that event, because future events can affect the size of

the lightcone.

4. Towards deriving a cutoff

We would prefer to be able to derive the cutoff directly from theory. An obstacle to

this is that the rigorous description of eternal inflation in string theory is not known.

But we do have some idea for what a rigorous description might look like, and even

without fully understanding the theory we can make some progress towards deriving a

cutoff prescription.

We do not believe that completely stable de Sitter space is possible in string the-

ory. If it were, it would be natural to assume that there is a dual, nongravitational

theory living on the conformal boundary of the spacetime [20]. Looking at holographic

entropy bounds [19] informs us that future infinity is a holographic screen for de Sitter

spacetime, and thus the natural place for the dual theory.

The fact that the dS/CFT correspondence has not been extremely successful is

probably due to the problem that completely stable de Sitter space does not seem to

exist in string theory. However, a dual description on future infinity still seems natural

for the part of the spacetime that is still in the false vacuum.

The main theoretical problem has to do with vacua with Λ ≤ 0. For bubbles with

Λ ≤ 0, it is not natural to expect that the bulk physics is captured by a dual description

that lives on future infinity. This can be seen from the conformal diagrams in figure

2. It seems that these bubbles make holes in the theory on future infinity. This is of

course not something that can happen in a conventional field theory; it suggests that the

metric of the boundary must fluctuate. There were already hints of this perturbatively:

de Sitter space inevitably has gravitational fluctuations that freeze out on scales larger

than the horizon, so the natural state in the bulk corresponds to a sum over boundary

geometries.

Given these vague outlines of a dual theory, we can try to derive a cutoff. The basic

idea is the UV/IR correspondence familiar from AdS/CFT: in this case a short-distance

(UV) cutoff in the boundary theory corresponds to a late-time (IR) cutoff in the bulk.

This late-time cutoff renders the spacetime volume finite and therefore regulates the

infinities.

4.1 The new lightcone time cutoff

The first step is to define a UV cutoff in the boundary theory. In order to how to
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r=0

r=

t=0

r=0

(a) Λ > 0

r=0

r=

t=0

r=0

(b) Λ < 0

Figure 2: Conformal diagrams for bubbles with positive and negative cosmological constant.

The Bousso wedges indicate the null directions in which the sizes of spheres are increasing.

The tips of the wedges point in the direction of increase. Entropy bounds dictate that if we

think of the wedges as arrows, they point towards the natural holographic screens [19]. One

can see that future infinity is a natural holographic screen for the Λ > 0 bubble (left), but

not for the Λ < 0 bubble.

regulate the boundary theory in the UV, we first need to know the metric on the

boundary. In the physical spacetime, the metric diverges at future infinity. To define

the metric on future infinity, we do a conformal transformation of the bulk spacetime.

However, there is no unique way to choose the “right” conformal transformation. The

result is that, for a given physical spacetime, the boundary metric is only defined up

to conformal transformations,

g̃ab = e2φgab (4.1)

where φ is an arbitrary function. This is a problem, because in order to put in a

uniform UV cutoff in the boundary theory, we need to know the metric. There is

no fiducial choice, and different natural choices will correspond to physically different

cutoff prescriptions.

At this point it would be nice to know more about the boundary theory. But in our

ignorant state, we can hypothesize a simple, natural way to fix the conformal factor of

the boundary metric: we demand [22]

(3)R = const. (3)V = 1 . (4.2)

Some nontrivial mathematics guarantees that this choice can be made and generically

completely fixes the ambiguity.

This choice of metric is less arbitrary than it seems at first. First of all, as long as we

demand the scalar curvature remain finite, we would get the same physical predictions.

Second, Vilenkin has argued recently [21] that the only sensible conditions for fixing

the metric are functions of the scalar curvature and its derivatives.
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The bulk-boundary mapping. Having defined a UV cutoff in the boundary theory,

we now need to know how to relate this to an IR cutoff in the bulk. Even in the better-

understood case of AdS/CFT, it is highly nontrivial to work out how a given UV

cutoff in the boundary theory translates into the bulk. I will continue to focus on bulk

cutoffs that are completely geometric: a sharp cutoff surface bounds the events that

are counted. Any simple cutoff in the boundary theory will probably not correspond

to such a simple bulk cutoff- instead, the description of bulk events will grow fuzzy as

they approach the cutoff.

One simple recipe is the following: given a bulk spacetime point, construct its future

lightcone. Find the volume of the region on the future boundary that is contained inside

the future lightcone. Keep only those bulk points whose future lightcones have volumes

bigger than some minimum size. This can be stated by defining a time variable

t ≡ −1

3
log V (4.3)

where V is the volume on future infinity that is inside the future lightcone. The new

lightcone time is clearly very similar to the old lightcone time. The only difference is

that in the old lightcone time the volume is measured on the initial surface Σ0, while

in the new lightcone time it is measured on future infinity.

Having defined a time variable- the “new lightcone time”- we can use this as a

regulator as before. We will return in the next section to further properties of this

measure.

It is also possible to consider other ways of mapping a UV cutoff on the boundary

to an IR cutoff in the bulk. Instead of using the future lightcone, Garriga and Vilenkin

[33] consider trying to describe a bulk process with minimum resolution λmin. The

boundary size is given by propogating the minimal length along geodesics up to future

infinity. Then we only count events whose boundary size is bigger than the UV cutoff.

It is not completely clear how to choose the scale λmin in general. For example, if

we want to count observations of the cosmological constant, what minimum resolution

should we demand? On the other hand, this proposal encodes a property one would

intuively expect: It seems reasonable that ants will cease to be resolved in the cutoff

theory before people due to their smaller size and mass.

More recently, Vilenkin has argued that the most natural bulk/boundary mapping

leads to a cutoff on bulk surfaces with constant comoving apparent horizon [21].

We should not be surprised that different authors have come to different conclusions

about the best way to perform the bulk/boundary mapping. Even in the much better

understood case of AdS/CFT, the bulk/boundary map is only simple on length scales

large compared to the curvature radius. Some progress has been made in describing
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smaller objects in AdS (see, for example, [24]), but the UV/IR relation becomes much

more complicated. In particular, a simple UV cutoff in the boundary theory probably

does not correspond to a sharp IR cutoff on the geometry in the bulk except on scales

larger than the curvature radius; see [25] for recent progress in addressing this question.

The key point is that how exactly the bulk spacetime is cut off in the IR depends

on the details of the UV cutoff in the boundary theory. Different UV cutoffs will give

different prescriptions for cutting off the bulk. If the boundary theory is a conventional

field theory, then the only quantities that make sense are those that are independent of

the details of the cutoff. So if the boundary theory were a conventional field theory, we

would have to conclude that the bulk quantities we are computing do not make sense,

because they depend on the details of the cutoff. Fortunately, as we have discussed,

there is evidence that the boundary theory is not a conventional field theory. It may

be a theory that has a built-in UV cutoff.

In order to really fulfill our dream of deriving a cutoff and bring our subject onto

firm theoretical ground, we will have to make progress in understanding the boundary

theory, or whatever the correct description of eternal inflation in quantum gravity is.

5. Equivalences between measures; global-local duality

It is annoying to have so many reasonable-sounding measure proposals. One encour-

aging fact is that many of these proposals turn out to be equivalent to each other.

First, as the terminology suggests, the new lightcone time cutoff is equivalent to the

old lightcone time cutoff in the approximation that the bubbles are homogeneous FRW

universes [22].

A more surprising correspondence has been discovered between the local measures

and the global measures [17, 26, 15], called global-local duality. Recall that the local

measures (except the census taker, which we will not discuss further) depend on initial

conditions. The statement is that the global measures are equivalent to local measures

if the initial conditions for the local measure is given by the attractor behavior of

the global measure. For the measures under consideration, this initial condition is

extremely simple: the geodesic should start in the most stable vacuum with positive

cosmological constant.

Given this choice of initial condition, the lightcone time cutoffs, which are defined

globally, are equivalent to the causal diamond cutoff [17, 26]. It is very encouraging

that the new lightcone time, which we motivated by the UV/IR correspondence, turns

out to be equivalent to counting events within a single causal diamond.

Similarly, the scale factor cutoff is equivalent, in the approximation that the geodesic

congruence never stops expanding, to the “fat geodesic” cutoff [15].
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So all of the measures discussed above reduce to only two proposals that are still

in agreement with observation: the lightcone time cutoff and the scale factor cutoff.

(We could count the global and local versions of the apparent horizon cutoff as a third

possibility, but since these proposals are rather new and not radically different I will

ignore them for brevity.)

So it all boils down to this: consider a geodesic that begins in the most stable de

Sitter vacuum. Keep either all events within its causal diamond (lightcone time/ causal

diamond), or within a fixed physical volume orthogonal to the geodesic (scale factor

time/ fat geodesic).

6. Tests of measures and the landscape

There are many opportunities for measure proposals to conflict with observation. As

described above, the proper time measure is very natural theoretically, but makes a

completely wrong prediction about the observed age of the universe. There are many

additional tests, and I will only briefly describe a few. The existing measure proposals

pass these tests, as far as we know given our current knowledge of the landscape.

However, as we learn more both theoretically and experimentally, it could easily happen

that all the measures I have described here will be ruled out.

6.1 Particle Physics

One area where our knowledge of the landscape has so far limited our ability to make

predictions is particle physics. We would like to be able to predict the supersymmetry

breaking scale, among other quantities. One could easily imagine a scenario where the

landscape predicts that the SUSY breaking scale is very high, near the Planck scale,

while the LHC reveals low-energy SUSY. This type of development has the potential

to rule out the entire multiverse framework for making predictions, and the SUSY

breaking scale is just one of many tests of this type. Unfortunately, serious technical

progress is needed before we can extract these predictions from the landscape.

6.2 Predicting the cosmological constant

The most persuasive piece of evidence for the landscape is Weinberg’s prediction of

the cosmological constant. However, there is also an opportunity for measures to fail

once we generalize Weinberg’s analysis and try to predict the cosmological constant

allowing more parameters to vary. We argued recently [8] that for positive cosmological

constant both the scale factor and lightcone measures are very successful in predicting

the observed value of Λ, addressing concerns that Weinberg’s prediction is not robust

when other parameters are allowed to vary.
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However, both measures are in danger of predicting that we are much more likely

to observe a negative cosmological constant than a positive one, a conclusion already

reached by Salem [27] and by Bousso and Leichenauer [28] in specific cases.

6.3 The Boltzmann Brain problem

Despite the fanciful sounding name, the Boltzmann Brain problem is a serious problem

that has ruled out measures in the past [29] and poses a threat for currently popular

measures as we learn more about the landscape.

The issue is that there are two ways observers can form in the multiverse. The

first is the traditional way: a pocket universe forms, which then undergoes slow roll

inflation, reheating, and structure formation. This process produces a large universe

filled with matter. The second way structure can form is by a vacuum fluctuation in

de Sitter space. De Sitter space has a finite temperature, so starting in empty de Sitter

space, a fluctuation with mass M occurs with a rate given by

Γ ∼ H−1 exp

(
−M
T

)
(6.1)

where the de Sitter temperature is T = H/(2π). These fluctuations violate the second

law, and they produce a mass in a universe that is otherwise completely empty.

As a concrete example of such a fluctuation, let us compute the expected time

to fluctuate the earth out of our de Sitter vacuum. Let us specify that we want to

fluctuate the earth in exactly its current state. The time for such a crazy fluctuation is

t ∼ (1010years)× e1092
. (6.2)

This is an unimaginably long time; however, it is far shorter than the recurrence time

of our vacuum

trec ∼ (1010years)× e10123
(6.3)

Therefore, if our vacuum lives for of order the recurrence time, the number of “Boltz-

mann Earths” that fluctuate out of the vacuum within one causal patch is enormous,

NBE ∼ exp(10123). This is superexponentially more than the number of planets that

form within one causal patch by traditional structure formation; the number of “ordi-

nary earths” is NOE ∼ 1022.

If we focus attention just on our vacuum, and assume we are typical, then we

conclude that if the lifetime is of order the recurrence time, we should be living on a

Boltzmann Earth. But this conflicts with observation, because observers on Boltzmann

Earths are living in an otherwise empty universe.
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In the multiverse, observers form both in the ordinary way (“ordinary observers”)

and from fluctuations (“Boltzmann Brains”). In order to agree with observation, it is

important that the Boltzmann Brains do not vastly outnumber the ordinary observers.

For the measures under consideration, the Boltzmann Brains will dominate if any

vacuum in the landscape has a decay rate that is slower than its rate for producing

Boltzmann Brains [29, 15, 30]. That is, to agree with observation, every vacuum must

satisfy

Γdecay > ΓBB (6.4)

This is a highly nontrivial bound; for example, it demands that our vacuum decay

far faster than the recurrence time. As far as we know, the landscape satisfies this

nontrivial bound [31], but we could find out otherwise any day.

6.4 Alarming implications of geometric cutoffs: The end of time

There is a sense in which all geometric cutoffs of eternal inflation predict a novel type

of catastrophe: we could run into the cutoff, and time would end. I will describe the

physics of the situation, but in the end it is a matter of judgment whether one should

conclude that all geometric cutoffs are unsatisfactory. Predicting that time could end

sounds crazy, but it does not contradict observation if the probability of encountering

the end of time is small.

The main issue is this: in all cutoff prescriptions, a finite fraction of the observers

who are born before the cutoff run into the cutoff before they die. This is true even

for cutoffs that involve taking a late time limit due to the exponential growth of the

spacetime. An analogy that is mathematically precise is a population that grows ex-

ponentially until doomsday. A finite fraction of everyone who has ever lived is alive on

doomsday. This fraction does not go to zero as doomsday is taken later and later.

Because a finite fraction of the events happen close to the cutoff, we are forced

to give some physical interpretation to observers who run into the cutoff. (If the

population grew slower than exponentially, then as the cutoff was taken later and later

the fraction of observers who run into the cutoff would go to zero, and we could forget

about them.)

One can try to think of the cutoff as just a mathematical device for defining proba-

bilities in an infinite set [33], and deny that the cutoff is a physical entity we could run

into. But it is not so easy to escape the unpalatable consequences of the cutoff. The

famous Guth-Vanchurin paradox [33, 32] illustrates this by showing that certain prob-

abilities computed in the multiverse conflict with common sense expectations unless we

take the end of time seriously as a catastrophe that could happen to us.
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Figure 3: In both global (left) and local (right) cutoffs, a finite fraction of observers born

before the cutoff run into the cutoff before they die. The fraction of observers who are cut

off does not go to zero as the cutoff is taken later and later.

7. Summary: the status of measures

Our efforts over the last several years have focused attention on two simple measure

proposals: the lightcone time cutoff and the scale factor time cutoff. These proposals

can be described in a very simple way: follow a geodesic that begins in the most

stable de Sitter vacuum in the landscape. The lightcone time cutoff counts only those

events that are within the causal diamond centered on the geodesic, while the scale

factor cutoff counts only those events within a fixed physical volume surrounding the

geodesic.

Both proposals have passed a number of nontrivial tests, but may be ruled out in

the near future as we learn more about the landscape.

There are two issues about these measures that concern me. The first is the end of

time issue described above. While the measures agree with observation, predicting the

end of time when there is no obvious physical mechanism seems wrong. On the other

hand, avoiding the end of time conclusion seems to require a radical change in how we

think about the measure problem.

There is also a more concrete issue: the fact that these measures do not seem to

work well for negative cosmological constant. They have a strong tendency to predict

we should observe Λ < 0, as I described in the previous section. Because of theoretical

uncertainties, it is not yet clear that there is a strong conflict with observation, but

there are clear hints.

Developing a more rigorous understanding of eternal inflation in string theory is

crucial to putting this subject on firmer footing. We are beginning to have the vague

outlines of a dual description for regions with Λ > 0, but we know very little about the

correct description of regions with Λ < 0. The recent proposal of Maldacena [34] for a
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dual description of crunches is very interesting, but it does not seem to describe well

realistic cosmologies with a period of slow roll inflation.

The future is very exciting. We can look forward to attacking two of the biggest

theoretical questions: the string theoretic description of cosmology and eternal inflation,

and how to extract predictions from string theory. At the same time, our measures of

the multiverse will continue to confront experiment and observation.
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