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Abstract

For slow-roll inflation we study the phase transition to the eternal regime. Starting
from a finite inflationary volume, we consider the volume of the universe at reheating as
order parameter. We show that there exists a critical value for the classical inflaton speed,
φ̇2/H4 = 3/(2π2), where the probability distribution for the reheating volume undergoes
a sharp transition. In particular, for sub-critical inflaton speeds all distribution moments
become infinite. We show that at the same transition point the system develops a non-
vanishing probability of having a strictly infinite reheating volume, while retaining a finite
probability for finite values. Our analysis represents the exact quantum treatment of the
system at lowest order in the slow-roll parameters and H2/M2

Pl.
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1 Introduction and setup

1.1 Heuristic thoughts

Consider a standard slow-roll inflationary model. At the classical level, the inflaton field φ gently
rolls down its potential, and as long as the slow-roll conditions are met the universe inflates. Even-
tually, once the inflaton kinetic energy becomes comparable to the potential energy, inflation ends
and the universe reheats. At the quantum level, on top of this classical story there are small scalar
quantum fluctuations, which after re-entering the horizon during the post-inflationary era will lead
to the familiar density perturbations. In the gauge in which the inflaton follows its unperturbed
classical trajectory, δφ = 0, the scalar fluctuations are conveniently parameterized by the variable
ζ , which measures the spatial curvature of constant-φ hypersurfaces, (3)R = −4∇2ζ/a2. For a
given inflationary history

(
φ(t), H(t)

)
the quadratic action for scalar perturbations is simply (see

e.g. ref. [1])

Sζ =

∫
dtd3x

√
−g φ̇2

H2
1
2

(
∂ζ
)2
, (1)

where the index contraction is done with the background FRW metric.
Upon canonical quantization of the above action, the typical size of quantum fluctuations at

horizon scales is

〈ζ2〉H ∼ H4

φ̇2
∼ 1

ǫ

H2

M2
P l

, (2)

where ǫ is the usual slow-roll parameter, ǫ ≡ φ̇2/(2H2M2
P l). ζ then remains constant outside the

horizon, and at horizon re-entering the scalar perturbations show up as density perturbations,
with initial amplitude given by ζ itself, δρ/ρ ∼ ζ .

From a geometric viewpoint, the variable ζ is directly the dimensionless perturbation in the
spatial metric of constant-φ hypersurfaces, gij = a2(t)(1 + 2ζ) δij. Hence, small ζ fluctuations
means that these hypersurfaces are slightly curved, whereas the extreme case of ζ of order one
corresponds to a highly deformed configuration. From eq. (2) we see that the latter case arises
when the inflaton potential is so flat as to make φ̇2 of order H4, or smaller. In terms of the slow-
roll parameter ǫ, this happens when ǫ . H2/M2

P l. This regime corresponds to eternal inflation.
Indeed, to see this it is convenient to switch to a different gauge, for example a spatially flat gauge,
where scalar perturbations are parametrized through the inflaton fluctuation δφ. Then, at lowest
order in slow-roll parameters, the quadratic action is that of a minimally coupled, canonically
normalized scalar in a fixed background geometry (see for example [1]),

Sδφ =

∫
dtd3x

√
−g 1

2

(
∂δφ

)2
, (3)

whose typical quantum fluctuations at scales of order H are

〈(δφ)2〉H ∼ H2 . (4)
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On the other hand, the inflaton vev in one Hubble time advances by an amount

∆φcl = φ̇ ·H−1 . (5)

In the ordinary, non-eternal regime quantum fluctuations are just a small correction to the clas-
sical story. But if the classical φ̇ becomes very small—smaller than H2—the classical inflaton
advancement (5) drops below the typical size of quantum fluctuations. At that point the classi-
cal downhill drift becomes unimportant and the system is dominated by quantum diffusion. In
particular backward diffusion is as likely as the forward one. Any given observer will eventually
experience reheating—because in a diffusion process the probability for a given particle to touch
any given position is always one. Nevertheless inflation is globally eternal, in that backward dif-
fusion, through the exponential expansion of the universe, leads to the creation of more and more
Hubble patches which then have a chance themselves to diffuse, and there will always be some
Hubble patch that keeps inflating. Notice that, as mentioned above, the eternal inflation regime
sets in precisely when ζ fluctuations become of order one, signaling large deformations in the
geometry. This condition was derived first in [2, 3].

The purpose of the present paper is to make progress in the quantitative understanding of
eternal inflation. Much work has been done in this direction since the first discovery of this
phenomenon [4, 5, 6, 7, 2] long time ago, and some of the material, especially in this Section, will
not be completely original (see two recent summaries by Guth [8] and by Linde [9] and references
therein). The main point will be to find a precise definition of slow-roll eternal inflation (if it
exists) and in particular the precise inequality that must be satisfied by the parameters of the
model to have eternal inflation.

Such a plan seems to be doomed to failure from the start. For one thing, when the system
is in or close to the eternal inflation regime, quantum fluctuations are so large as to overcome
the classical dynamics, thus impairing (a) the semiclassical approximation we started with, and
(b) the approximate homogeneity and isotropy of the universe. Once these two features are lost,
there seems to be very little hope to make any quantitative progress. Indeed, the homogeneity
issue is what usually makes so confusing the global picture of false-vacuum eternal inflation, where
bubbles of the new vacuum with different cosmological constant keeps forming, giving rise to an
intractable spacetime.

However, let’s look at these problems more closely for our slow-roll case. As to point (a)
above, large quantum fluctuations do not necessarily mean that the system is intractable. Hardly
anybody would suggest that a free scalar in Minkowski space in its vacuum state is intractable,
even though its dynamics is all in quantum fluctuations. Large quantum fluctuations are only a
problem if they are associated with strong coupling, that is if they correspond to some interactions
becoming large, thus leading to the breakdown of perturbation theory. In other words, the issue of
large fluctuations is a dynamical question rather than a kinematical one. As long as interactions
are small, a quantum field can be reliably dealt with through the perturbative expansion. As
to point (b), although in the eternal inflation regime the typical size of ζ fluctuations at horizon
scales is of order one, we must recall that ζ parameterizes the scalar deformations in the spatial
geometry induced on the equal-φ surfaces. A large ζ means that these surfaces have a large
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intrinsic curvature. This however can arise even if the four-dimensional geometry is virtually
unperturbed, but the φ fluctuations are so large as to dramatically bend the equal-φ surfaces in
the surrounding FRW geometry. In this case the full 4D geometry would still be approximately
homogeneous and isotropic, thus allowing once again for a perturbative approach.

Fortunately in slow roll eternal inflation both perturbative expansions are allowed, and are in
fact one and the same, as we now explain.

1.2 Why the system is perturbative

To see that the geometry is indeed very close to that of the unperturbed inflationary solution, it
is convenient to work in a gauge in which the metric fluctuations are manifestly small. This is
the case for example in the gauge where the scalar perturbation is parametrized by δφ and the
equal-time hypersurfaces are flat 1,

gij = a2(t)δij . (6)

Then the other components of the metric at linear order are perturbed by [1]

δg00 =
φ̇

HM2
Pl

δφ ∼
√
ǫ
H

MP l
, (7)

δg0i = − φ̇2

2H2M2
Pl

a2(t)

∇2
∇i

d

dt

(
H

φ̇
δφ

)
∼ a(t) ·

√
ǫ
H

MP l
, (8)

where we used the typical size of δφ fluctuations at horizon scales, eq. (4). We explicitly see that
by making ǫ smaller and smaller, we are actually suppressing the geometry fluctuations [3]. In the
limit of vanishing ǫ the spacetime geometry looks unperturbed, but this is an artifact of the linear
approximation. At quadratic order there are contributions to g00, g0i of order (H/MPl)

2, which
dominates over the linear ones for ǫ . H2/M2

Pl—precisely in the eternal inflation regime. Higher
orders are however further suppressed by higher powers ofH2/M2

Pl, thus allowing for a perturbative
expansion in such a quantity. As suggested above, the fact that in the eternal inflation regime
ζ blows up is an artifact of the strong bending of the equal-φ surfaces in an otherwise smooth
four-dimensional geometry.

Similarly, for the interactions, in the slow-roll approximation the leading interactions come
from couplings with and within the gravity sector, while the ones coming from the potential are
subdominant [1]. Then it is clear that as long as metric perturbations are small, interactions will be
small as well and the perturbative expansion will be valid. Indeed, after integrating out the metric
fluctuations (7, 8) in the same gauge as above, one gets trilinear, two-derivative self-couplings for
δφ, schematically [1]

S3 ∼
∫

φ̇

HM2
Pl

δφ ∂δφ ∂δφ . (9)

1We are restricting our analysis to scalar fluctuations. The inclusion of tensor modes is as straightforward as
uninteresting: nothing dramatic happens to them in the eternal inflation regime, their amplitude being always of
order H/MPl.
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By using again the typical size of inflaton fluctuations, eq. (4), we see that at scales of order H
interactions are suppressed with respect to the quadratic Lagrangian (3) by

S3

Sδφ
∼

√
ǫ
H

MPl
. (10)

That is, for smaller and smaller ǫ the system becomes more and more perturbative. Once again,
past the critical value ǫc ∼ H2/M2

Pl new interactions start dominating, namely quartic, two-
derivative couplings [10]

S4 ∼
∫

1

M2
Pl

∂2 δφ4 ∼ H2

M2
Pl

· Sδφ , (11)

while higher-order interactions are suppressed by higher powers of H2/M2
Pl.

In summary, in the slow-roll regime geometry fluctuations and interactions are both pertur-
bative, with expansion parameters

√
ǫ · H/MPl and H2/M2

Pl in both cases. These expansion
parameters remain small even in the eternal inflation regime ζ ∼ H/(MPl

√
ǫ) ∼ 1. Also for ǫ→ 0

the background FRW solution tends to de Sitter space. We are therefore led to the conclusion
that in this gauge at lowest order in slow-roll and H2/M2

Pl the system is equivalent to a minimally
coupled, free scalar in a background de Sitter space, with no dynamical gravity. In hindsight, this
conclusion is obvious. In the limit in which the potential is flat the background geometry is that
of de Sitter space and the only interactions are gravitational in nature, thus leading to effects that
are suppressed by GN times the appropriate power of the only energy scale in the problem, H . In
the following we are going to neglect all corrections in the slow-roll parameters and in H/MPl. In
particular we are going to treat as constant the slowly varying parameters H and φ̇; towards the
end we will come back to discuss what happens when this approximation is relaxed.

Of course the simplification we discussed only applies to the inflationary era. Once inflation
ends the slow-roll approximation breaks down, and ζ fluctuations get converted into density fluc-
tuations. For ζ ∼ 1, one gets δρ/ρ ∼ 1 when the modes come back in the horizon, giving rise to a
highly inhomogeneous four-dimensional geometry. Therefore in the eternal inflation regime, ζ & 1,
the post-inflationary era is as inhomogenous and as confusing as the usual large-scale structure of
false-vacuum eternal inflation; but as long as we stick to the inflationary phase our picture of a
free scalar in de Sitter space applies.

In any realistic inflationary scenario the breakdown of the slow-roll regime and the consequent
reheating of the universe will be gradual processes, but for our purposes it is more convenient
to picture them as instantaneously happening at some critical field value, φ = φr. In this ap-
proximation reheating corresponds to some definite hypersurface in spacetime. In the ordinary,
non-eternal regime, φ̇/H2 ≫ 1, the spacetime region before the reheating surface has a nearly de
Sitter geometry, with small slow-roll corrections, whereas after the reheating surface the universe
is well approximated by a FRW solution with small inhomogenities, whose amplitude is given
ζ ∼ H2/φ̇. If we now make the ratio φ̇/H2 smaller and smaller, the two above approximate de-
scriptions tend to separate: the de Sitter approximation before reheating becomes more and more
precise up to the ultimate accuracy of (H/MP l)

2, while the FRW one after reheating becomes
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Figure 1: Left: For standard, non-eternal inflation the inflationary phase (shaded region) is nearly de
Sitter, with slow-roll corrections and small inhomogenities; the reheating surface (red curve) is slightly
bent; the post inflationary phase is nearly FRW, with small perturbations inherited from the reheating
surface. Right: In the eternal inflation regime, the inflationary phase is very well approximated by de
Sitter geometry, with corrections of order H2/M2

Pl, but the reheating surface has wild fluctuations; as a
consequence the post-inflationary phase is highly inhomogeneous, and intractable.

strongly inadequate past φ̇/H2 ∼ 1. The situation is schematically depicted in fig. 1. In the
eternal inflation regime we have no hope to quantitatively study the large-scale structure of the
universe after reheating. However, we can study the geometry of the reheating hypersurface by
approaching it from the de Sitter phase, where our approximations are well under control. We
want to sharply characterize eternal inflation through some geometric property of the reheating
surface.

1.3 Finite comoving volume and UV smoothing

A natural candidate for characterizing eternal inflation is the volume of the reheating surface: if
starting with a finite inflationary volume at t = 0, the reheating surface ends up having infinite
volume, we are in eternal inflation. As explained above, this should happen below some critical
value of φ̇/H2, which in our approximations is the only dimensionless parameter of the model. Of
course the volume of the reheating surface has statistical fluctuations, which supposedly are very
large close to the eternal inflation regime, so our goal is to determine whether there is a sharp
transition value of φ̇/H2 at which the statistical properties of the reheating volume abruptly
change.

Before studying the volume statistics, we have to define our system more precisely. First, as
we already mentioned, it is better to talk about a finite initial inflationary volume, otherwise the
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reheating volume would be infinite to begin with. Let’s therefore consider an inflationary universe
compactified on a three-torus, with fixed comoving size L. L then plays the role of an infrared
cutoff for the inflaton Fourier modes. We will explicitly see that our results do not depend on the
value of L. For simplicity we will assume that at the initial time t = 0, the size of the universe is
much larger than the Hubble radius, L ≫ H−1 (we are choosing a(t) to be unity at t = 0). This
is just for technical convenience, to use integrals rather than sums in Fourier space.

Then, we want to study the constant-φ hypersurfaces, in particular that with φ = φr. At
short distances these surfaces are arbitrarily irregular, because the inflaton fluctuations diverge
at shorter and shorter scales, 〈(δφ)2〉k ∼ k2. This leads to a UV-divergent volume for the equal-
φ surfaces. However this is true even in Minkowski space, and it has nothing to do with the
inflationary background we are studying. We can then cutoff the high momenta above some UV
scale by smoothing out the field in space over the corresponding UV length scale. Notice that a
fixed UV cutoff in physical distances looks time-dependent—actually exponentially shrinking—in
comoving coordinates. We thus consider the smoothed inflaton field

φΛ(~x, t) =

∫
d3r fΛ(r)φ(~x+ ~r/a(t), t) , (12)

where fΛ(r) is a smooth function peaked at the origin and with typical width given by 1/Λ, like
for instance a Gaussian with σ = 1/Λ, and the explicit factor of a(t) gives the correct time-
dependence. Knowing the correlation functions for φ—which in the free field limit we are working
in are all determined by just the two-point function—we can compute all the correlation functions
for φΛ. In particular, φΛ too will be a Gaussian field, being a linear superposition of Gaussian
fields. It will be technically more convenient for us to work with a sharp cutoff in momentum
space and in this case we will see that our results do not depend on the exact size of the cutoff.
This strongly suggests that it does not matter how we choose to implement the cutoff, i.e. what
filter function fΛ(r) we pick. For reasons that will soon become clear we need to smooth out the
inflaton over several Hubble volumes, that is, we need Λ−1 to be comfortably larger than H−1.

We then concentrate on the constant-φΛ surfaces. These are smooth by definition, with no
wrinkles below the UV length-scale 1/Λ. Studying these smoothed-out surfaces rather than the
original, ‘raw’ ones also makes more sense as far as reheating is concerned. Indeed, above we
were suggesting that reheating happens when the local inflaton vev reaches the critical value φr,
but of course ‘local’ has to be understood in a smoothed sense—roughly speaking, what matters
for reheating should be the inflaton average over at least one Hubble volume. Once again, the
fact that our results will be independent of Λ, for Λ ≪ H , gives us confidence that the precise
prescription we choose for defining the reheating surface does not matter.

In the following we will drop the subscript ‘Λ’ from the smoothed field φΛ, and the smoothing
will be understood unless otherwise stated.

1.4 Space-likeness of the reheating surface

Our smoothing procedure is also important for making the reheating surface space-like. Indeed,
when we talk about computing the volume of the reheating surface, we are implicitly assuming
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that such a surface is space-like, so that its volume can be interpreted as the volume of the universe
at the end of inflation. If such a surface were not space-like everywhere, the ‘end of inflation’ would
not be an event in time, but rather in some space-time region it would look like a boundary in
space. Also, the induced metric on the surface would not be positive-definite everywhere. The
space-likeness of the reheating surface is not obvious when quantum fluctuations are taken into
account. In the classical limit the reheating surface is obviously space-like, as the classical motion
gives a φ̇ with definite sign. Quantum corrections add an additional motion to the classical one,
as more and more modes enter in the filter fΛ(r) of eq. (12). It is not obvious that the resulting
motion gives rise to a space-like reheating surface 2.

Fortunately the smoothing procedure helps in this respect: the probability for a constant-φ
surface not to be space-like somewhere is suppressed by ∼ e−H

2/Λ2
, where Λ ≪ H is our UV cutoff.

To see this, consider the inflaton field φ, without any smoothing filter. The equal-φ surfaces are
space-like if and only if φ itself is a good time variable, that is if and only if ∂µφ is time-like
everywhere,

(∂φ)2 > 0 (13)

(we use the (+,−,−,−) metric signature). Of course φ is a quantum field, and the above condition
cannot hold as an exact operator statement: at any space-time location there is always a finite
probability for ∂µφ to point in a space-like direction. The best we can hope for is to make the
above inequality valid as an expectation value, and quantum fluctuations around it small; this
issue is general, and it is not peculiar to the eternal regime we want to study. As to the expectation
value, if we split the field into background plus fluctuations, we have

〈(∂φ)2〉 = φ̇2 + 〈(∂δφ)2〉 , (14)

where φ̇ is the classical inflaton speed, and δφ in our approximations is well described by a free,
minimally coupled scalar in de Sitter space. The fluctuating piece 〈(∂δφ)2〉 is UV divergent; if we
cut it off at some physical momentum Λ we get

〈(∂δφ)2〉 = −
∫ Λ·a(t) d3k

(2π)3

1

a2(t)

H2

2k
= −H2

8π2
Λ2 , (15)

which is negative. We thus see that quantum fluctuations tend to violate eq. (13), and that
the equal-φ surfaces cannot be assumed to be space-like at arbitrarily short scales. Only for
length-scales larger than the critical UV cutoff

Λ−1
c ∼ H

φ̇
= H−1 · H

2

φ̇
(16)

2For a generic inflaton value, different from the reheating one, it is not even clear whether it makes sense to
talk about ‘surface of constant inflaton value’. Taking into account quantum fluctuations in the direction opposite
to the classical motion, it is possible to go through the same value of the inflaton many times, so that the points
of constant inflaton value will not form a smooth manifold. This cannot happen for the reheating surface, because
by definition after crossing φr inflation ends and the system cannot fluctuate back again.
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does the classical piece in eq. (14) dominate over the quantum one. We stress again that this
conclusion also applies to standard, non-eternal inflation. For instance, at scales shorter than
the above critical cutoff there is no sense in which one can use φ itself as a clock and define the
equal-time surfaces by the gauge-fixing δφ = 0. Notice however that in the non-eternal regime
φ̇/H2 is much larger than one and so the critical cutoff is parametrically smaller than the Hubble
radius; on the other hand close to or in the eternal regime φ̇/H2 is of order one, thus making the
critical cutoff of order of the Hubble radius. This is why in our smoothing procedure we choose
to filter out all modes with wavelengths smaller than Λ−1 ≫ H−1.

Similarly for the standard deviation of eq. (13), at scales larger than 1/Λc the dominant
contribution comes from cross-product terms,

√〈[
(∂φ)2 − 〈(∂φ)2〉

]2〉 ∼
√
φ̇2 〈(δφ̇)2〉 ∼ φ̇ · Λ2 , (17)

Requiring this to be negligible compared to the classical value φ̇ gives a constraint on Λ: Λ <
Λc ≃ φ̇1/2, which is stronger than (16). In the eternal inflation regime however, φ̇ ∼ H2, so that
this just reiterates the conclusion that the cutoff must be parametrically smaller than H . 3

In summary, if we smooth out the inflaton field over length-scales somewhat larger than the
Hubble radius, we can safely assume that the constant-φ hypersurfaces are space-like 4. Of course
there is always a non-vanishing probability of having a large quantum fluctuation that locally
brings ∂µφ onto a space-like direction. However thanks to the gaussianity of the inflaton fluctua-
tions, such probability is exponentially small with a width given by eq. (17), roughly

P
(
(∂φ)2 < 0

)
∼ e

− φ̇2

φ̇Λ2 ∼ e−H
2/Λ2

. (18)

We stress again that the same arguments hold in the non-eternal regime: the gauge fixing δφ = 0
only make sense with a sufficiently small cutoff Λ and neglecting exponentially small corrections
similar to the equation above.

3Eq. (17) is the correct expression in the eternal case, where we must choose Λ ≪ H . In the non-eternal case,
if we allow for Λ ≫ H there is another competing term of the form Λ4. Anyway one ends up with the constraint
Λ < Λc ≃ φ̇1/2 which is parametrically shorter than the Hubble radius in the non-eternal regime.

4One may argue that, although the smoothed reheating surface is spacelike, the real one may be not, as reheating
will be sensitive to scales of order H−1 and not much larger. This would be problematic at it implies the existence
of inflating points in the future light-cone of points where inflation already finished. As we discussed, the post-
inflationary era is not under control and it would therefore be impossible to proceed. However, a model in which
a potential giving eternal inflation abruptly ends and reheats is an idealization. One should consider a realistic
potential where ζ ≪ 1 close to reheating. As we will discuss later, this period of non-eternal inflation does not
change our conclusions, but it introduces a physical smoothing of the reheating surface, as at short scales ζ is
very small. This implies that the reheating surface is space-like. This is the most physical way of looking at our
smoothing procedure: the effect of a final period of inflation during which quantum fluctuations are small. We
thank Ben Freivogel and Raman Sundrum for discussions about this point.
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1.5 Quantum field vs. classical stochastic system

Another reason why we need Λ−1 ≫ H−1 is that, in this approximation, as it was already noticed
in the context of eternal inflation in [2, 11], we can neglect the quantum nature of the field and
treat it as a classical stochastic system. Consider a single Fourier mode of the scalar field; as
we are neglecting interactions, it simply behaves as an harmonic oscillator with parameters that
depend on the background and are thus time dependent. As it is well known, in the limit in
which the mode wavelength is much larger than the Hubble scale, the system is in a squeezed
state with very large squeezing parameter [17]. This corresponds to the fact that the dynamics
is dominated by the so called “growing mode”, while the other independent solution dies away
exponentially (“decaying mode”). Although the system is still fully quantum, we expect that all
physical measurements and interactions will only be sensitive to the growing mode so that the
decaying one can be disregarded. This leads to a classical system, with the amplitude of the
growing mode as a classical stochastic variable 5.

In conclusion, under our approximations the inflaton fluctuations are well described by a
classical stochastic field with Gaussian statistics. All correlation functions are then determined
uniquely by the two-point function. At equal times, before smoothing this is

〈δφ(~x, t) δφ(~y, t)〉 =
1

(2π)2

1

|~x− ~y|2 a2(t)
− H2

(2π)2
log

|~x− ~y|
L

, (19)

where L is our IR cutoff—the comoving size of the universe. The first term is the usual two-
point function for a massless scalar in Minkowski space. The second piece is peculiar to de Sitter
space, and it is the celebrated scale-invariant spectrum. Upon smoothing out the field, the above
expression is the correct one at distances larger than the UV cutoff, |~x− ~y| · eHt ≫ Λ−1, whereas
at shorter distances the two points can be thought of as coincident and we get the classic result
[12, 13, 14]

〈(δφ2(~x, t))〉 = αΛ2 +
H2

(2π)2

(
log ΛL+ β +Ht

)
=

H3

(2π)2
t+ const . (20)

As usual, the coefficient of the quadratically divergent piece, α, as well as the finite part associated
to the log-divergent piece, β, are order-one numbers that are regularization-dependent, i.e. they
depend on the precise filter-function we adopt to smooth-out the field. On the other hand, the
coefficient in front of the log-divergence is regularization-independent, being determined by long-
distance physics. The factor of t comes from the explicit time-dependence of the UV-cutoff in
comoving coordinates, or, equivalently, from the time-dependence of the IR cutoff in physical
coordinates. Physically, as time goes on more and more modes are included in the smoothed
field and, given the scale-invariance of the spectrum, they all contribute to the variance (20).
The coefficient of t is also regularization-independent, being determined by the log-divergence
coefficient and by how the cutoff scales with time—not by the precise definition of the cutoff.

5Referring to the discussion of footnote 4, we can again assume that a period of non-eternal inflation, ζ ≪ 1,
stretches all the relevant modes largely out of the horizon, so that we are indeed allowed to treat them classically.
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We see that the variance of δφ at a given comoving point ~x increases linearly with time. This
reminds us of a random walk and it is the base of the so called stochastic approach to inflation
which dates back to [15, 2, 11]. Indeed, if as smoothing procedure we choose a sharp cutoff in
momentum space, the analogy becomes exact: at any given point δφ(~x) undergoes a random walk,
every new mode included in the smoothing giving a random kick to the field, totally uncorrelated
to the previous ones. This will allow us to exploit the technology of diffusion processes.

Before moving to the actual calculations, we want to underline the simplicity of the system
under study. Everything has been reduced to a free scalar in de Sitter space. Going towards
the eternal inflation regime however, we will see that this system gives rise to a kind of phase
transition producing an infinite reheating volume. Although we are studying a free field, the
relation between the reheating volume and the scalar is very non-linear and this is what gives rise
to the interesting dynamics.

2 Volume statistics

2.1 The average

Let us study the probability density ρ(V ) for the volume of the reheating surface φ = φr. Our goal
is to identify a sharp transition in the behavior of this probability density at some finite value of
the parameters of the model. In the setup discussed in the previous section the only dimensionless
parameter is given by the quantity φ̇/H2, the ratio between the classical motion and quantum
fluctuations. We want to see whether it is possible to identify a critical value of φ̇/H2 where
a sharp transition in the properties of ρ(V ) occurs. This would correspond to the onset of the
eternal inflation regime.

Let us start with calculating the average reheating volume 〈V 〉

〈V 〉 =

∫
dV V ρ(V ) . (21)

If we call tr(~x) the reheating time as a function of the comoving coordinate ~x, the average volume
can be written as

〈V 〉 =
〈 ∫

d3x e3Htr(~x)
〉

=

∫
d3x

〈
e3Htr(~x)

〉
, (22)

where we reversed the order of integration and averaging thanks to linearity of both. Then the
problem becomes very simple:

〈V 〉 = L3

∫
dt e3Htpr(t) , (23)

where pr(t) is the probability that at a given point ~x the field reaches the reheating value φr at
time t. By translational invariance this probability does not depend on the point ~x, so that the
integral over the comoving coordinates can be factored out to give the volume of the comoving
box L3.
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To obtain the probability of reheating at time t we have to start from the probability P (φ, t)
of having a given field value φ at time t. This again does not depend on the point ~x. Then the
probability to reheat at time t can be calculated as time-variation of the probability of still being
inflating, i.e of having φ anywhere on the left of φr:

pr(t) = − d

dt

∫ φr

−∞
dφ P (φ, t) . (24)

As we already discussed in the previous section, at leading order in the slow roll parameters, the
perturbation of the inflaton field around the classical slow roll solution,

ψ = φ− φ̇t (25)

is a Gaussian field with variance σ2 that grows linearly with time (see figure 2),

σ2 =
H3

4π2
t . (26)

Here we dropped t-independent terms present in the full expression (20). It is straightforward to
keep track of these terms and check that they do not affect our results, that depend only on the
late time asymptotics of σ2. In fact the constant pieces in eq. (20) can be set to zero by a constant
shift of the time variable, t → t+ const. All properties of the system that are dominated by the
t→ ∞ limit—like whether inflation is eternal or not—are totally insensitive to such a shift. Note
that the UV cutoff Λ does not enter in the t-dependent part (26), nor does the IR cutoff L, so that
our conclusions are not sensitive to the values of Λ and L. To avoid the proliferation of numerical
coefficients, in what follows it is convenient to use σ2 itself as time variable. At any given ~x, the
probability distribution P (φ, t), when written as a function of ψ and σ2, satisfies the diffusion
equation

∂P

∂σ2
=

1

2

∂2P

∂ψ2
. (27)

Inflation ends when the inflaton field φ reaches φr. Consequently, we are interested in solving
the diffusion equation (27) with an “absorbing barrier” at the corresponding value of ψ, i.e. the
solution should satisfy the Dirichlet boundary condition

P |ψ=ψr
= 0 , (28)

with

ψr = φr − φ̇t = φr − 4π2 φ̇

H3
σ2 . (29)

Such a solution can be constructed by using a generalization of the method of images. One starts
with the standard solution describing diffusion without any barriers and with initial condition
localized at ψ = 0 for t = 0

P0(ψ, σ
2) =

1√
2πσ2

e−ψ
2/2σ2

. (30)
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Figure 2: At any given comoving point, the local inflaton value undergoes a random walk. Left: for φ the
reheating barrier is held fixed at φ = φr, but there is classical drift towards it. Right: for the fluctuation
ψ there is no net drift, but the barrier is approaching at a speed φ̇.

In the case of a time independent barrier, it is well known that the Dirichlet boundary condition
can be satisfied adding a negative image located specularly with respect to the barrier. In our
case we have a barrier moving linearly in time. It is straightforward to show that in this case the
solution becomes

P1(ψ, σ
2) =

1√
2πσ2

(
e−ψ

2/2σ2 − e8π
2φ̇ φr/H3

e−(ψ−2φr)2/2σ2
)
. (31)

The image is symmetric with respect to the barrier position at time t = 0 and it is multiplied
by a constant factor which depends on the barrier speed. Note that in the whole physical region,
ψ < ψr, the contribution from the image is smaller than the P0 term, as it should be in order for
the density distribution P1 to remain positive. Far from the barrier the contribution of the image
is exponentially suppressed.

We can now use our solution for P to evaluate the probability (24) of reheating at a given time
t. By making use of the diffusion equation (27) and taking into account that P vanishes on the
barrier, eq. (28), we have

pr(t) = −H3

8π2

∂P

∂φ

∣∣∣∣
ψ=φr−φ̇t

. (32)

Disregarding the polynomial dependence in front of the exponential we have

pr(t) ∼ e−2π2 (φr−φ̇t)2

H3t . (33)

At late times this gives for the volume (23)

〈V 〉 ≃ L3

∫ ∞

0

dt α(t) e3Ht−
2π2φ̇2

H3 t+O(1) , (34)
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where the prefactor α(t) does not have exponential dependence on time. We see that the average
reheating volume remains finite if and only if

Ω ≡ 2π2

3

φ̇2

H4
> 1 . (35)

So far we have not talked about the initial condition we choose for the inflaton. Clearly, as
the general solution of the diffusion equation is given by the convolution of P1(ψ, t) with the
initial probability distribution, the initial condition is irrelevant for the convergence of the average
reheating volume. A similar criterium for the divergence of the inflating volume was put forward
in [16]. Here we focus on the more physical quantity of reheating volume and we proceed to better
characterize what happens at Ω = 1.

Equation (35) appears as a sharp criterion for whether eternal inflation takes place or not. At
the end we will argue that this is essentially correct; however to justify this conclusion we first need
to address several important subtle points. Let us try to understand in more detail what happens
to the probability distribution for the reheating volume ρ(V ) at the critical value Ω = 1, where
the average reheating volume diverges. There are two possible options. First, it may happen that
each moment 〈V n〉 of the distribution has a different critical value of Ω when it starts diverging.
This would happen, for instance, if ρ(V ) had a power law asymptotics at large values of V with
the power depending on Ω, e.g.

ρ(V ) ∝ 1

1 + V 1+Ω
. (36)

If this were the case, the value Ω = 1 associated to the divergence of 〈V 〉 would not really mark
any sharp transition in the physical behavior. Each moment of the distribution would single out
a different transition point. Perhaps in this case a better characterization of the onset of eternal
inflation would be given by the value of Ω where the probability distribution itself ceases to be
normalizable (Ω = 0 for the model distribution (36)), if such a value exists.

The other possibility is that at Ω = 1 all moments of the probability distribution becomes
infinite, including the “zeroth” moment, i.e. the probability distribution also ceases to be normal-
izable at this point. This would happen, for instance, for a family of probability distributions of
the form

ρ(V ) ∝ q(V )e(1−Ω)V , (37)

where q(V ) has a power-law behavior at large V . In this case the critical value Ω = 1 indeed has
a very sharp physical meaning.

We will see that the actual answer is somewhat more complicated than both of these options.
However, already at this point it is possible to argue that in the setup we are considering the
distribution is not of the type (37) and that different moments diverge at different values of Ω.
Indeed, it is straightforward to see that for any given value of Ω there is a value n0 such that all
moments of the volume distribution 〈V n〉 with n > n0 diverge. Indeed, let us imagine that Ω is
much larger than one, so that naively one is very far from the eternal inflation regime. Let us
consider a class of inflaton trajectories that at time t in one Hubble patch have a huge quantum
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fluctuation in the direction opposite to the classical motion, such that the inflaton ends at

φ = φr − φ̇t . (38)

The classical trajectory would have φ = φ̇t, so that at large t the probability of such a fluctuation
is exponentially suppressed by a factor of order e−A·Ht, with A ∼ φ̇2/H4 ∼ Ω2. The important
point is that the exponent grows only linearly with time (and not quadratically). The reason is
that the variance σ2 of the inflaton perturbation ψ is itself a linear function of t. Then, with
probability close to one such a trajectory will give rise to a reheated volume at least as big as
e3HtH−3, since this is the volume one would get just classically rolling down from φ = φr − φ̇t
to φ = φr. Consequently, for n > A/3 ∼ Ω2 the contribution to the moment 〈V n〉 from this
set of trajectories grows exponentially as a function of t—the large power of the exponentially
growing volume over-compensates for the small probability of the required fluctuation—and these
moments diverge.

At this point one is tempted to conclude that the situation is analogous to what happens with
the distribution (36) and that there is no sharp transition to the eternal inflation regime. We
will argue later that this conclusion is too quick, and that instead there is a sharp transition.
Notice that for the rough argument about higher moments to work, it is essential to consider, as
time grows, backward fluctuations that go further and further along the potential without bound.
To see what this implies, it is instructive to understand the effect we just described at a more
quantitative and detailed level. For this purpose we are going to study now the behavior of 〈V 2〉
and show that indeed it starts diverging at a critical value Ω > 1, i.e. when the average volume
〈V 〉 is still finite.

2.2 The variance

The calculation we did for the average is deceivingly simple as the only thing we needed was the
1-point probability P (φ, t) to have a value of the field φ at time t, which is clearly independent of
the comoving position ~x. However the study of the full probability for the reheating volume ρ(V )
is not straightforward as the only expression for it is based on a functional integration over the
field realizations

ρ(V ) =

∫
Dφ P[φ] δ

(
V −

∫
d3x e3Htr(~x)

)
, (39)

where Dφ is the functional measure on the set of all possible space-time realizations of the inflaton
field, P[φ] is the probability of a specific realization and tr(~x) is the reheating time for a given
realization as a function of the comoving coordinate ~x.

Instead of trying to evaluate the expression above, to calculate 〈V 2〉 we will follow a procedure
similar to the one used for the average. Namely, let us define the 2-point probability distribution
of the inflaton field P2(φ1, φ2, |~x1 − ~x2|, t1, t2), such that

P2 dφ1dφ2 (40)
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gives the joint probability of finding the inflaton field in the ranges (φ1(2), φ1(2) + dφ1(2)) at the
two space-time points (~x1, t1) and (~x2, t2). For translational and rotational invariance this joint
probability just depends on the distance between the two points |~x1 − ~x2|. Analogously to the
previous section we can define a probability density p2r(t1, t2, |~x1 − ~x2|) for reheating to happen
at the comoving point ~x1 at time t1 and at the comoving point ~x2 at time t2. Similarly to (24)
this will be related to P2 by

p2r(t1, t2, |~x1 − ~x2|) = −∂t1∂t2
∫ φr

−∞
dφ1

∫ φr

−∞
dφ2 P2(φ1, φ2, |~x1 − ~x2|, t1, t2) . (41)

Then the expectation value of V 2 can be written as

〈V 2〉 =

〈∫
d3x d3y e3Htr(~x) e3Htr(~y)

〉
= L3

∫
dt1dt2d

3x e3Ht1e3Ht2 p2r(t1, t2, |~x|) . (42)

To study the convergence of this integral we need to find the 2-point probability P2. For fixed
comoving distance |~x| between the two points this probability has a very different behaviour at
early and late times. At early times,

t1, t2 ≪ t∗ ≡ −H−1logH|~x| , (43)

the two points are within one Hubble patch and therefore they are not resolved by the smoothing
procedure. As such their evolution is perfectly correlated. In particular the 2-point distribution
at equal times t1 = t2 is just given by the 1-point distribution (31),

P2(ψ1, ψ2, |~x|, t, t) ≃ P1(ψ1, t)δ(ψ1 − ψ2) for t≪ t∗(|~x|) . (44)

In the opposite limit, when the distance is much larger than the Hubble radius, the inflaton
fluctuations at the two points are completely uncorrelated. In this case, the probability distribution
P2 satisfies a diffusion equation with respect to each pair of variables (t1, φ1), (t2, φ2),

∂P

∂σ2
1(2)

=
1

2

∂2P

∂ψ2
1(2)

for t1, t2 ≫ t∗ . (45)

In the equations above ψ1(2) and σ2
1(2) are related to t1(2) and φ1(2) by the relations (25) and (26).

In the following we are going to use a “two steps” approximation in which we consider a single
random walk before t∗ and two uncorrelated ones after t∗, as dipicted in figure 3 (6). The exact
solution is more complicated as there is an intermediate period of partial correlation [18]. However
it will be easy to check that our results will not depend on the exact definition of t∗, when the
two regimes are matched. This strongly indicates that taking into account the period of partial
correlation would not change the range of Ω when 〈V 2〉 converges.

6The same approximation has been used in the study of structure formation in [18].
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Figure 3: Our two-step approximation. The local inflaton fluctuations in two nearby comoving points
are assumed to be totally correlated until the physical distance between the two points exits the UV cutoff
(t < t∗), and totally uncorrelated afterwards (t > t∗).

In this 2-step approximation, the 2-point probability when the distance between the two points
is larger than Hubble is obtained first following a single random walk until the time of “separa-
tion” t∗ and then convolving this initial condition with two independent Green’s functions for the
diffusion equation with a barrier. This translates into

P2(ψ1, ψ2, |~x|, t1, t2) =

∫ φr−φ̇t∗

−∞
dψG(ψ1, ψ, t1 − t∗)G(ψ2, ψ, t2 − t∗)P1(ψ, t∗) , (46)

with t1, t2 > t∗. Notice that the dependence on |~x| is hidden in t∗, given by equation (43). The
Green’s function G is straightforward to construct by making use of the solution (31). Namely, it
is equal to

G(ψ1, ψ, t) = P̃1(ψ1 − ψ, t− t∗) (47)

where “tilde” indicates that φr in eq. (31) must be replaced by

φr − ψ − φ̇t∗ (48)

to take into account that the independent motion of each of the two points starts at ψ at time t∗,
rather than at the origin at t = 0.

To prove that the variance diverges when the average volume is still finite, it is enough to
obtain a lower bound on the integral (42). As the integrand is positive definite, we can therefore
restrict the range of integration by considering only pairs of points (~x1, ~x2) in different Hubble
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patches (both at t1 and at t2). In other words we can impose a UV cutoff on the integration over
the comoving volume in eq. (42) by requiring

t∗(|~x|) < t1, t2 . (49)

It is anyway straightforward to check that the remaining range of integration gives a contribution
that always converges whenever Ω > 1.

As before we can use (45) to evaluate the integrals in (41) and arrive at the following expression

〈V 2〉 = −H
6 · L3

64π4

∫ ∞

0

dt1dt2

∫

|~x|>H−1e−Hτ

d3x e3H(t1+t2)∂ψ1∂ψ2P2(ψ1, ψ2, |~x|, t1, t2)
∣∣∣
ψ1(2)=φr−φ̇t1(2)

, (50)

where τ = min(t1, t2).
The partial derivatives act on each of the two Green functions of eq. (46) and give a dependence

analogous to the 1-point case eq. (33). The evolution before splitting given by P1 contains the
image term and one should sum the two contributions. However, as already discussed in the
previous section, we will find that the divergence of 〈V 2〉 is dominated by trajectories which are
exponentially far from the barrier as time becomes large. This implies a posteriori that the image
term is completely irrelevant.

The convolution integral in (46) can be done in saddle point approximation. The saddle point
is given by

ψsaddle = t∗
(ψ1 + ψ2) t∗ − t2ψ1 − t1ψ2

t2∗ − t1t2
. (51)

This gives for the exponential part of P2

P2(ψ1, ψ2, |~x|, t1, t2) ∼ exp

(
−2π2

H3
· t2ψ

2
1 − 2t∗ψ1ψ2 + t1ψ

2
2

t1t2 − t2∗

)
. (52)

Note that this expression non-trivially depends on the spatial separation |~x| through the horizon
crossing time t∗, as shown in (43). To plug this result back in (50) it is convenient to use

t± = t1 ± t2 (53)

as time variables and the horizon exit time t∗(|~x|) in place of the comoving separation ~x. With
this change of variable and keeping only the leading exponential behavior at large times as in the
previous section, one obtains (restricting to t1 ≥ t2)

〈V 2〉 ∼
∫ ∞

0

dt+ e
3Ht+

∫ t+

0

dt−

∫ t+−t
−

2

0

dt∗ e
−f(t+,t−,t∗) , (54)

where

f(t+, t−, t∗) = 3Ht∗ + 3HΩ

(
t+ − 2t∗ +

4t2∗(t+ − 2t∗)

t2+ − t2− − 4t2∗

)
. (55)
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The first term on the right hand side of this equation comes from the change of integration measure
from x to t∗(|~x|). To check whether the integral over t+ converges, we can minimize the function f
with respect to t− and t∗ in the range of integration. As t− enters into f only in the denominator
of the last term, it is clear that the saddle point is

t− = 0 . (56)

Then the minimization with respect to t∗ gives

t∗min =
t+
2

(√
2Ω − 1

)
, (57)

and the value of f at this minimum is

f(t+, 0, t∗min) = 3Ht+

(√
2Ω − 1

2

)
. (58)

This grows faster than 3Ht+ for

Ω >
9

8
. (59)

We conclude that 〈V 2〉 ceases to be finite when the parameter Ω drops below 9/8, i.e. before
the average volume 〈V 〉 starts diverging. As a consistency check of the calculation, note that at
Ω = 9/8 the optimal horizon exit time t∗min indeed belongs to the integration interval in (54). For
Ω > 2 this would no longer be true and the dominant contribution would come from t∗ = t+/2:
〈V 2〉 would be dominated by the dynamics before the two points become independent.

2.3 Uphill barrier

The above explicit calculation of 〈V 2〉 nicely fits into the general argument presented at the end of
section 2.1. We have seen that, in saddle point approximation, the dominant contribution to 〈V 2〉
comes from points that reheat at the same time t1 = t2. These points start evolving independently
when separated by a physical distance ∼ H−1; this happens at a fraction of the eventual reheating
time, which is equal to 1/2 for the critical value Ω = 9/8, see (57).

Where is the most likely position along the potential at t∗, when the two points start their
independent evolution? From the saddle point result (51) we see that it is a position with a huge
backward fluctuation with respect to the classical trajectory

ψ = −
√

2

Ω
φ̇ t∗min . (60)

For Ω < 2 this fluctuation corresponds to a negative value of the inflaton

φ =
(
1 −

√
2/Ω

)
· φ̇t∗min , (61)
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so that the most likely position at t∗min is higher than the starting point at t = 0 and it becomes
higher and higher without bound for t∗min → ∞. This agrees with the general argument above 7.

To summarize, all this sounds as if the volume distribution has qualitative properties similar
to the model distribution (36), where the various moments start diverging at different values of
Ω. Thus it seems that the value Ω = 1, where the average volume diverges, does not really
correspond to any sharp physical transition. However this conclusion is too quick. In section 3,
where we study a discretized version of the same system, we will argue that at Ω = 1 another sharp
transition occurs besides the divergence of 〈V 〉: the total probability of having a finite reheating
volume becomes smaller than one! This property is expected in the transition into the eternal
inflation regime as it tells us that there is a finite probability of an infinite reheating volume or
equivalently for inflation to last forever. Clearly this sharply defines Ω = 1 as the transition point
to eternal inflation. Before moving to this issue, let us conclude our study of the moments of the
distribution ρ(V ).

As we stressed, the divergence of the higher moments is qualitatively different with respect to
the case of the average. The explicit calculation of 〈V 2〉, following the general argument made
in section 2.1, shows that the divergence is related to the possibility of fluctuating uphill without
bound, infinitely far from the barrier. What we are going to check is that, if we put a bound to
the possibility of going infinitely uphill, all the moments diverge at the same critical value Ω = 1.

To impose a limit on fluctuations infinitely far from the reheating point, we can put a reflecting
barrier so that the field value is constrained to satisfy

φ > φup , (62)

where φup will be a large negative value. The value of ψ at the barrier will be given by

ψup = φup − φ̇t . (63)

Here we are going to study the effect of this new barrier on the calculation of 〈V 2〉, while we
postpone the discussion about all higher moments to Appendix A. We do not need to find the
explicit form of the solution of the diffusion equation with two barriers. To keep track of the late
time exponential behavior for large enough |φup|, it is enough to consider that the integration
range in the convolution (46) is now restricted to (ψup, ψr) and it is not extended infinitely uphill.
For Ω < 2 the saddle point position (61) moves backwards and thus it eventually hits the new
uphill barrier. The saddle point exits the physical region and therefore, in the leading exponential
approximation, the result will be dominated by a splitting point position on the uphill barrier,
i.e. the point closest to the (would-be) saddle. In this approximation one obtains for the 2-point
distribution

P2(ψ1, ψ2, |~x|, t1, t2) ≃ exp

[
−2π2

H3

(
(ψ1 − ψup)

2

t1 − t∗
+

(ψ2 − ψup)
2

t2 − t∗
+
ψ2
up

t∗

)]
. (64)

7Notice that as 〈V 2〉 is dominated by a splitting point infinitely far away from the barrier it is justified disre-
garding the image terms of the probability P1 in (46).
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We are interested in the late time behaviour of this expression. The position of the uphill barrier
φup becomes irrelevant in this limit as it is dominated in (63) by the time dependent term. This
means that φup disappears from the calculations and therefore from the final critical value of Ω
and it can be thought just as a regulating device, which can be sent to infinity. Notice however
that its effect is crucial. Mathematically this comes from the fact that the large φup limit and
the late time limit do not commute, because the saddle point (51) eventually exits the integration
region at any finite value of φup. In more physical terms this means that no matter how far the
barrier is there will be a sufficient large time such that

H3t & φ2
up (65)

so that the diffusion is so large to be sensitive to the presence of the extra barrier. As the transition
to eternal inflation is sensitive to arbitrarily large times, the presence of the regulating barrier will
be important, independently on how far we put it.

To see that the presence of the second barrier changes the value at which 〈V 2〉 diverges, let us
plug (64) in the expression (50) for the 〈V 2〉. We obtain the same result as (54) with the function
f now taking the form

f(t+, t−, t∗) = 3Ht∗ + 3HΩ (t+ − t∗) (66)

We see that now the integral for 〈V 2〉 converges for Ω > 1. Note that the integral over t∗ is satu-
rated at the upper limit, justifying a posteriori an assumption implicit in the whole derivation—
that in the late time limit (meaning large t1,2 limit) t∗ also indefinitely grows.

On the other hand it is easy to check that there is no effect of the second barrier on the
calculation of 〈V 〉; this is just a consequence of the fact that solutions to the diffusion equation
behave continuously when one removes one of the barriers to infinity. This is checked in Appendix
A, where we study the explicit solution in the presence of two barriers.

In conclusion, in the presence of an uphill regulating barrier, Ω = 1 is the critical point both
for 〈V 〉 and for 〈V 2〉. In Appendix A we will see that this holds also for all higher moments 〈V n〉.

3 Bacteria model of inflation

The above results strongly suggest that Ω = 1 sets the transition to eternal inflation. To conclu-
sively confirm this one would like to directly check that at Ω < 1 there is a finite probability for
inflation to run forever. A natural quantity to look at to address this issue is the total probability
to have a finite reheating volume,

Pf =

∫
dV ρ(V ) , (67)

where ρ(V ) is the volume probability distribution defined by eq. (39). Clearly, Pf = 1 if inflation
always ends in a finite time. On the other hand, as we will see in this section, for Ω < 1 the
total probability Pf drops below one. This is a direct signal of eternal inflation—in this regime
there is a finite probability (1−Pf) that the total volume of the reheating surface is infinite. This
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result also shows that the transition to the eternal regime is quite similar to a second order phase
transition, with (1 − Pf ) being an order parameter.

To derive this result one needs more detailed information about the probability distribution
ρ(V ) rather than just its multipole moments. This seems to be hard to achieve, as the only available
definition of ρ(V ) is a rather formal functional integral formulae (39). As usual with functional
integrals, to gain more control over ρ(V ) it is natural to switch to a discretized description of the
inflationary dynamics. This will be the approach of the current section.

With a biological analogy, consider at t = 0 a bacterium that can live in a discrete set of
positions along a line (see fig. 4). At t = 1 the bacterium splits into N copies. Then, each
bacterium (independently of all the others) hops with probability p to the neighboring site on its
right, and with probability (1− p) on the left. N and p are fixed numbers. At t = 2 each second-
generation bacterium reproduces itself, and so on. The analogy with our inflationary system is
clear: each bacterium represents an Hubble patch; sites are inflaton values. Reproduction is the
analogue of the Hubble expansion; at every e-folding ∼ e3 new Hubble volumes are produced
starting from one. From then on the inflaton inside each Hubble volume evolves independently,
with a combination of classical rolling and quantum diffusion. This is represented by the random
hopping of our bacteria. The difference in the probabilities of moving right and left gives a
net drift, and thus corresponds to the classical motion. To complete the analogy we have to
assume that there is a “reheating” site, i = 0 in the figure: when a bacterium ends up there it
stops reproducing and moving around—it dies. In the previous sections we studied the statistical
properties of the reheating volume V as a function of Ω. In the bacteriological analogy the
reheating volume corresponds to the number of dead bacteria (= non-reproducing Hubble patches)
in the asymptotic future. For analogy we denote the latter quantity by V , which of course now
takes discrete values. Our task is to study the probability distribution of V as a function of the
parameter p. A discrete system like the one we described goes under name of branching process,
more precisely a multi-type Galton-Watson process (see e.g. ref. [19]). Similar models have been
studied in the context of eternal inflation in [20]. Here the focus will be the relationship with the
continuum case and the precise characterization of what happens at the critical point.

i+1 1 0

p1−p

i i−1

Figure 4: The branching process.

Before moving to the explicit study of the model, let’s summarize the main results we will
achieve:

• We will explicitly show that in a suitable continuum limit the discrete model precisely
converges to the full inflationary case we studied in the previous sections.
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• There is a critical value pc > 1/2 such that for p ≤ pc the expectation value 〈V 〉 of the number
of dead bacteria at future infinity diverges, whereas it converges for larger p’s. For inflation,
pc is the analogue of the critical Ω below which the expectation value of the reheating volume
becomes infinite. We shall see that in the continuum limit the value of the critical Ω that
we can infer from the discrete model matches the one obtained directly in the inflationary
case.

• The behavior of the variance of V crucially depends on whether we consider a semi-infinite
or finite line of sites. In the semi-infinite case the variance starts diverging at a new critical
value for p that is larger than the above pc and agrees with the corresponding value of
Ω, eq. (59). In the finite case on the other hand, the two critical values coincide, and
the same happens for higher moments as well. This perfectly matches what we found in
the inflationary system, where the critical behavior of the variance and higher moments is
sensitive to whether arbitrarily large field excursions are allowed.

• The most dramatic way of characterizing the transition at p = pc is that the probability
distribution develops a finite probability for strictly infinite V . In other words, there is a
finite probability for the branching process not to terminate. This indicates that also in
the inflationary case, for Ω < 1 there is a finite probability of having an infinite reheating
volume. This is the most pristine definition of eternal inflation—a finite probability of never
ending inflation globally.

Notice however that there is always a finite probability to end inflation everywhere: for
instance if in all Hubble patches the inflaton always fluctuates towards reheating, we have
a global exit from inflation. The probability for this to happen is clearly non-zero, but it
becomes smaller and smaller the larger the initial inflationary volume. In the limit of a very
large initial volume the transition at Ω = 1 becomes completely sharp: the probability of an
infinite reheating volume jumps from zero to one.

To get further intuition about how a finite probability for infinite V develops we will study
the distribution of dead bacteria as a function of time in the simplest case of just two sites.

3.1 Recovering the inflaton dynamics from the discrete model

The bacteria branching process described above clearly captures many of the qualitative features
of the actual inflaton dynamics, but it is not totally obvious that it allows to take the continuum
limit that exactly reproduces the inflationary results. To explain how this happens, let us start
by describing a different discrete model, which has a straightforward continuum limit reproducing
inflation. This model is harder to analyze than the bacteria process, but we will explain why the
two are equivalent for our purposes.

To begin with, note that in the branching process description we have two different discretiza-
tions. First we have a discrete time step; for N ∼ e3 one step of the branching process corresponds
to a time interval of order H−1. Second, the possible values of the inflaton field are discretized as
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Figure 5: The gaussian model described in the text.

well, and labeled by the bacteria positions. However, to reproduce the inflationary results we do
not actually need to get rid of the time discretization. Indeed, as discussed in section 1.3, a space-
time smoothing of the scalar field over the scale Λ−1 & H−1 is understood in all our calculations.
The physical results, such as the transition point, do not depend on the details of the smoothing
procedure and an explicit space-time discretization (as in the branching process approach) is as
good as the smooth filter (12). Hence we only need to take the continuum limit in field space to
reproduce the continuum results.

In the “two steps” approximation we have been using in studying inflation—see the discus-
sion below eq. (45)—the inflaton dynamics is fully determined by the diffusion equation for the
probability of the inflaton values at one point in spacetime, or equivalently, by the gaussian dis-
tribution (30) for the inflaton fluctuations. A straightforward way to approximate this dynamics
by a branching process is to consider the following sequence of processes. For the k-th process
of the sequence at each step every bacterium splits into Ñ copies. Then each bacterium hops
with probabilities pi (i = −k, . . . , k) to the 2k adjacent sites (see Fig. 5). As k goes to infinity
we require the probabilities pi approach the shifted gaussian distribution. In principle, all general
results about branching processes described below apply to this process as well. We will refer to
this process as the “gaussian model”, as opposed to the bacteria model discussed before. Clearly,
the latter is much more tractable for explicit calculations.

Fortunately, for our purposes the two processes are equivalent. Indeed, let us start with a
bacteria process where at every time-step each bacterium divides into N copies. Equivalently,
one can consider another process, where at each step a bacterium divides into Ñ = Nk copies,
which then hop to the 2k adjacent sites with probabilities pi generated by iterating k times the
elementary process. Obviously, the late time properties of the two processes, such as the average
number of dead bacteria, or whether all bacteria die or not, are the same. The two processes
are in fact one and the same—only in the latter case we are observing the system less frequently,
every k time-steps. Also, by the central limit theorem, at large k the probabilities pi generated in
this way approach a gaussian distribution, so one gets the gaussian model.

Let us now consider the bacteria process and establish the exact relations between its parame-
ters N and p and the inflation parameters. As we said, it is enough to derive the diffusion equation
and match its parameters in the two cases. Also, from above we know that in the large k limit
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the time interval ∆t corresponding to one step in the bacteria model goes to zero (while the time

interval corresponding to one step of the gaussian model ∆̃t = k∆t remains constant). Let us
consider one bacterium. The probability P (j, n + 1) for a bacterium to be at site j at time step
(n+ 1) is given in terms of the probabilities at time n by

P (j, n+ 1) = (1 − p)P (j − 1, n) + p P (j + 1, n) . (68)

We can now make the following identification

j = − φ

∆φ
, n =

t

∆t
, (69)

and treat φ and t as continuous variables. Taylor-expanding both sides of eq. (68) up to linear
order in ∆t and quadratic order in ∆φ we find

∂tP (φ, t) ≃ (1 − 2p)
∆φ

∆t
∂φP (φ, t) +

1

2

(∆φ)2

∆t
∂2
φP (φ, t) . (70)

This equation can be expressed in terms of the variables ψ = φ− φ̇ t and σ2 = H3/4π2 · t defined
in sec. 2.1, obtaining

∂σ2P (ψ, σ2) ≃ 4π2

H3

(
(1 − 2p)

∆φ

∆t
+ φ̇

)
∂ψ P (ψ, σ2) +

1

2

4π2

H3

(∆φ)2

∆t
∂2
ψP (ψ, σ2) . (71)

This diffusion equation coincides with the inflationary one (27) if in the continuum limit we take
∆φ, ∆t→ 0 in such a way that

∆t =
4π2

H3
(∆φ)2 . (72)

Also in this limit the hopping probability p can be related to the slow roll parameter Ω using
−(1 − 2p)∆φ

∆t
= φ̇ :

p =
1

2
+

2π2φ̇

H3
∆φ =

1

2
+
√

6π2Ω
∆φ

H
(73)

Finally, the number of bacteria copies N at each reproduction event clearly is

N = 1 + 3H∆t . (74)

Given the discussion above one should not be surprised that the number of copies N goes to
one in the continuum limit. This does not give rise to any problems, in spite of the fact that
strictly speaking the bacteria process is defined only for integer values of N . As we explained the
actual process we are interested in is the gaussian one with the number of copies Ñ = Nk kept
fixed in the continuum limit. One may regard working with the bacteria process and analytically
continuing its results to real values of N close to one as a technical trick to simplify the algebra
for the gaussian process.

To directly confirm that the discrete approximation works let us start with reproducing with
the bacteria model the results obtained in the previous sections. As a byproduct we will see at a
more concrete level why the above analytic continuation works.
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3.2 Dead-bacteria statistics: the average

Let us start with the case of a semi-infinite line. Suppose we begin at t = 0 with one single
bacterium at position i. Following ref. [19], for all different i’s we can define Mij as the average at
the following time-step of the number of bacteria at position j. If i 6= 0, the bacterium produces
on average Np bacteria on its right and N(1 − p) on its left. If i = 0, the bacterium does not
reproduce itself and stays there. Therefore, in matrix form Mij is given by

M =




1 0 0 0 · · ·
Np 0 N(1 − p) 0 · · ·
0 Np 0 N(1 − p) · · ·
0 0 Np 0 · · ·
...

...
...

...
. . .




≡
(

1 0

I M̃

)
, (75)

where we have represented M in block-form defining

I =




Np
0
0
...


 , M̃ =




0 N(1 − p) 0 · · ·
Np 0 N(1 − p) · · ·
0 Np 0 · · ·
...

...
...

. . .


 . (76)

As the average is a linear operator, the matrix M defines a linear map between the initial state
vector and the average state after one time-step. That is, starting with n0, n1, . . . bacteria at
positions 0, 1, . . . , the average number of bacteria at position j after one time-step is

∑
i niMij.

We denote by |i〉, for i = 0, 1, . . . the elements of the canonical basis in which the above matrices
have been written.

Likewise, consider the matrixM
(n)
ij that gives after n time-steps the average occupation number

at position j when starting with one bacterium at position i. It is straightforward to show by
induction that M (n) = (M)n [19] 8. Thanks to the block structure of M , we get

M (n) =

(
1 0(∑n−1

m=0 M̃
m
)
|I〉 M̃n

)
. (77)

We want to compute the average number of dead bacteria at time n starting with one bacterium
at a generic site, and then send n to infinity. Suppose we start at the i = 1 site (we will see below
that this assumption does not affect our results). In this case we have to compute

〈1|Mn|0〉 = Np 〈1|
n−1∑

m=0

M̃m|1〉 = Np 〈1|1 + M̃ + M̃2 + . . .+ M̃n−1|1〉 . (78)

8Usually in the branching-process literature the ending site i = 0 is not included, and each bacterium has a
given probability of disappearing. This amounts to concentrating on the matrix M̃ . Here instead we include the
occupation number of the ending site so that we can follow the number of dead bacteria—the analogue of the
reheating volume. It is immediate to adapt the standard results to this case.

25



Restricting to the subspace spanned by the |i〉’s with i ≥ 1 we define lowering and raising
operators S and S† by

S|i〉 =

{
|i− 1〉 if i 6= 1
0 if i = 1

, (79)

S†|i〉 = |i+ 1〉 . (80)

It is easy to verify that these operators satisfy

S S† = 1 , S†S = 1 − |1〉〈1| , [S, S†] = |1〉〈1| . (81)

Then we can rewrite M̃ as
M̃ = N(1 − p) S +Np S† . (82)

Each term in eq. (78) thus has the form

〈1|M̃m|1〉 = 〈1|
(
N(1 − p)S +NpS†)m |1〉 . (83)

This is non-zero only for even m, m = 2l:

〈1|M̃2l|1〉 =
[
N2p (1 − p)

]l 〈1|
(
S + S†)2l |1〉 ≡

[
N2p (1 − p)

]l
A(l) . (84)

Applying iteratively the commutation rule in eq. (81), we can write

A(l) = 〈1|
(
S + S†) (S + S†)2l−1 |1〉 = A(0)A(l−1) + 〈1|

(
S + S†)S

(
S + S†)2l−2 |1〉

= . . . = A(0)A(l−1) + A(1)A(l−2) + . . .+ A(l−1)A(0) =

l−1∑

k=0

A(k)A(l−1−k) . (85)

This rather complicated recursion relation can be solved by defining the following generating
function

F (x) =

∞∑

i=0

A(l)xl , so that
1

l!

dlF (x)

dxl

∣∣∣∣
x=0

= A(l) . (86)

Then the above recursion relation translates into an algebraic, second order equation for F ,

F (x)2 =
F (x)

x
− A(0)

x
, (87)

whose solution is

F (x) =
1

2x

(
1 ±

√
1 − 4x

)
, (88)

where we used A(0) = 1. The solution relevant for us is that with the minus sign, since all the
A(l)’s are positive. Expanding in Taylor series we find

A(l) = 2l
(2l − 1)!!

(l + 1)!
. (89)
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We are interested in studying the convergence of the average value of V , i.e. the number of
dead bacteria at future infinity,

〈V 〉 = Np

∞∑

l=0

〈1|M̃2l|1〉 , (90)

where we used eq. (78). At large l

A(l) ∼ 4l

l3/2
, 〈1|M̃2l|1〉 ∼ [4N2p (1 − p)]

l

l3/2
. (91)

The series (90) converges for

p ≥ pc ≡
1

2

(
1 +

√
1 − 1

N2

)
, (92)

and it diverges for smaller p’s. By making use of the matching relations (72–74) one immediately
checks that in the continuum limit the expression for pc agrees with the correct inflationary result
for Ω, Ω = 1.

This result does not depend on the initial position of the original bacterium, which in the
above we assumed to be i = 1. In fact, any other site j can be reached starting from i in (j − i)
time-steps with finite probability, and vice-versa. This implies that if the average of V diverges
starting from a given position, it must also diverge starting from any other position. Of course
this conclusion also holds for all higher moments of V , so in the following sections we will always
assume that we start from i = 1.

Note finally, that (90) implies that at p > pc, when 〈V 〉 is finite, all eigenvalues of M̃ are
smaller than one, and at p < pc at least one eigenvalue is larger than one. Indeed, a well-known
result in linear algebra is that an arbitrary matrix M̃ can be presented in the form

M̃ = A−1JA ,

where A is a non-degenerate matrix and J has the normal Jordan form (i.e., its only non-zero
elements are those on the main diagonal—equal to the eigenvalues λi of the matrix M̃—and those
on the diagonal right above the main one—equal to one). Consequently, calculating powers of M̃
reduces to taking powers of J , that have a rather simple form, and all matrix elements of J2l scale
as λ2l

i at large l. Consequently, the sum (90) diverges iff one of the eigenvalues |λi| > 1 9.
Notice now, that considering an extended bacteria process with a non integer number of chil-

dren N instead of the gaussian one corresponds to working with the matrix M̃ with non integer
N instead of M̃k with k such that Nk = Ñ is constant and integer. Clearly, this doesn’t change
whether there is an eigenvalue larger than one, so the critical probabilities pc are the same in the
two cases.

9This is assuming that the vector |1〉 has a non-trivial projection onto the corresponding Jordan block. This is
true in our case, as follows from the above argument that if (90) diverges for some initial position i, then it diverges
for all other initial positions as well.
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3.3 The variance: enhancement for the infinite line

We now consider 〈V 2〉. To compute it, it is convenient to introduce the matrix of second moments
for the bacteria populations at different sites. Namely, assuming for simplicity that we start with
one bacterium at the i = 1 site, we define C

(n)
ij ≡ 〈N (n)

i N
(n)
j 〉, where N

(n)
i is the number of bacteria

at site i after n time-steps. Then we are interested in

〈V 2〉 = lim
n→∞

C
(n)
00 . (93)

An explicit expression for C(n) can be obtained recursively [19]. Using the generating function
technique reviewed in the next section it is straightforward to show that

C(n+1) = MTC(n)M +
∞∑

i=0

W(i)〈1|Mn|i〉 , (94)

where M is the matrix of averages (75), and W(i) is the covariance matrix of bacteria after one
time step if one starts with one bacterium at site i. The sum runs over all sites; once again we
assume that we have a semi-infinite line of sites. The above recursion relation can be easily solved
to yield [19]

C(n) =
(
MT

)n
C(0)Mn +

n∑

m=1

(
MT

)n−m
( ∞∑

i=0

W(i)〈1|Mm−1|i〉
)
Mn−m . (95)

We want to show that the variance (93) as a function of p diverges at a critical value pvar
c where

the average is still finite, that is pvar
c > pc. For this purpose a lower bound on eq. (93) suffices.

Since all terms in eq. (95) are positive definite, we can neglect the first term and consider just the
sum over m.

The matrix W(i) is straightforward to compute. Starting from the i-th site with one bacterium,
the numbers of bacteria at nearby sites after one time step obey a binomial distribution. Obviously
W(0) = 0, because bacteria at i = 0 neither reproduce themselves nor move around, whereas for
i ≥ 1 we get

W(i6=0) = Np (1 − p)




. . .
i
↓

0 0 0 0 0
0 1 0 −1 0

i→ 0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0

. . .




≡ 2Np (1 − p) |ψi〉〈ψi| , (96)

that is, W(i) is proportional to the projector on the state

|ψi〉 ≡
1√
2

(
|i− 1〉 − |i+ 1〉

)
. (97)
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We then have

C
(n)
00 ≥ 〈0|

n∑

m=1

(
MT

)n−m
( ∞∑

i=0

W(i)〈1|Mm−1|i〉
)
Mn−m|0〉 =

= 2Np (1 − p)

n∑

m=1

∞∑

i=0

〈1|Mm−1|i〉 |〈ψi|Mn−m|0〉|2 . (98)

All terms in the sum are positive, so that for getting a lower bound we can restrict to any of
them. For n even we just consider the term with m = i = n/2. Using the lowering and raising
operators introduced in the previous section it is straightforward to show that

〈ψn/2|M
n
2 |0〉 = 1√

2
(Np)

n
2
−2 〈n/2 − 1|

(
S†)n

2
−2 |1〉 = 1√

2
(Np)

n
2
−2 , (99)

〈1|M n
2
−1|n/2〉 =

(
N(1 − p)

)n
2
−1〈1|S n

2
−1 |n/2〉 =

(
N(1 − p)

)n
2
−1
. (100)

Plugging these results back into eq. (98) we get

C
(n)
00 ≥ 1

N4p3

(
N3p2(1 − p)

)n/2
. (101)

As n→ ∞, this quantity diverges for

N3p2(1 − p) > 1 , or p < pcov
c with pcov

c & 1 − 1

N3
for N ≫ 1 . (102)

As claimed, we notice that pcov
c > pc for the infinite chain: the covariance of the number of dead

bacteria diverges before the expectation value. This qualitatively agrees with the inflationary case,
however at the quantitative level the bound (102) is too weak—for instance, it is useless in the
continuum limit, N → 1.

To exactly reproduce the inflationary results note that the sum over the site number i in
eq. (94) is the discrete analogue of the convolution over the inflaton field values at horizon crossing
in eq. (46). Similarly, the discrete variable m in (94) corresponds to the horizon crossing time t∗
in the continuum case. Both integrals, over t∗ and over inflaton values at horizon-crossing, were
dominated by the saddle point, determined by eq. (57) and eq. (61). This suggests that the double
sum in eq. (94) is also dominated by a single term. The natural guess for the optimal choice10 for
m based on eq. (57) is

m∗ = n
(√

2Ω − 1
)
, (103)

where we identified the total number of steps with the total time, so that n = t+/(2∆t). Similarly,
from eq. (61) we deduce the optimal choice for i,

i∗ =
(√

2/Ω − 1
)
φ̇ m∗

∆t

∆φ
= 2π

√
3
(
3
√

2Ω − 2 − 2Ω
)
H−1n∆φ , (104)

10Using the approximate expressions we derive below it is straightforward to check directly that this is indeed
the optimal choice.
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where at the last step we used the matching relations (72–74). To calculate the corresponding
term in eq. (94) we need expressions for the matrix elements 〈1|Mm∗−1|i∗〉 and 〈ψi∗ |Mn−m∗|0〉.
Actually, as before, to decide whether the variance remains finite in the late time (large n) limit
we need just the leading exponential asymptotics of these elements. In this limit one can replace
these elements by 〈1|M̃m∗|i∗〉 and 〈i∗|M̃n−m∗ |1〉. Then by making use of eq. (82) we write

〈1|Mm∗−1|i∗〉 ≃ 〈1|M̃m∗ |i∗〉 = Nm∗(1 − p)
m∗+i∗−2

2 p
m∗−i∗−2

2 〈1|(S + S†)m∗|i∗〉 (105)

for even (m∗ + i∗), and zero otherwise. In the leading exponential approximation one can estimate
〈1|(S + S†)m∗ |i∗〉 just by counting the monomials in the expansion of (S + S†)m∗ that contain
(i∗ − 1) more S’s than S†’s. This gives

〈1|(S + S†)m∗ |i∗〉 ≃
(

m∗
m∗+i∗−2

2

)
≃
(

2µµµ(µ2 − 1)−µ/2
√
µ− 1

µ+ 1

)i∗
, (106)

where µ = m∗/i∗ does not depend on n and is determined by (103) and (104). The validity of
the estimate (106) is not immediately obvious, because many of the monomials with the right
number of S and S† still give vanishing matrix elements. Using techniques similar to those used
in section 3.2 one can check that this estimate is nevertheless correct (see Appendix B). The same
logic applied to the matrix element 〈ψi∗ |Mn−m∗|0〉 gives

〈ψi∗ |Mn−m∗|0〉 ≃ Nn−m∗p
n−m∗+i∗−2

2 (1 − p)
n−m∗−i∗−2

2

(
n−m∗

n−m∗+i∗−2
2

)
(107)

Finally, by making use of these equations and of the expressions (103), (104) for m∗, i∗ one obtains

〈1|Mm∗−1|i∗〉|〈ψi∗|Mn−m∗ |0〉|2 ≃
(

1 − 12π2

(
∆φ

H

)2
4
√

2Ω3/2 − 18Ω + 13
√

2Ω − 6

2Ω − 3
√

2Ω + 2
+ O

(
∆φ3

)
)n

(108)
This contribution (and, consequently, the variance of V ) diverges at late times when the coefficient
of the (∆φ)2 term crosses zero. This happens at Ω = 9/8, so we exactly reproduce the inflationary
result for when the variance diverges, eq. (59). Note that, just like in the continuous case, this
result crucially relies on the infinite range for the inflaton field (infinite number of sites in the
bacteria model). Indeed, for a finite chain the sum over i in (98) runs up to some finite value
imax, so that at large enough n one has i∗ > imax analogously to how in the continuous case the
saddle point (61) ceases to be in the integration region. Moreover, analogously to the case of the
average, it is clear from eqs. (95) and (98) that the variance remains finite if all eigenvalues of
the matrix of averages M̃ are smaller than unity for the finite chain, so that the variance and the
average diverge at the same value of p. This is true for all higher moments as well (see, e.g. [19])

3.4 Extinction probability in the semi-infinite line

The principal advantage of the bacteria model is that it allows to directly study the transition to
the eternal regime, without relying on indirect criteria, such as the divergence of the probability
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distribution moments for the number of dead bacteria (reheating volume in the inflationary case).
Indeed the most direct and physical characterization of eternal inflation is that it can run forever.
In the context of the bacteria model this corresponds to a non-zero probability that the population
never dies out.

There is a theorem (see e.g. [19]) that for a finite chain the extinction probability is equal to one
for a jumping probability p close to one. However, when p drops below a certain critical value pc
the extinction probability becomes smaller than one. At the critical value pc one of the eigenvalues
of the matrix of averages M̃ crosses one and stays larger than one in the eternal regime. In the
previous two sections we saw that when the matrix M̃ develops an eigenvalue larger than 1, then
the expectation value and the variance of the number of dead bacteria begin to diverge as time n
goes to infinity. We see now that at the same critical value of p the extinction probability drops
below one. Given the importance of this result, we find it instructive to explain it in more detail;
as a byproduct we will see that the whole picture can be continuously extended to the infinite
line case. This will confirm our expectation that also in the infinite line case, the transition to
the eternal regime happens at the same value of p (slow roll parameter in the inflationary case)
where the average number of dead bacteria diverges.

Let us first consider a branching process on a line of length L. A convenient tool to study
the branching process is the set of generating functions f

(n)
i (sj), where i, j = 1, . . . , L. These are

defined as power series

f
(n)
i (sj) =

∑

k1...kL

p
(n)
i;k1...kL

sk11 . . . skL

L (109)

where p
(n)
i;k1...kL

is the probability that in a branching process that started with a single bacterium
at the i-th site after n steps one has k1 bacteria at the first site, k2 bacteria at the second site,
etc. It is convenient to combine together all functions f

(n)
i with the same number of steps n into a

map Fn from the L-dimensional space of the auxiliary parameters si into an L-dimensional space
parametrized by the fi’s. Also in what follows we often drop the subscript from the si variables
and denote by s a point in the L-dimensional space with coordinates (s1, . . . , sL).

The main property making generating functions useful is the iterative relation

Fn+1 = F1(Fn) . (110)

This property is straightforward to check by making use of the definition of the branching process
and elementary properties of probabilities. We are interested in the late time behavior of the
branching process, which is determined by the limiting function F∞. The iterative property (110)
implies that

F1(F∞) = F∞ ,

i.e. the set of values of the function F∞ is a subset of the fixed points of the function F1, such that

F1(s) = s . (111)

For our purposes is enough to study the mapping F1 inside the L-dimensional cube IL of unit size,
0 ≤ si < 1. The definition (109) of the generating functions implies that all partial derivatives of
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F1(s) are positive. Also, the normalization of probabilities implies that

F1(1, . . . , 1) = (1, . . . , 1) ≡ ~1 .

Another important property of the mapping F1, also immediately following from its definition, is
that the Jacobian of F1 at the point s = (1, . . . , 1) is equal to the matrix of averages M̃ . Clearly,
the mappings Fn also satisfy the straightforward analogues of all these properties. This and the
iterative relation (110) immediately implies the relation

M̃ (n) = M̃n

used above to calculate the late time behavior of the average number of the dead bacteria. Also
by applying the chain rule twice to (110) it is straightforward to reproduce the recursion relation
(94) used to calculate the variance.

We are ready now to discuss how the transition to the eternal regime happens. Note first, that
if the mapping F1 has no other fixed points in the cube IL apart from ~1 (see fig. 6), then

F∞ = ~1 .

By definition of the generating functions, eq. (109), this means that in the late time asymptotics
with probability one there are no bacteria at any of the sites. The extinction probability is
exactly equal to one (inflation ends). The situation changes when a non-trivial fixed point sf
solving eq. (111) enters the region IL (see fig. 6). Now one has

F∞ = sf < ~1 .

This implies that, as before, the probability to have any finite non-zero number of bacteria at any
site vanishes. However, the probabilities to have zero bacteria at the various sites,

p
(∞)
i;0...0 = f

(∞)
i (0) = (sf )i , (112)

s

f

fs
1

F(s)

s

s

1

1

F(s)

1

Figure 6: Left: Plot of F1(s) for large p (thick curve). The only fixed point in the unit cube is s = 1.
Further applications of F1 (thinner curves) drive the curve to the F∞ = 1 line. Right: For smaller p’s a
new fixed point sf enters the unit cube. Now the limiting line is F∞ = sf .
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are all less than one. This means that there is a non-vanishing probability that the population
never dies out and that the total number of bacteria grows indefinitely at late times. This corre-
sponds to the eternal inflation regime. Clearly, this implies that the number of dead bacteria also
has a finite probability to grow indefinitely; in the context of eternal inflation this translates into

1 −
∫
ρ(V )dV > 0 .

To identify the critical value of p where the transition happens it is instructive to track the
position of the fixed point sf in s-space as a function of p. According to the above discussion,
at the critical value of p the fixed point enters into the unit cube IL. It is straightforward to
check that the monotonic property of the generating functions (109) imply that the trajectory of
the fixed point necessarily passes through the point ~1. Consequently, at the critical probability
the graph of the mapping F1(s) is tangent to the surface fi = si at ~1 along one direction in the
(2L)-dimensional space parametrized by the fi’s and si’s. The projection of this direction onto
the s-hyperplane is tangent to the trajectory of the fixed point at ~1. Algebraically this means that
at the transition p one of the eigenvalues of the Jacobian of F1 at ~1 is equal to one,

∂F1(~1)

∂s
v ≡ ∂f

(1)
i (~1)

∂sj
vj = vi , (113)

where v is a vector tangent to the fixed-point trajectory at ~1. At lower values of p this eigenvalue
becomes larger than one. Recalling that the Jacobian of F1 at ~1 coincides with the matrix of
averages M̃ , we see that the transition to the eternal regime indeed happens at the same value
pc where the average number of dead bacteria (and, in the finite line case, all higher moments)
diverges at late times.

Let us now extend this result to the infinite line. The infinite-line process can be approximated
by a sequence of finite-dimensional branching processes with defining matrices M̃L, where M̃L is
the projection of M̃ onto the first L basis vectors. The matrix M̃L describes a branching process
with L sites, where bacteria can also “die” with probability (1 − p) jumping from the L-th site
to the left. Now, the crucial point is that the extinction probability for the infinite line is smaller
than that of the branching process described by M̃L, for any finite L. This is quite clear as in going
from the finite to the infinite case we are increasing the survival probability of each bacterium.
Therefore if we are able to prove that for p < pc and sufficiently large L the extinction probability
associated with M̃L is strictly less than one, our claim follows. The finite-dimensional theorem
implies that this is equivalent to showing that for sufficiently large L the maximum eigenvalue of
M̃L is larger than one.
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The matrix M̃L is just the L× L truncation of M̃ in eq. (76),

M̃L =




0 N(1 − p) 0 · · ·
Np 0

. . .
...

0
. . .

. . . 0
... 0 N(1 − p)

· · · 0 Np 0



L×L

. (114)

We want to solve the eigenvalue problem 〈v|M̃L = λ〈v|. In components this reads

Np v2 = λ v1 (115)

Np vj+1 +N(1 − p) vj−1 = λ vj for 1 < j < n (116)

N(1 − p) vL−1 = λ vL . (117)

Let’s try the ansatz
vj = Aj , (118)

where A is a complex number. Eq. (116) implies

NpA2 − λA+N(1 − p) = 0 ⇒ A± =
λ±

√
λ2 − 4N2p(1 − p)

2Np
. (119)

Eq. (115) is equivalent to the recursion relation eq. (116) with initial condition v0 = 0. This then
implies that the correct linear combination is

vj = Aj+ − Aj− . (120)

Analogously, eq. (117) gives the ‘final condition’ vL+1 = 0,

AL+1
+ = AL+1

− . (121)

This cannot hold if A± are distinct real roots. Then the square root in eq. (119) must be purely
imaginary, λ2 ≤ 4N2p(1 − p), in which case A+ and A− are complex-conjugate of each other.
Therefore eq. (121) implies that

arg(AL+1
+ ) = k · π ⇒ arg(A+) = k · π

L+ 1
, (122)

where k is an integer. Distinct solutions correspond to 1 ≤ k ≤ L, which exhaust the set of
eigenvalues of M̃L. From eq. (119) we have

cos
(
arg(A+)

)
=

λ√
4N2p(1 − p)

, (123)
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which combined with eq. (122) finally yields the eigenvalues

λk =
√

4N2p(1 − p) · cos

(
π k

L+ 1

)
, 1 ≤ k ≤ L . (124)

The largest eigenvalue is that with k = 1, which for sufficiently large L is arbitrarily close to√
4N2p(1 − p). For p < pc,

√
4N2p(1 − p) > 1 (see eq. (92)), and the largest eigenvalue will

become strictly larger than one for sufficiently large L. This completes the proof.

3.5 How the probability distribution can lose its normalization

To understand how the extinction probability can change abruptly when p crosses pc, it is instruc-
tive to track the probability distribution for the number of dead bacteria as a function of time.
For simplicity we do this for a minimal branching process with just two sites and N = 2 copies at
each reproduction event (see fig. 7). In this case the generating functions (109) are particularly
simple:

f
(1)
0 (s0, s1) = s0 , (125)

f
(1)
1 (s0, s1) =

(
(1 − p)s1 + ps0

)2
. (126)

It is straightforward to apply here the generic results discussed in the last section. The critical
probability is the value of p for which ∂s1f

(1)
1 computed at (s0, s1) = (1, 1) becomes larger than

one. We get

pc =
1

2
. (127)

The extinction probability is the fixed point of f
(1)
1 (setting s0 = 1) inside the unit interval

0 ≤ s1 ≤ 1,

pext =
1 − 2p+ 2p2 −

√
(1 − 2p)2

2(1 − p)2
=

{
1 p > 1/2

( p
1−p)

2 p < 1/2
, (128)

which indeed drops below one for p < pc.
To follow the time-evolution of the dead-bacteria probability distribution we numerically iterate

the recursion relation Fn+1 = F1(Fn) for different values of p. As before n counts the number

p

01

1−p

Figure 7: The 2-site branching process.
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Figure 8: Time evolution of the dead-bacteria probability distribution in the two-site model. Thinner
(thicker) lines correspond to earlier (later) times. Left: supercritical case, p > pc. As a function of
time the distribution boringly relaxes to its asymptotic form. Right: subcritical case, p < pc. A “bump”
develops and gradually shifts towards larger and larger dead bacteria counts, while getting wider and
lower, and bringing some finite probability to infinity.

of time-steps. The results are plotted in fig. 8. For p larger than the critical probability, the
probability distribution at early times is strongly peaked around small numbers, and as time
goes on it smoothly asymptotes to its n → ∞ form. The probability distribution is obviously
normalized to one for every n, and so is the asymptotic n→ ∞ distribution. Related to this, the
extinction probability is one, as expected.

More interesting is the p < pc case. There, at early times one can notice a feature—a “bump”—
in the probability distribution. As time goes on the bump moves towards larger and larger dead-
bacteria numbers, spreading out at the same time. The n → ∞ asymptotic distribution shows
no bump. Still, one can check that its normalization is strictly smaller than one—it is in fact the
extinction probability pext < 1, as it should. The bump has taken away some finite probability to
infinity! The fact that the asymptotic probability distribution is not normalized to one is due to
the fact there is a finite probability of having infinitely many dead bacteria.

We warn the reader that the qualitative presence of the bump is not a distinctive feature of the
subcritical (p < pc) case. The plots in fig. 8 were done with p = 0.6 and p = 0.4. However a bump
can also be noticed in the supercritical case, p > pc, if we take p quite close to pc, say p = 0.51.
In such a case the bump follows the same qualitative time-evolution as for the subcritical case—it
moves to the right, spreads out, and disappears. The question of whether it takes away some finite
probability to infinity is then a quantitative one, and an explicit check shows that is does not, as
expected.

Technically what happens in the p < pc case is that as n → ∞ the sequence of probability
distributions Pn(V ) converges pointwise to the asymptotic P∞(V ),

∀V Pn(V ) − P∞(V ) → 0 , (129)
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but it does not converge strongly,

||Pn(V ) − P∞(V )|| → (1 − pext) 6= 0 , (130)

where the relevant norm here is the L1 norm, ||f ||1 ≡
∫
dx |f(x)| 11. As a consequence taking

the n → ∞ limit and taking the norm do not commute. The r.h.s of eq. (130) is precisely the
probability taken away by the “bump”.

However we can formally supplement the asymptotic probability with a δ-function supported
at infinity, with coefficent (1 − pext),

P∞(V ) = lim
n→∞

Pn(V ) + (1 − pext) δ(V −∞) . (131)

Such a term fixes the normalization, and it also makes all moments diverge, as we know they must.
Indeed if one does not include the point at infinity, the moments computed with the asymptotic
probability (129) do not coincide with those we computed in the previous sections, which read

〈V m〉 = lim
n→∞

∫
dV Pn(V )V m . (132)

Once again, taking the m-th moment and taking the limit in n do not commute because of the
absence of strong convergence. The addition of the δ-function in eq. (131) is a formal way of
achieving strong convergence. The situation is somewhat subtler for the infinite chain, where we
know that different moments diverge at different values of p. This cannot be reproduced by adding
a single δ-function contribution at infinity. Instead, it may be that when the m-th moment 〈V m〉
diverges, the probability distribution acquires a term ∝ δ(m)(V −∞).

4 Generalization to realistic models

So far we assumed that the parameters H and φ̇ do not depend on the position along the poten-
tial. Although in the slow-roll approximation these parameters are slowly varying, i.e. they are
approximately constant during an Hubble time, one cannot neglect their variation over a large
range of φ 12. Let us discuss how our results change taking this effect into account. We want to
prove the following. We have eternal inflation, i.e. a non-zero probability of an infinite reheating
volume, if and only if Ω < 1 somewhere along the potential. This statement is true up to slow-roll
corrections and up to corrections of order (H/∆φ)2, where ∆φ is the range of φ where the slow-roll
conditions are satisfied.

The proof is quite easy. Consider the case in which Ω < 1 somewhere along the potential. The
slow-roll conditions imply that one can take a range of φ around this point, with ∆φ≫ φ̇ ·H−1 ∼

11We are using a continuous notation for V , because we have in mind the reheating volume in inflation, whereas
in fact in the model at hand V is a discrete variable—the number of dead bacteria. The proper changes in the
notation are obvious.

12Some specific realistic models with potential of the form φn were first studied in the context of eternal inflation
in [2, 3], reaching conclusions qualitatively similar to ours.
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Ω1/2H , in which Ω and H can be treated as constant. Now the idea is to restrict to this interval
and prove that the extinction probability is less than one. For example one can consider a model
with an absorbing barrier at the downhill limit of the interval and with a reflecting one at the
uphill limit. This model is studied explicitly in Appendix A, where it is shown that the extinction
probability gets less than one when Ω < 1, up to corrections O(H/∆φ)2. On the other hand,
this restricted model has clearly an extinction probability larger than the model probing the full
potential. This proves that Ω < 1 ensures an extinction probability strictly less than 1, i.e. a
non-zero probability of an infinite reheating volume.

The other case is even simpler. If Ω > Ω0 > 1 everywhere, then one can consider a model with
Ω = Ω0 everywhere. This model has an extinction probability smaller than the original one. On
the other hand we know that the extinction probability with constant Ω > 1 is 1. This proves that
the extinction probability is 1 if Ω > 1 everywhere: the probability of infinite reheating volume
vanishes. We see that the condition for eternal inflation is local in field space: it is enough to have
Ω < 1 in a range of field values parametrically larger than H .

This also shows that all our conclusions do not change if we assume that the last stage of
inflation before reheating is far from the eternal regime, i.e. ζ ≪ 1, as we observe for example
in our Universe. The additional e-folds of inflation with negligible perturbations act as a sort of
physical smoothing of the reheating surface: ζ is large only on scales which are huge compared to
the horizon at the end of inflation. This is the way one should understand the somewhat artificial
smoothing of the reheating surface we used in the paper.

It is interesting also to see whether our results can be extended to non-minimal models of
single field inflation. This will include k-inflation models [21] with reduced speed of sound, like
DBI inflation [22], and models where higher derivative terms are important, like ghost-inflation
[23, 24]. A useful way of writing down the most generic theory of single field inflation has been
recently studied in [25, 26], where modifications with respect to the minimal slow-roll scenario are
parametrized in terms of operators for the perturbations around the inflating background.

There is an important qualitative difference between these non-minimal models and the sim-
plest slow-roll inflation case: eternal inflation may lie outside the regime of validity of the effective
field theory. In the case of slow-roll, we discussed in section 1.2 that, even in the eternal inflation
regime ζ ∼ 1, non-linearities are small and can be treated as corrections to the free field picture
13. However this is not the case for more general models. Eternal inflation can be studied only if
the theory is weakly coupled for ζ ∼ 1; otherwise this regime is sensitive to the UV completion
and cannot be studied within the effective field theory.

Whether the theory is weakly coupled or not at ζ ∼ 1 will depend on the size of the various
operators, but some general conclusion can be drawn. For models with a reduced speed of sound,
cs < 1, it is shown in [26], that the same operator that reduces the speed of perturbations

13Even in the slow-roll case non-linearities become important if one is interested in very large (and very unlikely)
fluctuations ζ ≫ 1. In particular the quartic interaction eq. (11) will become as important as the quadratic action
for δφ & H/

√
ǫ. It is easy to realize however the these extremely unlikely fluctuations are irrelevant in all our

discussion. What must be weakly coupled are the typical fluctuations, which means ζ ∼ 1 when one gets close to
the eternal inflation regime.
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also induces interactions among fluctuations. The relation between the two features is fixed by
the symmetries of the system. In particular one can show that the effect of cubic and quartic
interactions at horizon crossing with respect to the quadratic action is of order [27, 28, 29, 26]

S3

S2

∼
(

1

c2s
− 1

)
ζ

S4

S2

∼
(

1

c2s
− 1

)2

ζ2 , (133)

which should be compared with eq.s (10) and (11) in the case of slow-roll. This implies that
the theory becomes strongly coupled at horizon crossing if one approaches the eternal inflation
regime ζ ∼ 1, unless cs is very close to one [30]. In other words eternal inflation is out of the
regime of validity of the effective field theory for models where the speed of perturbations deviates
substantially from one. Similar conclusions were reached in the context of brane inflation in [31]
and in the context of models with small speed of sound in [32].

The same conclusion holds in another interesting case of single field inflation: that of ghost
inflation [23, 24]. Indeed the Lagrangian for the canonically normalized perturbation π contains
an interaction of the form π̇3/2M2 where M2 = φ̇ is the velocity of the time dependent condensate.
Again comparing this with the quadratic Lagrangian

S3

S2
≃ π̇3/M2

π̇2
≃ Hπ

φ̇
≃ ζ . (134)

This implies that the theory is strongly coupled in the regime of eternal inflation ζ ∼ 1.
Exactly the same argument holds for the other de Sitter limit of inflation discussed in [26]

where, using the language of ref. [26], the unitary gauge operator (g00 + 1)δKµ
µ dominates at

horizon crossing. Also in this case the theory contains the cubic operator π̇3/2M2, so that again
eternal inflation is not under control of the effective field theory.

5 Summary and discussion

In this paper we gave a precise definition of slow-roll eternal inflation by identifying a sharp change
of behaviour of the system at the critical value

φ̇2

H4
=

3

2π2
. (135)

A model gives rise to eternal inflation if and only if Ω ≡ 2π2φ̇2/(3H4) < 1.
We reviewed in Sec. 1 the reasons why inflation is under control even in the eternal regime.

It is easy to check that the system can be perturbatively studied in an expansion in the slow-roll
parameters and in H2/M2

Pl; indeed these small quantities suppress both the deviation of the metric
from exact de Sitter and the self-interactions of the scalar degree of freedom. Our analysis has
been done at leading order in these parameters.

Starting from a finite inflationary volume, we identified the volume of the Universe at reheating,
smoothed on scales much larger than the Hubble radius H−1, as indicator of the onset of eternal
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inflation. We expect, in fact, the reheating volume to become larger and larger without bound
as we approach the eternal regime. Indeed in Sec. 2 we proved, at leading order in slow-roll and
H2/M2

Pl, that all moments of the reheating volume probability distribution ρ(V ) diverge at Ω = 1,
signaling a sharp change in the behaviour of the system.

To get further insight into the nature of this transition, we studied in Sec. 3 a discretized version
of slow-roll inflation. The dynamics of inflation can be mimicked, with a biological analogy, with
a set of bacteria which can hop left or right on a one dimensional lattice, representing the position
of the inflaton. The expansion is represented by the constant reproduction rate of these bacteria,
which at every time step split into a fixed number of independent offsprings. This discrete version
of the system is simpler to study, as one can apply to it the whole machinery of the theory of
branching processes. On the other hand it can be shown to exactly approach the continuous case
in the limit in which the lattice spacing goes to zero. This discrete model allows us to reach
the conclusion that the onset of eternal inflation at Ω = 1 corresponds to the development of a
non-zero probability of strictly infinite reheating volume: this is the sharpest definition of eternal
inflation.

Our results are obtained at leading order in slow-roll andH2/M2
Pl. Even small corrections to the

asymptotic time dependence would completely change the results; for example this would happen
if the reheating probability (33) goes at large times as exp(t1+ǫ) where ǫ is small correction 14.
From a preliminary analysis, we expect that this is not the case and that the qualitative picture of
a sharp transition remains unaltered, with only perturbative corrections to the exact point where
the transition happens. The proof of this, however, is not entirely straightforward. Indeed, at
subleading order in our expansion parameters many new ingredients must be taken into account.
The Hubble rate H and inflaton speed φ̇ are not constant anymore, but depend on the position
along the potential; the scalar degree of freedom is not a free field anymore as cubic and quartic
self-interactions must be taken into account; the metric deviates from exact de Sitter and, finally,
also tensor modes must be taken into account. We expect the diffusion equation to still capture
the relevant dynamics of the phase transition, but further work is needed to extend our results at
subleading order. Another weak point of our discussion is that eternal inflation is characterized
studying a classical, smoothed observable: the reheating volume. Although the exact value of the
smoothing scale does not appear in the final equations (in the limit in which it is much larger
than the Hubble radius H−1), it would be nice to have a more intrisic and quantum mechanical
definition of eternal inflation, without need of a smoothing procedure.

The sharp characterization we gave of slow-roll eternal inflation may be a first step towards a
more profound understanding of its features and implications. In particular there are reasons to
suspect that the semiclassical description of eternal inflation, with its infinite creation of volume
may be misleading (see for example [30]) or even that eternal inflation itself may be censored in a
fundamental theory [33]; if this is the case the effective theory description must break down before
Ω = 1.

In the context of the conjectured dS/CFT correspondence put forward in [34], it would be

14We thank David Gross for emphasizing this point.
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interesting to understand what is the nature of the transition at Ω = 1 on the CFT side. Another
possible direction is to try to understand the connection between our critical point Ω = 1 and
other critical point for the existence of eternal inflation, like in the case of old inflation [35] and
topological inflation [36, 37].
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Appendices

A Proof that all moments diverge at the same Ω

In this Appendix we want to prove that in the presence of a regulating uphill barrier all the
moments of the distribution ρ(V ) start diverging at the same point Ω = 1.

Let us first solve the diffusion equation with a drift term

∂P

∂t
= −φ̇∂P

∂φ
+
H3

8π2

∂2P

∂φ2
(136)

in the presence of an absorbing barrier at φ = φr and a reflecting one at φ = φup. At the reheating
barrier the boundary condition is P = 0, while on the uphill barrier we have to impose a vanishing
value of the probability current

φ̇P − H3

8π2

∂P

∂φ
= 0 at φ = φup . (137)

Using the standard method of separation of variables one can write a general solution as

exp

[
4π2φ̇ φ− 2π2φ̇2t

H3

]
∑

n

an sin

[
αnπ(φr − φ)

φr − φup

]
exp

[
−H

3t

8π2
· α2

nπ
2

(φr − φup)2

]
. (138)

The boundary condition at the reheating point is clearly satisfied, while the coefficients αn must
be chosen so that each sinus satisfies the boundary condition on the uphill barrier. This gives the
following equation

tg(αnπ) = − H3

4π2φ̇
· 1

φr − φup
· αnπ . (139)

Let us check first of all that, sending φup → −∞, the result reproduces the case with only the
reheating barrier. In the limit in which the uphill barrier is removed we see that the solutions of
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(139) behaves as αn → n, so that the series reduces to a normal Fourier decomposition. Using the
Fourier decomposition of the δ function we take the coefficients of the series to be

an =
2

φr − φup
sin

nπφr
φr − φup

. (140)

Therefore the series in eq. (138) takes the form

∑

n

exp

[
−H

3t

8π2
· n2π2

(φr − φup)2

]
1

φr − φup

[
cos

nπφ

φr − φup
− cos

nπ(2φr − φ)

φr − φup

]
. (141)

In the limit φup → −∞ the sum becomes an integral. The first sum of cosines becomes

∫ +∞

0

dX e−
H3t
8
X2

cos (πXφ)

√
2π

H3t
e−

2π2φ2

H3t . (142)

Taking into account the exponential factor in front of the series in eq. (138), we see that we
reproduce the result (31) in the presence of the reheating barrier only.

The important feature for us of the general solution (138) is that at late times it is dominated
by the first term of the sum, which is the slowest to decay. For large and negative φup, α1 ≃ 1 so
that the full time dependence of the leading term is

exp

[
−2π2φ̇2t

H3
− H3t

8(φr − φup)2

]
∼ exp

[
−2π2φ̇2t

H3

]
= exp(−3HΩt) . (143)

We are interested in studying the n-th moment of the reheating volume distribution, which is
easily related to the n-point joint reheating probability pnr by

〈V n〉 =

∫
dx1 . . . dxn

∫
dt1 . . . dtn e

3H(t1+...+tn) pnr(t1, . . . , tn, ~x1, . . . , ~xn) . (144)

Clearly, if 〈V 〉 diverges, also 〈V n〉 diverges, therefore we concentrate on the case Ω > 1, when 〈V 〉
is finite.

The simple time dependence of eq. (143) will also appear in the reheating probability. Let us
take n points. Going backwards in time they progressively merge together: at t∗(n−1) the distance
between the two closest points gets smaller than H−1 and we are left with n − 1 independent
points; at t∗(n−2) a couple of the remaining points merge to n− 2 and the process continues until
t∗1, when we are left with a single point. It is easy to prove by induction from eq. (143) that

pnr(t1, . . . tn, ~x1, . . . , ~xn) ∼ exp
[
−3HΩ(t1 + t2 + . . .+ tn) + 3HΩ(t∗1 + t∗2 + . . .+ t∗(n−1))

]
.

(145)
Let us now use this expression to study the convergence of 〈V n〉, eq. (144). For a given

comoving position of the n points, the integral over time can be divided into many intervals each
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going from tmin to tmax; in each interval the n points are grouped into m independent subsets. At
very early times all the points are separated by a physical distance ≪ H−1, so that their evolution
is completely correlated, so that they form a single group. As time passes the n points split in
subgroups: the elements of each subgroup still evolve together, while the evolution of different
subgroups is not correlated 15. We obtain

∫
dx1 . . . dxn

∑

intervals

∫ tmax

tmin

dt1 . . . dtme
3H(t1·k1+...+tm·km)pmr(t1, . . . , tm, ~x1, . . . , ~xm) , (146)

where the sum is extended over the different time intervals during which the n points are divided
into m groups, each group consisting of ki points. Before tmin some points belonging to different
groups are correlated (using the notation of the previous paragraph tmin = t∗(m−1)), after tmax
some of the points in the same group start to evolve independently as they become separated by
more than ∼ H−1. Clearly the extrema tmin and tmax are functions of the comoving coordinates
x1 . . . xn.

Using eq. (145) we can write

〈V n〉 =

∫
dx1 . . . dxn

∑

intervals

e3HΩ(t∗1+...+t∗m)

∫ tmax

tmin

dt1 . . . dtme
3H(k1−Ω)t1 . . . e3H(km−Ω)tm . (147)

The next step is to rewrite the integration over comoving coordinates as integrals over time
variables, similarly to what we did in eq. (54) for the 〈V 2〉 case. The distances among the various
groups fix the values of t∗i. For a particular sequence of merging of the groups going backwards
in time, one can choose the following spatial coordinates: e−Ht∗(m−1) is the distance between the
two closest groups, e−Ht∗(m−2) is the distance between the next to closest and so on.

One can thus perform all the integrals over the relative positions of the groups, except for the
one over tmin: ∏

i

∫ t
∗(i+1)

t
∗(i−1)

dt∗i e
3H(Ω−1)t∗i ∼ e3H(Ω−1)(m−1)tmin , (148)

where we used that for Ω > 1 each integral is dominated by the upper limit of integration. The
integral over the positions of the points inside each group can be done noticing that tmax fixes the
maximum distance inside any group: the points with the largest separation will be the first ones
to start an independent evolution, changing the way the n points are divided. Thus the integral
over the internal coordinates give

∼
m∏

i=1

e−3H(ki−1)tmax . (149)

Including tmin and tmax, this exhausts all the spatial coordinates except one, whose integral just
gives an overall comoving volume L3.

15As in the case of the variance we neglect the intervals of partial correlation using a two-step approximation.
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For each time interval we are left with

∫
dtmin

∫
dtmax e

3H(Ω−1)(m−1)tmin

m∏

i=1

e−3H(ki−1)tmax

m∏

j=1

∫ tmax

tmin

dtj e
3H(kj−Ω)tj . (150)

Each of the integrals in the product at the end gives

∼ e3H(kj−Ω)tmax for ki > Ω (151)

∼ e3H(kj−Ω)tmin for ki < Ω (152)

For Ω > 1 the integral over tmax is always convergent and dominated by its lower bound tmin.
Therefore we end up with a simple integral over tmin

∫
dtmin e

−3H(Ω−1)tmin , (153)

which is always convergent for Ω > 1.
This proves that 〈V n〉 always converges when 〈V 〉 does and therefore that all moments start

diverging at the same critical point Ω = 1.

B Asymptotics of 〈1|(S + S†)m|i〉
Here we will prove the estimate (106) for the leading exponential asymptotics for matrix elements
of the form A(m,i) ≡ 〈1|(S + S†)m|i〉 at large i. Let us start with deriving a recursion relation for
these matrix elements in analogy to (85). One writes

A(m,i) = 〈1|
(
S + S†)m−1 (

S + S†) |i〉
= A(m−1,i−1) + A(m−2,i)A(0,1) + 〈1|

(
S + S†)m−2 (

S + S†)S|1〉

= . . . = A(m−1,i−1) +
m−2∑

k=0

A(k,i)A(m−2−k,1) . (154)

As before, it is convenient to introduce a generating function

G(x, y) =
∞∑

m=0

∞∑

i=1

A(m,i)xmyi

It is straightforward to check that the recursion relation (154) and A(0,1) = 1 implies the following
algebraic equation for G,

xy G(x, y) + x2G(x, y)F (x2) = G(x, y) − y ,
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where F (x) is the generating function (88) for A(m,1). Consequently,

G(x, y) =
2y

1 +
√

1 − 4x2 − 2xy
. (155)

Unlike for the function F , finding the Taylor coefficients of G in closed form is rather challenging.
However, what we need is just the leading exponential asymptotics of A(µi,i) at large i and fixed
µ. In other words, we are looking for λ, such that

A(µi,i) = λif(i) (156)

where f(i) is not exponential at large i. To find this asymptotics it is convenient to work with
another pair of variables (x, z = y xµ), so that

G(x, z) =
∞∑

m=0

∞∑

i=1

A(m,i)xm−µizi . (157)

Then the coefficients A(µi,i) are generated by G0(z), which is the x-independent part of G(x, z),

G0(z) =
∞∑

i=1

A(µi,i)zi (158)

Note that G0(z) 6= G(x = 0, z), because the series for G(x, z) contains negative powers of x.
Instead, it is given by the contour integral

G0(z) =

∮
dx

x
G(x, z) =

∮
dx

x2

2z

xµ−1(1 +
√

1 − 4x2) − 2z
(159)

in the complex x-plane. Here the integration contour should enclose the point x = 0, and should
not exit the region where the series (157) converges, so that one can interchange the order of
summation and integration. From the definition (155) it follows that this is the case for x ≪ 1
and y = z/xµ ≪ 1.

To find the value of λ in (156) note that G0(z), by its definition (158), is analytic for |z| < |λ|−1

and diverges at |z| = |λ|−1. Given that all coefficients in (158) are real positive numbers, we can
restrict to real values of z. The integrand in (159) has two cuts extending from x = ±1/2 to
x = ±∞, and a double pole at x = 0. Also at small z it has (µ− 1) additional poles near x = 0.
The integration contour encloses all these poles and does not cross the cuts. At larger values of z
one has two extra poles entering from the second sheet—they appear in the first sheet at x = ±1/2
when z crosses 1/2µ. These poles are outside the integration contour. The singularity in G0(z)
arises when, for even larger z, one of these two new poles merges with one of (µ+ 1) poles inside
the contour: at this value of z the contour necessary passes through a singularity. Consequently, a
singularity appears when the denominator in (159) develops a double zero (other than the trivial
one at x = 0). By calculating its derivative we find that this happens at

z = zc ≡ 2−µµ−µ (µ2 − 1
)µ/2

√
µ+ 1

µ− 1
.

Hence λ = z−1
c , exactly reproducing the estimate (106).

45



References

[1] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP
0305, 013 (2003) [arXiv:astro-ph/0210603].

[2] A. D. Linde, “Eternally Existing Selfreproducing Chaotic Inflationary Universe,” Phys. Lett. B 175, 395
(1986).

[3] A. S. Goncharov, A. D. Linde and V. F. Mukhanov, “The Global Structure Of The Inflationary Universe,”
Int. J. Mod. Phys. A 2 (1987) 561.

[4] A. H. Guth, “The Inflationary Universe: A Possible Solution To The Horizon And Flatness Problems,” Phys.
Rev. D 23 (1981) 347.

[5] A. D. Linde, “Nonsingular Regenerating Inflationary Universe,” Cambridge University preprint Print-82-0554
(1982).

[6] P. J. Steinhardt, “Natural Inflation,” in The Very Early Universe , ed. G.W. Gibbons, S.W. Hawking and S.
Siklos, Cambridge University Press, (1983).

[7] A. Vilenkin, “The Birth Of Inflationary Universes,” Phys. Rev. D 27 (1983) 2848.

[8] A. H. Guth, “Eternal inflation and its implications,” J. Phys. A 40 (2007) 6811 [arXiv:hep-th/0702178].

[9] A. Linde, “Prospects of inflation,” Phys. Scripta T117 (2005) 40 [arXiv:hep-th/0402051].

[10] D. Seery, J. E. Lidsey and M. S. Sloth, “The inflationary trispectrum,” JCAP 0701, 027 (2007) [arXiv:astro-
ph/0610210].

[11] A. D. Linde, “Eternal Chaotic Inflation,” Mod. Phys. Lett. A 1, 81 (1986).

[12] A. Vilenkin and L. H. Ford, “Gravitational Effects Upon Cosmological Phase Transitions,” Phys. Rev. D 26,
1231 (1982).

[13] A. D. Linde, “Scalar Field Fluctuations In Expanding Universe And The New Inflationary Universe Scenario,”
Phys. Lett. B 116, 335 (1982).

[14] A. A. Starobinsky, “Dynamics Of Phase Transition In The New Inflationary Universe Scenario And Generation
Of Perturbations,” Phys. Lett. B 117 (1982) 175.

[15] A.A. Starobinsky, in: Fundamental Interactions (MGPI Press, Moscow, 1984, p. 55; A.A. Starobinsky, in:
Current Topics in Field Theory, Quantum Gravity and Strings, Lecture Notes in Physics, eds. H.J. de Vega
and N. Sanchez (Springer, Heidelberg 1986), 206 p. 107.

[16] S. Winitzki, “The eternal fractal in the universe,” Phys. Rev. D 65, 083506 (2002) [arXiv:gr-qc/0111048].

[17] D. Polarski and A. A. Starobinsky, “Semiclassicality and decoherence of cosmological perturbations,” Class.
Quant. Grav. 13, 377 (1996) [arXiv:gr-qc/9504030].

[18] E. Scannapieco and R. Barkana, “An Analytical Approach to Inhomogeneous Structure Formation,”
arXiv:astro-ph/0205276.

[19] K. B. Athereya, P. E. Ney, “Branching Processes,” Berlin: Springer ( 1972); T. E. Harris “The Theory
Branching Processes,” Berlin: Springer ( 1963).

[20] S. Winitzki, “On time-reparametrization invariance in eternal inflation,” Phys. Rev. D 71, 123507 (2005)
[arXiv:gr-qc/0504084].

[21] J. Garriga and V. F. Mukhanov, “Perturbations in k-inflation,” Phys. Lett. B 458, 219 (1999) [arXiv:hep-
th/9904176].

46



[22] M. Alishahiha, E. Silverstein and D. Tong, “DBI in the sky,” Phys. Rev. D 70, 123505 (2004) [arXiv:hep-
th/0404084].

[23] N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, “Ghost inflation,” JCAP 0404, 001
(2004) [arXiv:hep-th/0312100].

[24] L. Senatore, “Tilted ghost inflation,” Phys. Rev. D 71, 043512 (2005) [arXiv:astro-ph/0406187].

[25] P. Creminelli, M. A. Luty, A. Nicolis and L. Senatore, “Starting the universe: Stable violation of the null
energy condition and non-standard cosmologies,” JHEP 0612, 080 (2006) [arXiv:hep-th/0606090].

[26] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, “The Effective Field Theory of
Inflation,” arXiv:0709.0293 [hep-th].

[27] D. Seery and J. E. Lidsey, “Primordial non-gaussianities in single field inflation,” JCAP 0506, 003 (2005)
[arXiv:astro-ph/0503692].

[28] X. Chen, M. x. Huang, S. Kachru and G. Shiu, “Observational signatures and non-Gaussianities of general
single field inflation,” JCAP 0701, 002 (2007) [arXiv:hep-th/0605045].

[29] M. x. Huang and G. Shiu, “The inflationary trispectrum for models with large non-Gaussianities,” Phys. Rev.
D 74, 121301 (2006) [arXiv:hep-th/0610235].

[30] N. Arkani-Hamed, S. Dubovsky, A. Nicolis, E. Trincherini and G. Villadoro, “A Measure of de Sitter Entropy
and Eternal Inflation,” JHEP 0705, 055 (2007) [arXiv:0704.1814 [hep-th]].

[31] X. Chen, S. Sarangi, S. H. Henry Tye and J. Xu, “Is brane inflation eternal?,” JCAP 0611 (2006) 015
[arXiv:hep-th/0608082].

[32] L. Leblond and S. Shandera, “Simple Bounds from the Perturbative Regime of Inflation,” arXiv:0802.2290
[hep-th].

[33] N. Arkani-Hamed, S. Dubovsky, L. Senatore and G. Villadoro, “(No) Eternal Inflation and Precision Higgs
Physics,” arXiv:0801.2399 [hep-ph].

[34] A. Strominger, “The dS/CFT correspondence,” JHEP 0110, 034 (2001) [arXiv:hep-th/0106113].

[35] A. H. Guth and E. J. Weinberg, “Could The Universe Have Recovered From A Slow First Order Phase
Transition?,” Nucl. Phys. B 212, 321 (1983).

[36] A. Vilenkin, “Topological inflation,” Phys. Rev. Lett. 72, 3137 (1994) [arXiv:hep-th/9402085].

[37] A. D. Linde, “Monopoles as big as a universe,” Phys. Lett. B 327 (1994) 208 [arXiv:astro-ph/9402031].

47


