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Creminelli 1

The metric for de Sitter space is given by

ds2
dS =

1

H2η2

(
−dη2 + dx2

)
(1)

We recognize three symmetries of the metric:
1. Translational symmetry
2. Rotational symmetry: ζ(k) = ζ(|k|)
3. Scale symmetry x→ λx, k → k

λ
, η → λη

And so the general form of the two point correlation function is given by

〈δφ†~kδφ~k′〉 =
1

k3
(2π)3δ3(~k − ~k′)F (kη) (2)

where the 1
k3

derives form the scale invariance and the δ from the translational
invariance. We know that in a dS4 metric the equation of motion for a
massless scalar field has a solution f ∼ (1 + i|k|η)e−i|k|η and so F (kη) =
(1 + k2η2). This solution in the long wavelength regime (k → 0) becomes
scale (coordinate) invariant.
When we consider the mass we have a breaking of the conformal invariance
a so a modification of the two point correlation function. Starting from the
equation of motion for a massive scalar field we see how the mass tilt the
power spectrum.

φ′′ − 2

η
φ′ +

1

H2η2
(k2 +m2)φ = 0 (3)

When i consider the long wavelength limit it becomes

φ′′ − 2

η
φ′ +

m2

H2η2
φ = 0 (4)
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So if I consider a power law solution for the scalar field (φ ∼ (kη)p):

p(p− 1)(kη)p−2 − 2p(kη)p−2 +
m2

H2
(kη)p−2 = 0 (5)

from which

p =
3

2
±
√

9

4
− m2

H2
(6)

In the limit m2

H2 = 0there are two solutions: p = 0 (for the frozen mode) and
p = 3 (for the decaying mode).
When m2

H2 << 1 expanding we have:

p =
1

3

m2

H2
(7)

and the two point correlation function (2) becomes

〈δφ†~kδφ~k′〉 =
1

k3
(2π)3δ3(~k − ~k′)

1

k−2p
(8)

So the tilt of the spectrum is given by

ns − 1 =
d ln(Pφ(k)k3)

d ln k
= 2p (9)

with p ' 1
3
m2

H2
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Maldacena 1.4

For an AdS4 with an S3 boundary we have the following metric:

ds2 = dρ2 + sinh2 ρdΩ2
3 (10)

For the computation of the action it is necessary to calculate the extrinsic
curvature term K = 1

2
hab∂nhab where h is the metric of the S3 boundary and

the normal direction n coincides with ρ(∂n = −∂ρ). So we have:

K = 3 coth ρ (11)

For an Euclidean space the Ricci tensor is R = −12 and so we have

SEuclid =
R2
AdS

16πGN

[
6

∫ ρc

0

dρ sinh3 ρdΩ2
3 + 6 coth ρc sinh3 ρc

∫
dΩ2

3

]
(12)

For the boundary I have integrate for a fixed ρ. So the action becomes

SEuclid =
2π2R2

AdS

16πGN

[
2 cosh3 ρc − 6 cosh ρc + 4− 6 sinh2 ρc cosh ρc

]
(13)

To discard the divergent term I expand the hyperbolic function as cosh ρ =
eρ+e−ρ

2
and sinh ρ = eρ−e−ρ

2
and so expanding

SEuclid =
2π2R2

AdS

16πGN

[
e−3ρ − 3e−ρ + 4

]
(14)

Finally the partition function is

Ψ = Z ∼ e−SE = e
πR2

AdS
8GN

[
3e−ρ−e−3ρ−4

]
(15)

Silverstein 2
a) To express to compactification is possible to write the complete metric as

ds2 = gµνdx
µdxν +R(x)2g̃IJdx

IdxJ (16)

where the last part is referred to the metric of the D−4 dimensional manifold
X of linear size R. Starting from the Einstein action

S =

∫
dDx

√
−g(D)R(D) (17)
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to solve the problem is necessary to rewrite the Ricci scalar in terms of the
new metric. Starting from the Christoffel symbol

ΓMNA =
1

2
gMS

(
∂AgSN + ∂NgSA − ∂SgNA

)
(18)

we have

Γµνλ = Γ
µ(4)
νλ ΓIJµ =

Ṙ

R
δIJ (19)

ΓIJK = Γ
I(4)
JK ΓµIJ = −1

2
gµν∂νR

2g̃IJ (20)

So the Ricci scalar is given by

R = gµνRµν + gµJRµJ + gIJRIJ = gµνRµν + g̃IJRIJR
−2 (21)

The two Ricci tensor are

Rµν = R(4)
µν −(D−4)∂µ∂ν logR+Γαµν(D−4)∂α logR−(D−4)∂µ logR∂ν logR

(22)

RIJ = R
(D−4)
IJ − 1

2
g̃IJ∂α(gαβ∂βR

2)− 1

2
g̃IJΓααβg

βλ∂λR
2 +

1

2
g̃IJ∂α logRgαλ∂λR

2

(23)
And the action becomes

S = MD−2
Pl

∫ √
−g(4)AS(D−4)R(x)D−4

[
R(4)+R(x)−2R(D−4)+(D−4)(D−5)(∂µ logR(x))2

]
(24)

and for the scalar field

S =

∫ √
−g(4)AS(D−4)′e

(D−4)σ

[
R(4) + e−2σR(D−4) + (D − 4)(D − 5)(∂µσ)2

]
(25)

I redefine the field σ as

σ → σ

MPl

1√
(D − 4)(D − 5)

(26)

So now R = eσ = e
σ

MPl

1√
(D−4)(D−5) and the volume is

VX = AS(D−4)e

√
D−4
D−5

σ
MPl (27)
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and cX =
√

D−4
D−5

cannot be small.

c)Given the terms
|dCp +B ∧ dCp−2|2 (28)

for B we have the following gauge transformation:B → B+dΛ1. So to respect
the same symmetry Cp have to transform as:

Cp → Cp − dΛ1 ∧ Cp−2 dCp → dCp − dΛ1 ∧ dCp−2 (29)

Is trivial to show that under these transformations the ”kinetic term” (28)
is invariant.

d) For an AdS5 ×X5:

ds2 =
r2

R2
gµνdx

µdxν +
R2

r2
dr2 + ds2

X5
(30)

In D-dimension the action is

SD = MD−2
Pl

∫
dDx

√
−gDR(D) (31)

Starting from the Christoffel symbols (18) we see that they have the form

Γµνρ =
1

2
gµα(∂νgαρ + ∂ρgαν − ∂αgρν) (32)

from which
Γµνρ = Γµ(4)

νρ + (∝ ∂r2) (33)

and the same form for the Riemann tensor and the Ricci tensor; so

R = gµνRµν =
R2

r2
gµνR(4)

µν + ...(∝ ∂r2)... =
R2

r2
R(4) + ...(∝ ∂r2)... (34)

So the action in 10 dimension is

S(10) = M8V ol(X)

∫
d4x
√
−g
∫ rUV

0

dr
r3

R3

(R2

r2
R(4) + ....

)
(35)
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From which the four-dimensional Planck mass is

M2
Pl = M8V ol(X)

r2
UV

2R
(36)

The Lyth bound is defined as

∆φ

MPl

>

(
r

4π

)1/2

(37)

where r is the tensor-scalar ratio. M is related to α′ by M8 = 2
α′4

.
Finally we have

r <
4πα′2R

V ol(X)
(38)

Susskind 0

General 5D metric:

ds2
5 = −dT 2 + dX2 = −dT 2 + dX2

0 + dX2
1 + dX2

2 + dX2
3︸ ︷︷ ︸

r2general

(39)

From which
ds2

5 = −dT 2 + dX2
0 + r2

general (40)

We can express rgeneral as a spherical radius rather than a cartesian radius,
so

→ ds2
5 = −dT 2 + dX2

0 + dr2
general + r2

generaldΩ2
2 (41)

The metric of flat slicing foliations is

ds2
4 = R2

[
−dτ 2 + e2τdx2

]
(42)

Expressing the space-like part in spherical coordinate dx2 = dr2
flat + r2

flatdΩ2
2

we find
ds2

4 = R2
[
−dτ 2 + e2τ

(
dr2

flat + r2
flatdΩ2

2

)]
(43)

By comparison of the general ds2
5 de Sitter metric and the flat metric ds2

4

we see that dΩ2
2 coefficients should not change, thus

rgeneral = Reτrflat (44)
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So we have reduced the general 5D metric to

ds2
5 = −dT 2 + dX2

0 +R2e2τ
[
dr2

flat + r2
flatdΩ2

2

]
(45)

Now we have to obtain ds2
4 from ds2

5 and so we need to map (T,X0)→ (τ, r).
By comparison of the metrics we see that we must require

−dT 2 + dX2
0 = −R2dτ 2 (46)

Therefore we obtain the mapping

T = R sinh(τ) X0 = R cosh(τ) (47)

which can be also seen from the hyperboloid geometry. Upon substitution
we obtain the desired form:

ds2
4 = R2

[
−dτ 2 + e2τ

(
dr2

flat + r2
flatdΩ2

2

)]
(48)
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Zaldarriaga 6

Baryons account for between 5 and 10 percent of the total energy density
in the Universe but their effect even if small is not negligible and can be seen
on the power spectrum and in particular on the matter transfer function. To
estimate this effect we start from the Boltzmann equations for the photons,
the dark matter and the baryons:

Θ̇0 + kΘ1 = −Φ̇ (49)

Θ̇1 −
k

3
Θ0 = −k

3
Φ + τ̇

[
Θ1 −

ivb
3

]
(50)

δ̇DM + ikvDM + 3Φ̇ = 0 (51)

v̇DM + aHvDM − ikΦ = 0 (52)

δ̇b + ikvb + 3Φ̇ = 0 (53)

v̇b + aHvb − ikΦ =
τ̇

R

[
3iΘ1 + vb

]
(54)

where the multipole bigger than 1 are been neglected(this assumption is
good before recombination since optically thick to photons) and is good in
the tightly coupled limit (τ̇ = −neσTa � 1). In this regime from the last
equation

vb = −3iΘ1 +
R

τ̇

[
v̇b + aHvb − ikΦ

]
(55)

we see that the second term is suppressed and so

vb = −3iΘ1 (56)

and
δ̇b = −ikvb − 3Φ̇ = −3Φ̇− 3kΘ1 = 3Θ0 (57)

From which δb = 3Θ0 and so photon and baryon move together without
anisotropic stress given by Θ2. We can think this as a photon-baryon fluid.
Then we can study the evolution of the photon.
+Starting from the Einstein equation

k2Φ + 3aH
(
Φ̇ + aHΦ

)
= 4πGa2

(
ρmδ + 4ρrΘ0

)
(58)
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k2Φ = 4πGa2

[
ρmδ + 4ρrΘ0 +

3aH

k

(
iρmv + 4ρrΘ1

)]
(59)

From the Dodelson we have that, in terms of the new variable y = ρm
ρr

= a
aeq

,

Φ =
3

2Q2y2

[
yδ + 4Θ0 + 3

(y + 1)1/2

Qy
(iyv + 4Θ1)

]
(60)

where Q =
√

2 k
keq

. Considering scales subhorizon( Q−1 ≤ y ≤ 1), before

recombination(a < aeq) and very small(kη � 1) we have

Φ =
3

2Q2y2
4Θ0 =

6

(kη)2
Θ0 (61)

Taking the solution for the potential for kη � 1

Φ = 3Φ(0)
sin(kη/

√
3)− kη/

√
3 cos(kη/

√
3)(

kη/
√

3
)3 ' −9Φ(0)

cos(kη/
√

3)

(kη)2
(62)

the temperature perturbation becomes

Θ0 ∼ −
3

2
Φ(0) cos

kη√
3

(63)

and the photon dipole

Θ1 = −Θ̇0

k
∼ −
√

3

2
Φ(0) sin

kη√
3

(64)

These describe the oscillations of the temperature perturbation and of the
dipole.
Since in this regime Θ0 = δb

3
and Θ1 = ivb

3
we obtain for the baryon

δb = −9

2
Φ(0) cos

kη√
3

(65)

vb =
3
√

3

2
Φ(0)i sin

kη√
3

(66)

Now we have to study the effect of these solutions on the transfer function.
To do this we consider the Boltzmann equations for the dark matter(DM)
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and baryon perturbation within the horizon and after recombination in the
matter dominated era. We know that in this era

ΩDM(a) + Ωb(a) = 1 (67)

To solve the equation we take a linear combination of the baryon and DM
equations. We define the dotal density and velocity

δm = ΩDM(a)δDM + Ωb(a)δb (68)

vm = ΩDM(a)vDM + Ωb(a)vb (69)

For these quantities holds the following differential equations

δ̇m = −ikvm (70)

v̇m = −2

η
vm +

6i

kη2
δm (71)

From these equations is possible to obtain a second order differential equation
for δm(we have take this from Dodelson 6.72)

d2δm
da2

+
3

2a

dδm
da
− 3

2a2
δm = 0 (72)

The solution is

δm =

[
3

5

δm
a

+
2

5

dδm
da

]
a+

[
2

5
a3/2δm −

2

5

a5/2dδm
da

]
a−3/2 (73)

These quantities are all evaluated at recombination. The second term is
negligible at late times so we calculate the transfer function considering only
the first term. From the Dodelson we know that the transfer function for the
DM is

δDM =
3k2

5Ωm0H2
0

Φ(0)TDM(k)arec (74)

where TDM(k) is the transfer function. So the first term of the solution for
the DM becomes

3

5

δDM
a

+
2

5

dδDM
da

=
3k2

5Ωm0H2
0

Φ(0)TDM(k)arec (75)
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and taking the solution (65) for the baryon we have

3

5

δb
a

+
2

5

dδb
da

=
3
√

3

10a
kηΦ(0) sin

kη√
3

(76)

where we have considered only the second term since for kη � 1 dominates
(dδb
da

= − ikη
2a
vb = 3

√
3

4a
kηΦ(0) sin kη√

3
).

And so the total transfer function is given by

δm = Ωb(a)
3
√

3

10a
kηΦ(0) sin

kη√
3

+ ΩDM(a)
3k2

5Ωm0H2
0

Φ(0)TDM(k)arec (77)

or better

T (k) = ΩDM(a)TDM(k) +

√
3

2
Ωb

Ωm0H
2
0η

karec
sin

kη√
3

(78)

So the effects of the baryons are twice: first they suppress the transfer
function at small scales since ΩDM/Ωb < 1 and second they imprint an
oscillation on the transfer function and so on the power spectrum. It is
simple to see that the period of these oscillation is

k =
2π
√

3

ηrec
' 0.04Mpc−1 (79)

These oscillations are the so famous Baryon Acoustic Oscillation that can be
seen in the power spectrum even if with a very small contribution.

Arkani-Hamed 4

Starting from the action

S ′ =

∫
d4x
√
−g[F ′(A)(R− A) + F (A)] (80)

and using the Eulero-Lagrange equation for the auxiliary field we have:

F ′′(A)(R− A)− F ′(A) + F ′(A) = 0 (81)

From which, for F ′′(A) 6= 0, we find R = A and so

S ′ = S =

∫
d4x
√
−g[F (R)] (82)
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For F ′′(A) = 0 we find F = cA+ b with a and b constants and

S ′′ =

∫
d4x
√
−g[cR + b] (83)

So we recover the general relativity plus a ”cosmological constant”.
Now, to demix A from the metric, is necessary to make a conformal trans-
formation:

g̃αβ = Ω2(x)gαβ (84)

Starting from the Ricci tensor Rµν

Rµν = Rα
µαν = ∂λΓ

λ
µν − ∂µΓλλν + ΓλµνΓ

ρ
ρλ + ΓλνρΓ

ρ
µλ (85)

constructed by the Christoffel symbol, we have the Ricci scalar R = gµνRµν .
A conformal transformation first on the Christoffel symbols, then on the
Ricci tensor and finally on the Ricci scalar gives

R̃ = Ω−2R− 6Ω−3�Ω− 6Ω−4∂αΩ∂αΩ (86)

Now I define ω = ln Ω and then

R̃ = Ω−2

[
R− 6�ω − 6∂αω∂

αω

]
(87)

Substituting in the the action

S =

∫
d4x
√
−gΩ4

{
F ′(A)

[
Ω−2(R− 6�ω − 6∂αω∂

αω)− A
]

+ F (A)

}
(88)

where Ω4 derives from the conformal transformation of the determinant of
the metric.
Now I fix the conformal parameter to decouple the field from the metric

Ω =
1

F ′(A)1/2
(89)

and so the action becomes

S =

∫
d4x
√
−g
[
R− 6�ω − 6∂αω∂

αω − A

F ′(A)
+

F (A)

F ′(A)2

]
(90)

I call σ = − lnF ′(A) and so

S =

∫
d4x
√
−g
[
R− 3

2
gµν∂µσ∂νσ − V (σ)

]
(91)

with V (σ) = A
F ′(A)

− F (A)
F ′(A)2

.
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