
Group 17 PITP homework

Problem 1.5

The goal of this problem is to find the cutoff-dependence of the Hartle-Hawking wave function for dS space.
To leading order in the semiclassical expansion we can approximate this as

Ψ[ĝij ] ≈ e−SE [gcl],

where gcl is a compact solution of the Euclidean Einstein equations with positive cosmological constant on
a manifold with a spherical boundary with induced boundary metric ĝij . The relevant Euclidean action is

SE =
1

2κ2

∫
M

d4x
√
g
(
−R+

6

`2ds

)
− 1

κ2

∫
∂M

√
ĝK

Here κ2 = 8πG = M−2p , and K is the trace of the extrinsic curvature at the boundary. From now on we
choose units where `ds = 1. For generic ĝij this computation is quite difficult, but we can do it easily in
“mini-superspace”, where we consider only metrics of the form

ds2 = dθ2 + a(θ)2dΩ2
3.

We are interested in finding solutions where the induced metric is a2cdΩ2
3 for an ac of our choice. The equation

of motion for a is
(a′)2 = 1− a2,

which has a variety of solutions. Let us first consider the case of 0 < ac < 1. There are two real solutions
obeying the desired boundary conditions, both of the form a(θ) = sin θ. In one case θ runs from 0 to arcsin ac
while in the other it runs from 0 to π− arcsin ac. Which solution to consider is a subtle problem, Hartle and
Hawking for various reasons choose to include both in the path integral. We will be agnostic and compute
both. First for the second solution, observing that for this metric we have K = 3a′/a and R = 12, we find
the action is

SE = −3V (S3)

κ2

[∫ π−arcsin ac

0

sin3 θdθ − a2c
√

1− a2c

]
Here V (S3) = 2π2 is the volume of the unit S3. Evaluating the integral, we find

SE = −4π2

κ2

[
1 + (1− a2c)

√
1− a2c

]
.

If we had studied the other solution we would have just gotten the other branch for the square root. Restoring
`ds and continuing to a > 1, we find the semiclassical wave function for the two solutions is

Ψ[ac] ≈ e
4π2`2ds
κ2

[
1±i(1−a2c)

√
a2c−1

]
Note that we can exchange the contributions of the two solutions depending on which way we continue ac
around ac = 1. The choice of branch amounts to selecting the expanding or contracting part of deSitter.
The phase is divergent at large ac while the real part is finite.

Problem 2.2

The linearized Lagrangian for ζ in a dS background ds2 = −dT 2+dx2

T 2 is invariant under x′ = λx, T ′ = λT ,
ζ ′(x′, T ′) = ζ(x, T ), so ζ has dimension 0 in position space. In momentum space it thus has dimension −3,
so ζ ′k′ = λ3ζk, with k′ = k/λ. Applying this to correlation functions and using the de Sitter invariance of
the vacuum, this means

〈ζλk1 ...ζλkn〉 = λ−3n〈ζk1 ...ζkn〉. (1)

Because of translation invariance ~x → ~x + ~a, we can write the correlator as some function F (ki) times

δ3(
∑
i
~ki). Then demanding equation (1) holds we find that F (λki) = λ3−3nF (ki), as desired.
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Problem 3.5

For a general landscape with three vacua, the rate equation isṖ1

Ṗ2

Ṗ3

 =

−γ21 − γ31 γ12 γ13
γ21 −γ12 − γ32 γ23
γ31 γ32 −γ13 − γ23

P1

P2

P3

 .

Imposing detailed balance γij = Mije
−Sj with Mij = Mji and setting vacuum 1 to be terminal, this simplifies

to: Ṗ1

Ṗ2

Ṗ3

 =

0 M12e
−S2 M13e

−S3

0 −(M12 +M23)e−S2 M23e
−S3

0 M23e
−S2 −(M13 +M23)e−S3

P1

P2

P3

 .

This has an obvious eigenvector (1, 0, 0) with eigenvalue 0. The nonzero eigenvalues λ obey an equation(
λ+ (M12 +M23)e−S2

) (
λ+ (M13 +M23)e−S3

)
= (M23)2e−S2−S3 .

This equation is quadratic, its roots are rather unpleasant but showing that they are negative and real
amounts to showing

0 < 4e−S2−S3(M12M13 +M12M23 +M13M23) <
(
(M12 +M23)e−S2 + (M13 +M23)e−S3

)2
The first inequality is trivial and the second follows from 4ab < (a + b)2 for any real a, b. Of course the
reality of the eigenvalues follows from the fact that Mij is symmetric, but it is nice to check it explicitly.
It is clear that any initial probablity distribution with a nonzero component along the zero eigenvector will
quickly become dominated by the terminal vacuum, so the probability in the other two states must decrease
by conservation of probability. So far this has been about a particular fixed physical volume of space, if we
embed these rates into a colored Mandelbrot model then whether the total volume in vacua 2 and 3 grows
or not depends on whether or not their expansion rates are sufficiently large compared to their decay rates.

Problem 4.1

a. The number of e-folds before the end of inflation is defined as:

N =

∫ φ

φe

da

a
=

∫ φ

φe

H

φ̇
dφ

Using the slow roll conditions:

H2 =
1

3M2
p

V (φ)

3Hφ̇+ V ′(φ) = 0

The number of efolds can be written in terms of the potential:

N =

∫ φ

φe

V (φ)

V ′(φ)
dφ

The end of inflation corresponds to ε = 1. In the slow roll limit

ε '
M2
p

2

(
V ′(φ)

V (φ)

)2
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Therefore the field value at the end of inflation, φe, is given by:

φe =
pMp√

2

So for the potential V (φ) = λµ4−pφp the number of efolds is

N =
1

pM2
p

∫ φ

φe

φdφ =
1

2pM2
p

φ2 − p

2

The field value -efolds before the end of inflation is then given by:

φN
Mp

=

√
2p(N +

p

2
)

by using the COBE normalization we can obtain the constraint on µ

∆2
scalar '

(
H

φ̇

)2

H2 ' V (φ)3

V ′(φ)2
|φ=φN ' 10−10

Therefore

(
µ

Mp
)2−p/2(

φN
Mp

)p/2+1 ' 10−5

for quadratic potential: µ/Mp ' 10−6 and for linear potential: µ/Mp ' 10−3.

b. To study quantum corrections to the potential µ4−pφp, we can write φ = φ0 + δφ and observe that the

interactions for δφ are suppressed by powers of
(
µ
φ0

)4−p
. This quantity goes into all interaction vertices that

can renormalize the effective potential, so such renormalizations will be suppressed beyond what we naively
expect in effective field theory. Morally this is because there is an approximate shift symmetry which makes
such corrections technically natural.

c. In an inflation model coming from string theory, the moduli have been stabilized in various ways which
can be overwhelmed if the field value becomes too large.
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