
Maldacena Problem 1.4

Group 16

We want to compute

R2
AdS

16πGN

[
−
∫
√
g(R + 6)− 2

∫
K

]
(1)

with the metric,
ds2 = dρ2 + sinh2(ρ)dρ23

upto ρc

K =
1

2
hab∂ρhab|ρc =

3

2

2 cosh(ρc)

sinh(ρc)
= 2 coth(ρc) (2)

Einstein’s equation in vacuum for the metric takes the following form,

Rµν −
R

2
gµν = −Λgµν

with cosmological constant beingΛ = −3
taking the trace we havs

R− 2R = 12

and we have
R = −12 (3)

therefore,
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S =
R2

AdS

16πGN

[
−
∫
√
g(−6)− 2

∫
3 coth(ρc)

]

= 2π2 R2
AdS

16πGN

[
6

∫ ρc

0

sinh3 ρdρ− 6 cosh(ρc) sinh2(ρc)

]

= 2π2 R2
AdS

16πGN

[
6

[
1

3
cosh3(ρc)− cosh(ρc) +

2

3

]
− 6 cosh(ρc) sinh2(ρc)

]

=
πR2

AdS

2GN

+ divergent term (4)

The first term in the action computed in the above equation is the finite
part.
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Group 16
Problem Solutions

July 21, 2011

1 Creminelli Problem 3

Calculate the equal time 2-point function of a massless scalar in a fixed de Sitter background
in real space. What is the physical meaning of the IR divergence?

ds2 =
−dη2 + dx2

η2
(1)

S = −1

2

∫
d4x
√
−ggµν∂µ∂ν =

1

2

∫
d4x

φ̇2 − (∇φ)2

η2
(2)

φ =

∫
d3xei

~k·~xφk(η) (3)

Wave equation:

∂

∂η

2φ̇k
η2

+
2k2

η2
φ2
k = 0 (4)

2φ̈k
η2
− 4φ̇k

η3
+

2k2

η2
φ2
k = 0 (5)

φ̈k −
2φ̇k
η

+ k2φ2
k = 0 (6)

Solution of the form:

f ∼ (1 + i | k | η)e−i|k|η (7)

φk = a†C(1 + i | k | η)e−i|k|η + aC(1− i | k | η)ei|k|η (8)

Normalize by:

[πk, φk] = i (9)

πk =
φ̇k
η2

(10)

πk =
1

η2
C{a†[i | k | e−i|k|η−i | k | (1+i | k | η)e−i|k|η]+a[−i | k | ei|k|η+−i | k | (1−i | k | η)ei|k|η]}

(11)
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πk =
1

η2
C[a† | k |2 ηe−i|k|η + a[| k |2 ηei|k|η] (12)

[πk, φk] = − 1

η2
C2[aa†(1 + i | k | η) | k |2 η + aa†(1− i | k | η) | k |2 η

− a†a | k |2 η(1− i | k | η)− aa† | k |2 η(1 + i | k | η)] (13)

[πk, φk] = − 1

η2
C2[− | k |2 η(1 + i | k | η)+ | k |2 η(1− i | k | η)]

= 2i | k |3 C2 (14)

C =
1√
2k3

(15)

The 2-point function in Fourier Space:

< φ~k(η)φ~k′(η) > = f ∗f < BD | aa† | BD >

=
1

2k3
(1− i | k | η)(1 + i | k | η)

=
1

2k3
(1+ | k |2 η2) (16)

In Real Space:

∫ ∝
ε

d3k

(2π)3
1

2k3
(1 + k2η2)e−i

~k·~x =
1

(2π)2
[

∫ ∝
ε

1

k

sin(kx)

kx
dk +

∫ ∝
ε

kη2
sin(kx)

kx
dk]

=
1

(2π)2
(1− ln(εx) +

η2

k2ε2
) (17)

where there is a ln divergence IR term for ε→ 0.
This is different from the massive scalar case in which there is a cutoff at the mass scale.
Here the long modes contribute infinitely to the 2-point function, whereas in the massive
scalar case they are cut off. This might be an effect of our assumption of the vacuum as the
Bunch-Davies vacuum, which is appropriate for modes initially inside the Hubble radius.

2



Solution to problem 3.4

The rate equation is
d

dt
Pa = −

∑
b

ΓbaPa +
∑
b

ΓabPb. (1)

Make the detailed balance assumption that the matrix Γ can be written Γab = eSaMab

with M a symmetric matrix. Define φa = e−Sa/2Pa. Then the rate equation is

d

dt
φa = −

∑
b

eSbMbaφa +
∑
b

eSa/2Mabe
Sb/2φb. (2)

Clearly, the rate equation is now symmetric, since the first term is diagonal and the second

is symmetric. It is easy to see that there is a zero eigenvector, corresponding to φ
(0)
a = eSa/2,

i.e. P
(0)
a = eSa . To check this, note that the two terms on the RHS of (2) are equal and

oppostie when evaluated on this vector, so the RHS is zero.

It remains to show that there are no positive eigenvalues. Note that if all Pa start out

positive, they remain so. This is because Γab ≥ 0, so the only negative parts of the rate

equation are diagonal. This means that
∑

a Pa is a sum of positive terms. Thus, if there

was a positive eigenvalue, it would eventually grow exponentially. However, d/dt
∑

a Pa =

−
∑

ab ΓbaPa +
∑

ab Pb = 0. Thus there are no positive eigenvalues.
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4. Mechanisms for In�ation (E. Silverstein)

Problem 1.a)

L = (∂φ)2 − µ4−pλφp , (1)

The �eld equation and Friedmann equation give

φ̈+ 3Hφ̇+ V ′ = 0⇒ φ̇ ' V ′

3H
, (2)

MplH
2 = 1

3
(1

2
φ̇2 + V )⇒ 2M2

plHḢ = 1
3
(φ̈+ V ′) = −Hφ̇2 (3)

⇒M2
plḢ = −φ̇2/2 . (4)

For the number of e-foldings Ne we get

Ne =

∫
Hdt =

∫
H
dφ

φ̇
'
∫

3H2

V ′
dφ '

∫
V

M2
plV

′dφ =
1

2pM2
pl

(φ2
i − φ2

f ) , (5)

Where φi and φf are initial and �nal �eld values respectively. Equation (5) gives
the �rst condition on the �eld range from the required number of e-folds.

The second requirement comes from the two-point function of scalar curvature
�uctuations. However, it is useful to �rst express φ in terms of slow-roll parameter
ε:

ε = − Ḣ

H2
' φ̇2/2

V/3
=

V ′2

6H2V
'
M2

plV
′2

2V 2
=
p2M2

pl

2φ2
, (6)

Neglecting order one factors the amplitude of scalar �uctuations is

ζ ' 10−5 ' H2

φ̇
' H3

V ′
, (7)

⇒ ζ2 '
(

V
MplV ′

)2
V
M4

pl
' µ4−pλφp

εM4
pl
' λµ4−p

M4−p
pl

ppε−1−p/2 (8)

⇒ µ
Mpl
∼
(
ε1+p/2ζ2

ppλ

)1/(4−p)
. (9)

b)

The main issue with the theory (1) is to obtain such a small value of µ as derived
in (9). Moreover it should be maintained in a large range of the scalar �eld φ in the
case of p ∼ 1. Note that one expects contributions of the form

∆V ∼ φ4

(
φ

Mpl

)n
, (10)



to be generically present in the theory and a large �eld range ∆φ > Mpl makes these
corrections important.

Nevertheless this theory is radiatively stable if we postulate an approximate shift
on φ

φ→ φ+ c . (11)

This symmetry is broken by the potential term. Therefore any radiative correction to
the potential of φ must be proportional to the symmetry breaking parameter λµ4−p.
On the other hand since there are no self-interactions of φ the radiative corrections
should come from the loops of gravitons and therefore the relevant quantity to
consider is µ/Mpl which is very small as derived in (9).

c)

Additional constraints arise from UV completion considerations. For instance in
small �eld scenarios obtaining a very small value for µ needs a delicate cancellation
between di�erent terms coming from moduli-stabilizing potential and the repulsive
potential of a D3-brane moving in a warped throat.

In large �eld scenarios one faces the additional constraint that the compacti�-
cations usually allow only a �nite variation of the scalar �elds. Moreover the shift
symmetry of the axion �elds may be brocken by multiple sources which again require
�ne-tuning to obtain the desired �at potential.
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5. CMB and LSS (Zaldariaga)

Problem 4)

The distance to last scattering surface determines the position of the peaks.

Ωmh2 determines matter-radiation equality which then results in the suppression

of modes that enter horizon later. Ωbh
2 determines baryon loading that suppresses

even acoustic peaks.

Changing the distance to the LSS changes the position of the peaks. The de-

generacy arises because for a �xed distance to LSS we can have di�erent values of

spatial curvature by changing Hubble parameter h. ΩΛ and Ωm can be modi�ed

simultaneously to get the same value for Ωmh2 and satisfy
∑

Ωi = 1. Finally one

needs to change Ωb to keep Ωbh
2 �xed.



7. Stars and Galaxies (Spergel)

Problem 1)

In Press-Schechter model the number density of halos per unit mass interval is
given by

n =
2ρ̄

M

∂

∂M

∫ ∞

δc

dδMP (δM) , (1)

where δM = δρM/ρ̄ is the averaged fractional density perturbation on scales M and
δc is the critical density above which halos form. Moreover P (δM) is given by a
Gaussian

P (δM) =
e−δ

2
M/2σ2

M

√
2πσM

. (2)

Bias is the relation between long wavelength and short wavelength perturbations.
However a long wavelength over-density e�ectively reduces the critical density δc
therefore

b =
∂

∂δc
lnn = δ−1

c −
δc
σ2
M

. (3)



6. Modi�ed Gravity (Arkani-Hamed)

Problem 1)

We �rst evaluate polarization sum in 4D

Nµναβ = ε++
µν

∗
ε++
αβ + ε−−µν

∗
ε−−αβ . (1)

In a reference where the particle is moving in z direction

ε±±µν =
1

2

(
1
±i

)
(1 ± i) , (2)

and the 2-vectors live in x-y space (and zero outside). Plugging this back into (1)
we get

Nµναβ =
1

2

[(
1 0

0 − 1

)
+ i

(
0 1
1 0

)]
µν

[(
1 0

0 − 1

)
− i

(
0 1
1 0

)]
αβ

+ c.c

= −η̃µν η̃αβ + η̃µαη̃νβ + η̃µβ η̃να , (3)

with

η̃µν = ηµν −
pµp̄ν + pν p̄µ

p.p̄
, p̄µ = (p0, 0, 0,−p3) . (4)

In D dimention there are D − 2 possible helicities and the tracelessness of Nµναβ

leads to

Nµναβ = − 2

D − 2
η̃µν η̃αβ + η̃µαη̃νβ + η̃µβ η̃να . (5)


