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Abstract We provide a pedagogical overview of inflation in string theory. Our theme is

the sensitivity of inflation to Planck-scale physics, which we argue provides both the primary

motivation and the central theoretical challenge for the subject. We illustrate these issues

through two case studies of inflationary scenarios in string theory: warped D-brane inflation

and axion monodromy inflation. Finally, we indicate how future observations can test scenarios

of inflation in string theory.
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1 Introduction

Recent advances in observational cosmology have brought us closer to a funda-

mental understanding of the origin of structure in the universe. Observations

of variations in the cosmic microwave background (CMB) temperature and of

the spatial distribution of galaxies in the sky have yielded a consistent picture

in which gravitational instability drives primordial fluctuations to condense into

large-scale structures, such as our own galaxy. Moreover, quantum field theory

and general relativity provide an elegant microphysical mechanism, inflation, for

generating these primordial perturbations during an early period of accelerated

expansion. The classical dynamics of this inflationary era (1, 2, 3) explains the

large-scale homogeneity, isotropy and flatness of the universe, while quantum

fluctuations during inflation lead to small inhomogeneities. The general prop-

erties of the spectrum of inflationary inhomogeneities were predicted long ago

(4, 5, 6, 7, 8, 9) and are in beautiful agreement with recent CMB observations,

e.g. by the Wilkinson Microwave Anisotropy Probe (WMAP) (10).

Although inflation is remarkably successful as a phenomenological model for

the dynamics of the very early universe, a detailed understanding of the physical

origin of the inflationary expansion has remained elusive. In this review we will

highlight specific aspects of inflation that depend sensitively on the ultraviolet

(UV) completion of quantum field theory and gravity, i.e. on the field content

and interactions at energies approaching the Planck scale. Such issues are most

naturally addressed in a theory of Planck-scale physics, for which string theory

is the best-developed candidate. This motivates understanding the physics of

inflation in string theory.

3



Annu. Rev. Nuc. Part. Sci. 2009 59

1.1 Inflation

Inflation may be defined as a period of exponential expansion of space,

ds2 = −dt2 + e2Htdx2 , where ǫ ≡ − Ḣ

H2
< 1 , (1)

which arises if the universe is dominated by a form of stress-energy that sources

a nearly-constant Hubble parameter H. This requirement for accelerated expan-

sion can be fulfilled by a range of qualitatively different mechanisms with varied

theoretical motivations (11,12,13). For concreteness, we restrict ourselves to the

simple case of single-field slow-roll inflation, where the inflationary dynamics is

described by a single order parameter φ (a fundamental scalar field or a compos-

ite field) with canonical kinetic term 1
2(∂µφ)2 and potential energy density V (φ).

Prolonged accelerated expansion then occurs if the slow-roll parameters are small

ǫ ≃
M2

pl

2

(

V ′

V

)2

≪ 1 , |η| = M2
pl

∣

∣

∣

∣

V ′′

V

∣

∣

∣

∣

≪ 1 , (2)

where the primes denote derivatives with respect to the inflaton field φ.

In addition to smoothing the universe on large scales, inflation stretches quan-

tum fluctuations of light degrees of freedom (m ≪ H), creating a spectrum of

small perturbations in the observed CMB temperature and polarization. These

perturbations are the key to structure formation and to tests of inflation, so we

pause to explain them; see e.g. Ref. (12,13) for a more detailed discussion.

In inflationary scenarios with a single inflaton field, the light degrees of free-

dom during inflation are the inflaton itself and the two polarization modes of

the graviton. Fluctuations of the inflaton lead to perturbations of the time at

which inflation ends, and hence source perturbations in the energy density af-

ter inflation. These fluctuations are visible to us as anisotropies in the CMB

temperature. Both the inflaton (scalar) fluctuations and the graviton (tensor)
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fluctuations source polarization of the CMB photons. Ref. (14,15) made the im-

portant observation that the spin-2 polarization field of the CMB photons may

be decomposed into two distinct scalar or spin-0 modes:

• E-mode: this curl-free mode is characterized by polarization vectors that

are radial around cold spots and tangential around hot spots on the sky, and

is generated by both scalar and tensor perturbations. E-mode polarization

and its cross-correlations with the CMB temperature fluctuations were first

detected by DASI (16) and have recently been mapped out in greater detail

by WMAP (17).

• B-mode: this divergence-free mode is characterized by polarization vectors

with vorticity around any point on the sky. Primordial B-modes can only

be produced by gravitational waves and are therefore considered an unam-

biguous signature of inflationary tensor perturbations. The energy scale of

inflation determines the amplitude of tensor perturbations, and hence the

B-mode amplitude, so that a detection would fix the inflationary energy

scale. The search for primordial B-modes is a key effort of observational

cosmology (18).

The nature of the inflationary epoch is imprinted on the sky in the temperature

and polarization anisotropies of the CMB. In slow-roll inflation, small ǫ and η

ensure that the spectra of scalar and tensor fluctuations are nearly scale-invariant.

The shapes of the primordial perturbation spectra are therefore intimately tied

to the inflationary background dynamics as dictated by the shape of the inflaton

potential V (φ).

CMB observations have improved dramatically in the past decade, and near-

future experiments will almost certainly continue this trend. Temperature aniso-
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tropies have been measured at the cosmic variance limit over a large range of

scales, and experimentalists are now preparing for precision measurements of the

polarization of the CMB (18). A detection of inflationary tensor perturbations

via their unique B-mode signature would be especially interesting, as their am-

plitude relates directly to the energy scale of inflation. This provides a unique

opportunity to probe physics at energies near the GUT scale, far out of reach of

terrestrial collider experiments.

1.2 Motivation for Inflation in String Theory

Besides the intellectual satisfaction of providing a microscopic description of the

inflationary process, there are more detailed motivations for studying inflation in

the context of string theory. While inflation is frustratingly effective at making

most signatures of high-energy physics unobservable, e.g. by exponentially dilut-

ing any pre-existing density of GUT-scale relics, the duration and the details of

inflation are nevertheless sensitive to certain aspects of Planck-scale physics. In

the remainder of this review we flesh this out in more detail, but we now briefly

preview two examples of the UV sensitivity of inflation that will be central to

our discussion.

1.2.1 Flatness of the Inflaton Potential From a top-down perspec-

tive the flatness of the inflaton potential in Planck units, as quantified by the

slow-roll conditions, Eq. (2), is a nontrivial constraint. As we will show in §2,

small (Planck-suppressed) corrections to the potential often induce important

corrections to the curvature of the potential, ∆η ∼ O(1). To assess whether infla-

tion can nevertheless occur requires detailed information about Planck-suppressed

corrections to the inflaton potential. This requires either phenomenological as-
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sumptions, or preferably microphysical knowledge, about physics at the Planck

scale. String theory equips us to compute such corrections from first principles,

and in §3 we give an example of such an analysis for the case of warped D-brane

inflation (19).

1.2.2 Inflationary Gravitational Waves As we explain in §4, the UV

sensitivity of inflation is particularly strong in models with observable gravita-

tional waves. A large gravitational wave signal from inflation is associated with

a high energy scale for the inflaton potential and a super-Planckian variation of

the inflaton field, ∆φ ≫ Mpl, between the time when CMB fluctuations were

created and the end of inflation. In §4 we explain why theoretical control of the

shape of the potential over a super-Planckian range requires certain assumptions

about the UV structure of the theory. Models of large-field inflation are therefore

most naturally studied in a UV-complete theory, such as string theory. In §5

we present the first controlled examples of large-field inflation in string theory

(20,21).

Given the exciting possibility of measuring the gravitational wave signature

of inflation in the polarization of the CMB, the issue of controlled large-field

inflation is of both theoretical and experimental relevance (12).

1.3 Organization of this Review

Inflation in string theory is the subject of close to 1,000 papers, and space con-

siderations prevent us from presenting a truly comprehensive review that sum-

marizes and assesses each important class of models. (Some representative con-

tributions to the subject include (22); we refer the reader to the reviews (23) for

a more complete list of references.) Instead, our goal is an exposition of what
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we believe to be the primary theme of the subject: the sensitivity of inflation

to Planck-scale physics. As we will explain, this is the two-way connection by

which string theory can clarify inflationary model-building, and cosmological ex-

periments can constrain string theory models. To illustrate this idea in depth,

we focus on two case studies: warped D-brane inflation and axion monodromy

inflation. These two scenarios are instructive examples from the general classes

of small-field and large-field inflation, respectively.

2 Inflation in String Theory

2.1 Inflation in Effective Field Theory

As a phenomenon in quantum field theory coupled to general relativity, inflation

does not appear to be natural. In particular, the set of Lagrangians suitable for

inflation is a minute subset of the set of all possible Lagrangians. Moreover, in

wide classes of models, inflation emerges only for rather special initial conditions,

e.g. initial configurations with tiny kinetic energy, in the case of small-field sce-

narios. Although one would hope to explore and quantify the naturalness both

of inflationary Lagrangians and of inflationary initial conditions, the question of

initial conditions appears inextricable from the active yet incomplete program

of understanding measures in eternal inflation (24). (However, see e.g. (25) for

recent efforts to quantify or to ameliorate the fine-tuning of initial conditions.)

In this review we will focus on the question of how (un)natural it is to have a

Lagrangian suitable for inflation.

For a single inflaton field with a canonical kinetic term, the necessary conditions

for inflation can be stated in terms of the inflaton potential. Inflation requires a

potential that is quite flat in Planck units (see Eq. (2)), and as we now argue,
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this condition is sensitive to Planck-scale physics. Let us recall that the presence

of some form of new physics at the Planck scale is required in order to render

graviton-graviton scattering sensible, just as unitarity ofW -W scattering requires

new physics at the TeV scale. Although we know that new degrees of freedom

must emerge, we cannot say whether the physics of the Planck scale is a finite

theory of quantum gravity, such as string theory, or is instead simply an effective

theory for some unimagined physics at yet higher scales. However, the structure

of the Planck-scale theory has meaningful – and, in very favorable cases, testable

– consequences for the form of the inflaton potential.

As usual, the effects of high-scale physics above some cutoff Λ are efficiently

described by the coefficients of operators in the low-energy effective theory. In-

tegrating out particles of mass M ≥ Λ gives rise to operators of the form

Oδ

M δ−4
, (3)

where δ denotes the mass dimension of the operator.

Sensitivity to such operators is commonplace in particle physics: for example,

bounds on flavor-changing processes place limits on physics above the TeV scale,

and lower bounds on the proton lifetime even allow us to constrain GUT-scale

operators that would mediate proton decay. However, particle physics consid-

erations alone do not often reach beyond operators of dimension δ = 6, nor go

beyond M ∼ MGUT. (Scenarios of gravity-mediated supersymmetry breaking

are one exception.) Equivalently, Planck-scale processes, and operators of very

high dimension, are irrelevant for most of particle physics: they decouple from

low-energy phenomena.

In inflation, however, the flatness of the potential in Planck units introduces

9
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sensitivity to δ ≤ 6 Planck-suppressed operators, such as

O6

M2
pl

. (4)

As we explain in §2.2, an understanding of such operators is required to address

the smallness of the eta parameter, i.e. to ensure that the theory supports at least

60 e-folds of inflationary expansion. This sensitivity to dimension-six Planck-

suppressed operators is therefore common to all models of inflation.

For large-field models of inflation the UV sensitivity of the inflaton action is

dramatically enhanced. As we discuss in §4, in this important class of inflation-

ary models the potential becomes sensitive to an infinite series of operators of

arbitrary dimension.

2.2 The Eta Problem

In the absence of any specific symmetries protecting the inflaton potential, con-

tributions to the Lagrangian of the general form

O6

M2
pl

=
O4

M2
pl

φ2 (5)

are allowed. If the dimension-four operator O4 has a vacuum expectation value

(vev) comparable to the inflationary energy density, 〈O4〉 ∼ V , then this term

corrects the inflaton mass by order H, or equivalently corrects the eta parameter

by order one, leading to an important problem for inflationary model-building.

Let us reiterate that contributions of this form may be thought of as arising from

integrating out Planck-scale degrees of freedom. In this section we discuss this

so-called eta problem in effective field theory, §2.2.1, and illustrate the problem

in a supergravity example, §2.2.2.

10
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2.2.1 Radiative Instability of the Inflaton Mass In a generic ef-

fective theory with cutoff Λ, the mass of a scalar field runs to the cutoff scale

unless it is protected by some symmetry. Since the cutoff for an effective theory

of inflation is at least the Hubble scale, Λ ≥ H, this implies that a small inflaton

mass (mφ ≪ H) is radiatively unstable. Equivalently, the eta parameter receives

radiative corrections,

∆η =
∆m2

φ

3H2
≥ 1 , (6)

preventing prolonged inflation.

The difficulty here is analogous to the Higgs hierarchy problem, but super-

symmetry does not suffice to stabilize the inflaton mass: the inflationary energy

necessarily breaks supersymmetry, and the resulting splittings in supermultiplets

are of order H, so that supersymmetry does not protect a small inflaton mass

mφ ≪ H.

In §5 we discuss the natural proposal to protect the inflaton potential via a

shift symmetry φ → φ + const., which is equivalent to identifying the inflaton

with a pseudo-Nambu-Goldstone-boson. In the absence of such a symmetry the

eta problem seems to imply the necessity of fine-tuning the inflationary action in

order to get inflation.

2.2.2 Supergravity Example An important instance of the eta problem

arises in locally-supersymmetric theories, i.e. in supergravity (26). This case

is relevant for many string theory models of inflation because four-dimensional

supergravity is the low-energy effective theory of supersymmetric string compact-

ifications.

In N = 1 supergravity, a key term in the scalar potential is the F-term poten-

11
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tial,

VF = eK/M
2
pl

[

Kϕϕ̄DϕWDϕW − 3

M2
pl

|W |2
]

, (7)

where K(ϕ, ϕ̄) and W (ϕ) are the Kähler potential and the superpotential, re-

spectively; ϕ is a complex scalar field which is taken to be the inflaton; and we

have defined DϕW ≡ ∂ϕW + M−2
pl (∂ϕK)W . For simplicity of presentation, we

have assumed that there are no other light degrees of freedom, but generalizing

our expressions to include other fields is straightforward.

The Kähler potential determines the inflaton kinetic term, −K,ϕϕ̄ ∂ϕ∂ϕ̄, while

the superpotential determines the interactions. To derive the inflaton mass, we

expand K around some chosen origin, which we denote by ϕ ≡ 0 without loss of

generality, i.e. K(ϕ, ϕ̄) = K0 + K,ϕϕ̄|0 ϕϕ̄ + · · · . The inflationary Lagrangian

then becomes

L ≈ −K,ϕϕ̄ ∂ϕ∂ϕ̄ − V0

(

1 + K,ϕϕ̄|0
ϕϕ̄

M2
pl

+ . . .
)

(8)

≡ −∂φ∂φ̄− V0

(

1 +
φφ̄

M2
pl

)

+ . . . , (9)

where we have defined the canonical inflaton field φφ̄ ≈ Kϕϕ̄|0 ϕϕ̄ and V0 ≡

VF |ϕ=0. We have retained the leading correction to the potential originating in

the expansion of eK/M
2
pl in Eq. (7), which could plausibly be called a universal cor-

rection in F-term scenarios. The omitted terms, some of which can be of the same

order as the terms we keep, arise from expanding

[

Kϕϕ̄DϕWDϕW − 3
M2

pl

|W |2
]

in Eq. (7) and clearly depend on the model-dependent structure of the Kähler

potential and the superpotential.

The result is of the form of Eq. (4) with

O6 = V0 φφ̄ (10)

12
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and implies a large model-independent contribution to the eta parameter

∆η = 1 , (11)

as well as a model-dependent contribution which is typically of the same order. It

is therefore clear that in an inflationary scenario driven by an F-term potential,

eta will generically be of order unity.

Under what circumstances can inflation still occur, in a model based on a su-

persymmetric Lagrangian? One obvious possibility is that the model-dependent

contributions to eta approximately cancel the model-independent contribution,

so that the smallness of the inflaton mass is a result of fine-tuning. In the case

study of §3 we will provide a concrete example in which the structure of all rele-

vant contributions to eta can be computed, so that one can sensibly pursue such

a fine-tuning argument.

Clearly, it would be far more satisfying to exhibit a mechanism that removes

the eta problem by ensuring that ∆η ≪ 1. This requires either that the F-

term potential is negligible, or that the inflaton does not appear in the F-term

potential. The first case does not often arise, because F-term potentials play an

important role in presently-understood models for stabilization of the compact

dimensions of string theory (27, 28). However, in §5 we will present a scenario

in which the inflaton is an axion and does not appear in the Kähler potential,

or in the F-term potential, to any order in perturbation theory. This evades the

particular incarnation of the eta problem that we have described above.

2.3 From String Compactifications to the Inflaton Action

2.3.1 Elements of String Compactifications It is a famous fact that

the quantum theory of strings is naturally defined in more than four spacetime

13
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dimensions, with four-dimensional physics emerging upon compactification of the

additional spatial dimensions. For concreteness, we will focus on compactifica-

tions of the critical ten-dimensional type IIB string theory on six-dimensional

Calabi-Yau spaces (to be precise, our compactifications will only be conformal to

spaces that are well-approximated by orientifolds of Calabi-Yau manifolds, but

we will not need this fine point.)

The vast number of distinct compactifications in this class are distinguished by

their topology, geometry, and discrete data such as quantized fluxes and wrapped

D-branes. A central task in string theory model-building is to understand in detail

how the ten-dimensional sources determine the four-dimensional effective theory.

If we denote the ten-dimensional compactification data by C, the procedure in

question may be written schematically as

S10[C] → S4 . (12)

Distinct compactification data C give rise to a multitude of four-dimensional

effective theories S4 with varied field content, kinetic terms, scalar potentials,

and symmetry properties. By understanding the space of possible data C and the

nature of the map in Eq. (12), we can hope to identify, and perhaps even classify,

compactifications that give rise to interesting four-dimensional physics.

2.3.2 The Effective Inflaton Action For our purposes, the most im-

portant degrees of freedom of the effective theory are four-dimensional scalar

fields. Scalar fields known as moduli arise from deformations of the compactifi-

cation manifold, typically numbering in the hundreds for the Calabi-Yau spaces

under consideration, and from the positions, orientations, and gauge field config-

urations of any D-branes. From given compactification data one can compute the

kinetic terms and scalar potentials of the moduli; in turn, the expectation values

14
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of the moduli determine the parameters of the four-dimensional effective the-

ory. In the presence of generic ten-dimensional sources of stress-energy, such as

D-branes and quantized fluxes, there is an energy cost for deforming the compact-

ification, and many (though not always all) of the moduli fields become massive

(28).

It is useful to divide the scalar fields arising in S4 into a set of light fields φ,ψ

with masses below the Hubble scale (mφ,mψ ≪ H) and a set of heavy fields χ

with masses much greater than the Hubble scale (mχ ≫ H). Here one of the

light fields, denoted φ, has been identified as the inflaton candidate.

To understand whether successful inflation can occur, one must understand all

the scalar fields, both heavy and light. First, sufficiently massive moduli fields are

effectively frozen during inflation, and one should integrate them out to obtain

an effective action for the light fields only,

S4(φ,ψ, χ) → S4,eff(φ,ψ) . (13)

Integrating out these heavy modes generically induces contributions to the po-

tential of the putative inflaton: that is, moduli stabilization contributes to the

eta problem. This is completely analogous to the appearance of corrections from

higher-dimension operators in our discussion of effective field theory in §2.1.

Next, if scalar fields in addition to the inflaton are light during inflation, they

typically have important effects on the dynamics, and one should study the evo-

lution of all fields ψ with masses mψ ≪ H. Moreover, even if the resulting

multi-field inflationary dynamics is suitable, light degrees of freedom can create

problems for late-time cosmology. Light scalars absorb energy during inflation

and, if they persist after inflation, they can release this energy during or after

Big Bang nucleosynthesis, spoiling the successful predictions of the light ele-

15
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ment abundances. Moreover, light moduli would be problematic in the present

universe, as they mediate fifth forces of gravitational strength. To avoid these

late-time problems, it suffices to ensure that mψ ≫ 30 TeV, as in this case the

moduli decay before Big Bang nucleosynthesis. A simplifying assumption that is

occasionally invoked is that all fields aside from the inflaton should have m≫ H,

but this is not required on physical grounds: it serves only to arrange that the

effective theory during inflation has only a single degree of freedom.

3 Case Study of Small-Field Inflation: Warped D-brane Inflation

In string theory models of inflation the operators contributing to the inflaton

potential can be enumerated, and in principle even their coefficients can be com-

puted in terms of given compactification data. To illustrate these issues, it is use-

ful to examine a concrete model in detail. In the following we therefore present

a case study of a comparatively well-understood model of small-field inflation,

warped D-brane inflation.

3.1 D3-branes in Warped Throat Geometries

In this scenario inflation is driven by the motion of a D3-brane in a warped throat

region of a stabilized compact space (29). To preserve four-dimensional Lorentz

(or de Sitter) invariance, the D3-brane fills our four-dimensional spacetime and

is pointlike in the extra dimensions (see Figure 1). The global compactification

is assumed to be a warped product of four-dimensional spacetime (with metric

gµν) and a conformally-Calabi-Yau space,

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)gmndy

mdyn , (14)

16
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with gmn a Calabi-Yau metric that can be approximated in some region by a cone

over a five-dimensional Einstein manifold X5,

gmndy
mdyn = dr2 + r2ds2X5

. (15)

A canonical example of such a throat region is the Klebanov-Strassler (KS) ge-

ometry (30), for which X5 is the
(

SU(2) × SU(2)
)

/U(1) coset space T 1,1, and

the would-be conical singularity at the tip of the throat, r = 0, is smoothed by

the presence of appropriate fluxes. The tip of the throat is therefore located at a

finite radial coordinate rIR, while at r = rUV the throat is glued into an unwarped

bulk geometry. In the relevant regime rIR ≪ r < rUV the warp factor may be

written as (31)

e−4A(r) =
R4

r4
ln

r

rIR
, R4 ≡ 81

8
(gsMα′)2 , (16)

where

ln
rUV

rIR
≈ 2πK

3gsM
. (17)

Here, M and K are integers specifying the flux background (30,32).

Warping sourced by fluxes is commonplace in modern compactifications, and

there has been much progress in understanding the stabilization of the moduli of

such a compactification (28). Positing a stabilized compactification containing a

KS throat therefore seems reasonable given present knowledge.

Inflation proceeds as a D3-brane moves radially inward in the throat region,

towards an anti-D3-brane that is naturally situated at the tip of the throat. The

inflaton kinetic term is determined by the Dirac-Born-Infeld (DBI) action for

a probe D3-brane, and leads to an identification of the canonical inflaton field

with a multiple of the radial coordinate, φ2 ≡ T3r
2. Here, T3 ≡ [

(2π)3gsα
′2
]−1

is the D3-brane tension, with gs the string coupling and 2πα′ the inverse string
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tension. The exit from inflation occurs when open strings stretched between the

approaching pair become tachyonic and condense, annihilating the branes.

warped throat

r
D3

D3

Ψ

bulk

Figure 1: D3-brane inflation in a warped throat geometry. The D3-branes are

spacetime-filling in four dimensions and therefore pointlike in the extra dimen-

sions. The circle stands for the base manifold X5 with angular coordinates Ψ.

The brane moves in the radial direction r. At rUV the throat attaches to a com-

pact Calabi-Yau space. Anti-D3-branes minimize their energy at the tip of the

throat, rIR.

In this simplified picture, inflation is driven by the extremely weak (warping-

suppressed) Coulomb interaction of the brane-antibrane pair (29). The true story,

however, is more complex, as moduli stabilization introduces new terms in the

inflaton potential which typically overwhelm the Coulomb term and drive more

complicated dynamics (29, 33, 34, 35, 36, 19). This pattern is precisely what we

anticipated in our effective field theory discussion: integrating out moduli fields

can be expected to induce important corrections to the potential.

3.2 The D3-brane Potential

An important correction induced by moduli stabilization is the inflaton mass term

arising from the supergravity F-term potential, §2.2.2. In a vacuum stabilized
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by an F-term potential, i.e. by superpotential terms involving the moduli, one

finds the mass term H2
0φ

2 = 1
3V0(φ⋆)

φ2

M2
pl

(29), where φ⋆ is an arbitrary reference

value for the inflaton field and the parameter H0 should not be confused with the

present-day Hubble constant.

However, one expects additional contributions to the potential from a variety

of other sources, such as additional effects in the compactification that break

supersymmetry (19). Let us define ∆V (φ) to encapsulate all contributions to the

potential aside from the Coulomb interaction V0(φ) and the mass term H2
0φ

2;

then the total potential and the associated contributions to the eta parameter

may be written as

V (φ) = V0(φ) + H2
0φ

2 + ∆V (φ) (18)

η(φ) = η0 +
2

3
+ ∆η(φ) = ? (19)

where η0 ≪ 1 because the Coulomb interaction is very weak. (More generally,

V0(φ) can be defined to be all terms in V (φ) with negligible contributions to

η. Besides the brane-antibrane Coulomb interaction, this can include any other

sources of nearly-constant energy, e.g. bulk contributions to the cosmological

constant.)

Clearly, η can only be small if ∆V can cancel the mass term in Eq. (18).

We must therefore enumerate all relevant contributions to ∆V , and attempt

to understand the circumstances under which an approximate cancellation can

occur. Note that identifying a subset of contributions to ∆V while remaining

ignorant of others is insufficient.

Warped D-brane inflation has received a significant amount of theoretical at-

tention in part because of its high degree of computability. Quite generally, if

we had access to the full data of an explicit, stabilized compactification with
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small curvatures and weak string coupling, we would in principle be able to com-

pute the potential of a D-brane inflaton to any desired accuracy, by performing

a careful dimensional reduction. This is not possible at present for a generic

compact Calabi-Yau, for two reasons: for general Calabi-Yau spaces hardly any

metric data is available, and examples with entirely explicit moduli stabilization

are rare.

However, a sufficiently long throat is well-approximated by a noncompact throat

geometry (i.e., a throat of infinite length), for which the Calabi-Yau metric can

often be found, as in the important example of the Klebanov-Strassler solution

(30), which is entirely explicit and everywhere smooth. Having complete met-

ric data greatly facilitates the study of probe D-brane dynamics, at least at the

level of an unstabilized compactification. Furthermore, we will now explain how

the effects of moduli stabilization and of the finite length of the throat can be

incorporated systematically. The method involves examining perturbations to

the supergravity solution that describes the throat in which the D3-brane moves.

For concreteness we will work with the example of a KS throat, but the method

is far more general. Our treatment will allow us to give explicit expressions for

the correction terms ∆V in Eq. (18), and hence to extract the characteristics of

inflation in the presence of moduli stabilization.

3.3 Supergravity Analysis of the D3-brane Potential

3.3.1 Perturbations to the Geometry Above we gave the explicit so-

lution for the noncompact warped throat region. We now describe a systematic

way to estimate the leading corrections to the throat solution as perturbations to

the geometry and fluxes at large r (near rUV in Figure 1). We then consider the
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effect of these perturbations on the potential for a D3-brane at a location well

inside the throat.

Before we can explain the idea underlying this approach, we need a few facts

about the coupling of D3-branes to the background fields of type IIB supergravity,

which is the low-energy limit of type IIB string theory. Type IIB supergravity

contains a metric, which in the background takes the form of Eq. (14), as well as

various p-form fields. Importantly, the four-dimensional potential V as a function

of the D3-brane position in the extra dimensions is only affected by a very specific

combination of background fields:

V = T3

(

e4A − α
)

≡ T3 Φ− , (20)

where α is the potential for the five-form field

F5 = (1 + ⋆10)
[

dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3
]

, (21)

and ⋆10 is the ten-dimensional Hodge star. The D3-brane potential is therefore

dictated by the profile of Φ− ≡ e4A − α. Furthermore, Φ− vanishes in the un-

perturbed KS throat, and more generally in the class of flux compactifications

considered by Giddings, Kachru, and Polchinski (GKP) (32). Finally, the Ein-

stein equations and five-form Bianchi identity imply that perturbations of Φ−

around such backgrounds satisfy, at the linear level, the six-dimensional Laplace

equation (32,19),

∇2Φ− = 0 . (22)

In a general compactification, little is known about the solution for Φ−, and

one can therefore draw few general conclusions about the D3-brane potential.

However, in a noncompact throat geometry, one can often solve the Laplace

equation. Moreover, the potential for a D3-brane in a throat that is glued into
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an arbitrary compact Calabi-Yau must be expressible in terms of a solution for

Φ− in the throat, i.e. in terms of a superposition of harmonic functions.

As this is the crucial idea, let us repeat: no matter how complicated the Calabi-

Yau to which the throat is attached, it must be possible to express the D3-brane

potential via some Φ− profile in the throat, as Φ− is the only supergravity field

that sources a D3-brane potential. Moreover, for a sufficiently long but finite

throat, the Φ− profile is given to an excellent approximation by a solution of the

Laplace equation in the noncompact throat geometry. (Corrections are expected

to be exponentially small when the throat is long.) Thus, the structure of the

inflaton potential is dictated by the structure of solutions of the Laplace equation

in the noncompact throat.

3.3.2 Harmonic Analysis Let us therefore solve the Laplace equation (22)

in the KS background. We denote the eigenfunctions of the angular Laplacian

on the base manifold X5 = T 1,1 by YLM (Ψ) (37), where the multi-indices L ≡

(J1, J2, R), M ≡ (m1,m2) label SU(2) × SU(2) × U(1) quantum numbers under

the corresponding isometries of T 1,1. We may then express the solution of the

Laplace equation (22) as the following expansion

Φ−(r,Ψ) =
∑

L

fL(Ψ)

(

r

rUV

)∆(L)

, (23)

where

fL(Ψ) ≡
∑

M

ΦLMYLM(Ψ) + c.c. , (24)

and ΦLM are constant coefficients. The quantities ∆(L) are related to the eigen-

values of the angular Laplacian

∆(L) ≡ −2 +
√

6[J1(J1 + 1) + J2(J2 + 2) −R2/8] + 4 . (25)
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To determine the leading perturbations to the brane potential we are interested

in the lowest eigenvalues, since via Eq. (23) these correspond to the perturbations

that diminish most slowly towards the tip of the throat. Incorporating the group-

theoretic selection rules that restrict the allowed quantum numbers (37), one finds

that the smallest eigenvalues corresponding to nontrivial perturbations are

∆ =
3

2
for (J1, J2, R) = (1/2, 1/2, 1) , (26)

∆ = 2 for (J1, J2, R) = (1, 0, 0), (0, 1, 0) . (27)

For simplicity, we now assume that a single mode dominates the expansion in

Eq. (23),

Φ− ≈ fL(Ψ)

(

r

rUV

)∆(L)

. (28)

(If more than one angular mode is relevant during inflation, then the dynamics

is significantly more complicated than what is described below.) To isolate the

radial dynamics, we first minimize the potential in the angular directions. When

the angular coordinates have relaxed to their minima, the potential reduces to an

effective single-field potential for the radial direction r. In the single-perturbation

case of Eq. (28), the Φ− perturbation then always leads to a repulsive force,

i.e. the effect of the perturbation is to push the brane out of the throat. The

proof is straightforward: any non-constant spherical harmonic is orthogonal to

the constant (L = 0) harmonic, and hence any nontrivial harmonic necessarily

attains both positive and negative values. Therefore, there always exists an

angular location Ψ⋆ where fL(Ψ⋆) is negative. It follows that at fixed radial

location, the D3-brane potential induced by the term in Eq. (28) is minimized

at an angular location where the contribution of Eq. (28) to the radial potential

is negative. This contribution to the potential is minimized at r → ∞. The
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potential induced by any individual perturbation of the form of Eq. (28) therefore

produces a radially-expulsive force. This is fortunate, since only a repulsive force

allows cancellation with the mass term in Eq. (18) to alleviate the eta problem.

3.3.3 Phenomenological Implications If only one angular mode dom-

inates the UV perturbation of the throat geometry, then the radial D3-brane

potential is

V (φ) = V0(φ) +M2
plH

2
0





(

φ

Mpl

)2

− a∆

(

φ

Mpl

)∆


 . (29)

where

a∆ ≡ c∆

(

Mpl

φUV

)∆

, and φ ∝ r . (30)

The magnitudes of the coefficients a∆, c∆ are highly model-dependent and were

estimated in Ref. (19). The above classification of the leading perturbations to

the inflaton potential via the eigenvalues of the angular Laplacian hence leads to

two cases with distinct phenomenology:

1. Fractional Case

In a general compactification, the dominant perturbation corresponds to the

smallest possible eigenvalue, ∆ = 3
2 . By the repulsivity argument we just

gave, this gives a negative contribution to the potential in Eq. (18), ∆V ∝

−φ3/2. The dynamics during inflation is then governed by the following

phenomenological potential

V (φ) = V0(φ) +M2
plH

2
0





(

φ

Mpl

)2

− a3/2

(

φ

Mpl

)3/2


 . (31)

For a potential of this form, the eta parameter can be fine-tuned to be small

locally, near an approximate inflection point. This inflection point model

is phenomenologically identical to the explicit model of D-brane inflation
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(33, 34, 35, 36) in which a moduli-stabilizing D7-brane stack descends into

the throat region while wrapping a suitable four-cycle.

2. Quadratic Case

Although the ∆ = 3
2 perturbation is generically dominant, it may be for-

bidden by a discrete symmetry, i.e. by an unbroken global symmetry of the

full compact manifold (19). In this case, the leading correction comes from

the ∆ = 2 perturbation, ∆V ∝ −φ2. The relevant phenomenological model

is then

V (φ) = V0(φ) + βH2
0 φ

2 , (32)

where the parameter β allows a nearly continuous tuning of the inflaton

mass. The maximally-tuned case β = 0 was first analyzed in Appendix D

of Ref. (29) and the phenomenology for general β was discussed in Ref. (38).

(We should note that in the limit β ≪ 1, corrections from perturbations

with ∆ > 2 can be important.) As β → 1, the potential becomes steep, but

inflation may still occur via the DBI effect (39). The parameter β may even

be negative, pushing the brane out of the throat and allowing a realization

of IR DBI inflation (40).

The above summarizes the phenomenology of warped D-brane inflation under

the simplifying assumption that a single angular mode dominates in the Φ−

perturbation of Eq. (28). In general, more than one L-mode may be important

in Eq. (28). In that case we expect the angular dynamics of the brane to be

significantly more complicated, with potentially important consequences for the

effective single-field potential.
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3.4 Gauge Theory Interpretation

3.4.1 Gauge/Gravity Duality In the previous section we have shown

how to compute, in supergravity, the leading contributions to the inflaton poten-

tial induced by moduli stabilization and by the coupling of the throat region to

the compact space. We will now present a very instructive dual description of

this analysis.

The celebrated AdS/CFT correspondence (41) is a duality between type IIB

string theory on Anti-de Sitter (AdS) (or asymptotically, approximately AdS)

spaces and conformal field theories (CFTs) on their boundaries. An important

class of dual pairs consists of warped throat geometries and N = 1 supersymmetric

field theories. The system of interest to us, a D3-brane moving in a warped

throat solution of type IIB supergravity, therefore admits a dual description in

terms of an approximate CFT. The corresponding N = 1 supersymmetric gauge

theory is approximately conformal over a large range of energy scales, and then

eventually confines in the infrared. The gradual deviations from conformality

manifest themselves on the gravity side as logarithmic corrections to the warp

factor e2A, Eq. (16).

On the gravity side of the correspondence, we were interested in non-normal-

izable perturbations of the field Φ−. In AdS/CFT, non-normalizable perturba-

tions of supergravity fields correspond to perturbations of the CFT Lagrange

density by irrelevant operators,

∆L = M4−δ
UV Oδ , (33)

where MUV is the UV cutoff of the gauge theory and Oδ is an operator of mass

dimension δ ≥ 4. One advantage of this dual description is that the contribu-
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tions to the eta parameter are now manifestly organized in terms of operator

perturbations, precisely as in our general effective field theory treatment in §2,

cf. Eq. (3).

We will now outline how the eta problem may be studied on the gauge theory

side of the AdS/CFT correspondence, by classifying irrelevant perturbations to

the gauge theory. For a more complete description we refer the interested reader

to Ref. (19), while readers less interested in these details may skip to §3.5 without

loss of continuity.

3.4.2 Perturbations of the Gauge Theory The configuration space

of a probe D3-brane in a KS throat corresponds to a portion of the Coulomb

branch of the dual CFT (i.e. to a portion of the gauge theory moduli space in

which the expectation values of D3-brane collective coordinates reduce the rank of

the nonabelian part of the gauge group, but do not reduce the total rank.) Thus,

to understand the potential on this configuration space, we are interested in the

potential on the Coulomb branch of the CFT. Such a potential can be generated

if the CFT Lagrangian is perturbed by operators composed of the scalar fields

that parameterize the Coulomb branch.

In particular, we are interested in perturbations that do not explicitly break

supersymmetry and that incorporate the effects of bulk Calabi-Yau fields. The

leading such terms are of the form of Eq. (33), with

Oδ ≡
∫

d4θX†X O∆ , (34)

where X is a bulk moduli field. This term, being an integral over superspace, is

allowed in a supersymmetric Lagrangian, but will break supersymmetry sponta-

neously if X obtains an F-term vacuum expectation value. Notice that Oδ is a

composite operator, containing both bulk and CFT fields, with total dimension
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δ = 4 + ∆. Such a perturbation yields a term in the D3-brane potential of the

form (19)

∆V ∝ φ∆ . (35)

In the following we will identify the CFT operators O∆ that correspond to per-

turbations of Φ− and hence induce a D3-brane potential; the operator dimensions

∆ will then dictate the structure of possible terms in the D3-brane potential.

3.4.3 Classification of Operators To enumerate the lowest-dimension

contributing operators, we must give a few more details of the structure of the

gauge theory. (More background on the gauge theory dual to the KS throat may

be found in Ref. (42).) The approximate CFT that is dual to the KS throat is an

SU(N+M)×SU(N) gauge theory with bi-fundamental fields Ai, Bi (i, j = 1, 2).

These fields parameterize the Coulomb branch and, in particular, contain the data

specifying the D3-brane position. The single-trace operators built out of the fields

Ai, Bi and their complex conjugates are labeled by their SU(2)A×SU(2)B×U(1)R

quantum numbers (J1, J2, R); this symmetry group corresponds to the isometries

of the base manifold T 1,1. Using the AdS/CFT correspondence, the dimensions

of these operators are given by Eq. (25). In fact, the leading contributions to the

D3-brane potential involve either chiral operators whose dimensions are dictated

by their U(1)R charges, or operators related by supersymmetry to the Noether

currents of the global symmetries, and in either case the dimensions are protected

and could be computed directly in the gauge theory. However, this will not be

true of the operators that induce subleading corrections.

Chiral operators. For J1 = J2 = R/2, one has chiral operators of the form

O∆ = Tr
(

A(i1B(j1A
i2Bj2 . . . A

iR)BjR)

)

+ c.c. (36)
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The dimensions of these operators, ∆ = 3R/2, are fixed by N = 1 superconformal

invariance. The lowest-dimension such operators are

O3/2 = Tr (AiBj) + c.c. , (37)

which have {J1, J2, R} = {1
2 ,

1
2 , 1}. These chiral operators have ∆ = 3/2, and in

generic situations they contribute the leading term in the inflaton potential via

Eq. (35).

Non-chiral operators. There are a number of operators which have the next

lowest dimension, ∆ = 2. For example, there are operators with {J1, J2, R} =

{1, 0, 0}:

O2 = Tr
(

A1Ā2
)

, Tr
(

A2Ā1
)

,
1√
2
Tr
(

A1Ā1 −A2Ā2
)

, (38)

and the corresponding {J1, J2, R} = {0, 1, 0} operators made out of the fields Bj .

These non-chiral operators are in the same supermultiplets as SU(2) × SU(2)

global symmetry currents, and so their dimension is exactly 2.

Table 1: AdS/CFT Dictionary for Warped D-brane Inflation.

Gravity Side Gauge Theory Side

∆L ∆V = T3 Φ−

∇2Φ− = 0

∆V = −
(

φ
φUV

)∆

∆L =
∫

d4θ X†X O∆

O∆ = Tr
(

A(i1B(j1 . . . A
iR)BjR)

)

∆V = −
(

φ
φUV

)∆

∆ eigenvalue of Laplacian operator dimension

φ radial location energy scale

φUV maximal UV radius UV cutoff
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In the event that a discrete symmetry preserved by the full string compactifi-

cation forbids the chiral operators O3/2, the leading contribution to the inflaton

potential comes from O2. This operator classification precisely matches our su-

pergravity analysis in §3.3, and the correspondence is summarized in Table 1.

Finally, note that the contributing composite operators Oδ have dimensions 11/2

and 6, in precisely the range that we argued on general grounds in §2 could yield

order-unity contributions to the eta parameter.

3.5 Summary and Perspective

In §2 we explained how the eta problem is sensitive to dimension-six Planck

suppressed operators. In effective field theory models of inflation one can of course

always assume a solution to the eta problem by a cancellation of the contributing

correction terms; in other words, one can postulate that a flat potential V (φ)

arises after an approximate cancellation among dimension-six Planck-suppressed

corrections. In string theory models of inflation, to follow this path would be to

abdicate the opportunity to use Planck-suppressed contributions as a (limited)

window onto string theory. Moreover, once φ is identified with a physical degree

of freedom of a string compactification, the precise form of the potential is in

principle fully specified by the remaining data of the compactification. (Mixing

conjecture into the analysis at this stage would effectively transform a ‘string-

derived’ scenario into a ‘string-inspired’ scenario; the latter may be interesting

as a cosmological model, but will not contribute to our understanding of string

theory.) Thus, overcoming the eta problem becomes a detailed computational

question. One can in principle compute the full potential from first principles,

and in practice one can often classify corrections to the leading-order potential.
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In this section, we have enumerated the leading corrections for warped D-brane

inflation and showed that an accidental cancellation (or fine-tuning) allows small

eta over a limited range of inflaton values. This gives a non-trivial existence proof

for inflationary solutions in warped throat models with D3-branes.

4 Large-Field Inflation

The UV sensitivity of inflation described in §2 is vastly increased in the special

case of large-field models, i.e. scenarios in which the inflaton traverses a distance

in field space larger than the Planck mass. This class is particularly interesting

because it includes every inflationary model that yields a detectably-large pri-

mordial gravitational wave signal (43), as we now review.

4.1 The Lyth Bound

In single-field slow-roll inflation the power spectrum of tensor fluctuations is

Pt =
2

π2

(

H

Mpl

)2

, (39)

where H is the Hubble expansion rate. During inflation H is approximately

constant, the background spacetime is nearly de Sitter and quantum fluctuations

in any light field such as the metric scale with H. The power spectrum of scalar

fluctuations is

Ps =

(

H

2π

)2
(

H

φ̇

)2

. (40)

The first factor in Eq. (40) represents the power spectrum of the inflaton fluctu-

ations (arising from quantum fluctuations in de Sitter space), while the second

factor comes from the conversion of fluctuations of the inflaton into fluctuations

of the spatial 3-curvature. On scales smaller than the physical horizon, spatial
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curvature fluctuations relate to the observed fluctuations in the matter density

and in the CMB temperature. The ratio between the tensor and scalar fluctuation

amplitudes is

r ≡ Pt

Ps
= 8

(

φ̇

HMpl

)2

. (41)

If we define dN ≡ Hdt, then we may use Eq. (41) to write the field variation

between the end of inflation, Nend, and the time when fluctuations on CMB scales

were generated, Ncmb, as the following integral

∆φ

Mpl
=

∫ Nend

Ncmb

dN

(

r(N)

8

)1/2

. (42)

Since the tensor-to-scalar ratio r(N) is nearly constant during slow-roll inflation,

one can derive the following important relation, originally due to Lyth (43):

∆φ

Mpl
≃ O(1)

(

r⋆
0.01

)1/2

, (43)

where r⋆ is the value of the tensor-to-scalar ratio on CMB scales, r⋆ ≡ r(Ncmb).

In any model with r⋆ > 0.01 one must therefore ensure that ǫ, |η| ≪ 1 over a

super-Planckian range ∆φ > Mpl.

This result implies two necessary conditions for large-field inflation:

i) an obvious requirement is that large field ranges are kinematically allowed,

i.e. that the scalar field space (in canonical units) has diameter > Mpl.

This is nontrivial, as in typical string compactifications many fields are not

permitted such large excursions. (D3-brane inflation in warped throats,

§3, is one class of examples where the kinematic requirement for large field

ranges cannot be fulfilled (44).)

ii) the flatness of the inflaton potential needs to be controlled dynamically over

a super-Planckian field range. We discuss this challenge in effective field

theory in §4.2 and in string theory in §5.
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4.2 Super-Planckian Fields and Flat Potentials

To begin, let us consider super-Planckian field excursions in the context of Wilso-

nian effective field theory.

4.2.1 No Shift Symmetry In the absence of any special symmetries, the

potential in large-field inflation becomes sensitive to an infinite series of Planck-

suppressed operators. The physical interpretation of these terms is as follows: as

the inflaton expectation value changes, any other fields χ to which the inflaton

couples experience changes in mass, self-coupling, etc. In particular, any field

coupled with at least gravitational strength to the inflaton experiences signifi-

cant changes when the inflaton undergoes a super-Planckian excursion. These

variations of the χ masses and couplings in turn feed back into changes of the

inflaton potential and therefore threaten to spoil the delicate flatness required

for inflation. Note that this applies not just to the light (m ≪ H) degrees of

freedom, but even to fields with masses near the Planck scale: integrating out

Planck-scale degrees of freedom generically (i.e., for couplings of order unity)

introduces Planck-suppressed operators in the effective action. For nearly all

questions in particle physics, such operators are negligible, but in inflation they

play an important role.

The particular operators which appear are determined, as always, by the sym-

metries of the low-energy action. As an example, imposing only the symmetry

φ→ −φ on the inflaton leads to the following effective action:

Leff(φ) = −1

2
(∂φ)2− 1

2
m2φ2− 1

4
λφ4−

∞
∑

p=1

[

λpφ
4 + νp(∂φ)2

]

(

φ

Mpl

)2p

+ . . . (44)

Unless the UV theory enjoys further symmetries, one expects that the coefficients

λp and νp are of order unity. Thus, whenever φ traverses a distance of order
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Mpl in a direction that is not protected by a suitably powerful symmetry, the

effective Lagrangian receives substantial corrections from an infinite series of

higher-dimension operators. In order to have inflation, the potential should of

course be approximately flat over a super-Planckian range. If this is to arise

by accident or by fine-tuning, it requires a conspiracy among infinitely many

coefficients, which has been termed ‘functional fine-tuning’ (compare this to the

eta problem, §2.2, which only requires tuning of one mass parameter).

4.2.2 Shift Symmetry There is a sensible way to control this infinite series

of corrections: one can invoke an approximate symmetry that forbids the inflaton

from coupling to other fields in any way that would spoil the structure of the

inflaton potential. Such a shift symmetry,

φ→ φ+ const (45)

protects the inflaton potential in a natural way. (Proposals using shift symmetries

to protect the potential in string inflation include (45,46,21).)

In the case with a shift symmetry, the action of chaotic inflation (47)

Leff(φ) = −1

2
(∂φ)2 − λp φ

p , (46)

with small coefficient λp is technically natural. However, because we require

that this symmetry protects the inflaton even from couplings to Planck-scale

degrees of freedom, it is essential that the symmetry should be approximately

respected by the Planck-scale theory – in other words, the proposed symmetry of

the low-energy effective action should admit a UV-completion. Hence, large-field

inflation should be formulated in a theory that has access to information about

approximate symmetries at the Planck scale. Let us remark that in effective field

theory in general, UV-completion of an assumed low-energy symmetry is rarely
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an urgent question. The present situation is different because we do not know

whether all reasonable effective actions can in fact arise as low-energy limits of

string theory, and indeed it has been conjectured that many effective theories do

not admit UV-completion in string theory (48,49,50). Therefore, it is important

to verify that any proposed symmetry of Planck-scale physics can be realized in

string theory.

To construct an inflationary model with detectable gravitational waves, we are

therefore interested in finding, in string theory, a configuration that has both

a large kinematic range, and a potential protected by a shift symmetry that is

approximately preserved by the full string theory.

5 Case Study of Large-Field Inflation: Axion Monodromy

We now turn to our second case study, an example of large-field inflation in string

theory. As we have just discussed, the particular challenge in these models is the

need to control an infinite series of contributions to the inflaton potential, arising

from couplings of the inflaton to degrees of freedom with masses near the Planck

scale. Direct enumeration and fine-tuning of such terms (as in the small-field

example in §3) is manifestly impractical, and it appears essential to develop a

symmetry argument controlling or forbidding these terms.

An influential proposal in this direction is Natural Inflation (51), in which a

pseudo-Nambu-Goldstone boson (i.e., an axion) is the inflaton. At the perturba-

tive level, the axion a enjoys a continuous shift symmetry a → a + const which

is broken by nonperturbative effects to a discrete symmetry a → a + 2π. The

nonperturbative effects generate a periodic potential

V (φ) =
Λ4

2

[

1 − cos

(

φ

f

)]

+ . . . , (47)
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where Λ is a dynamically-generated scale, f is known as the axion decay constant,

φ ≡ af , and the omitted terms are higher harmonics. The reader can easily verify

from Eq. (2) that if the omitted terms are negligible and f > Mpl, this potential

can drive prolonged inflation.

As explained above, an important question, in any proposed effective theory in

which a super-Planckian field range is protected by a shift symmetry, is whether

this structure can be UV-completed. We should therefore search in string theory

for an axion with decay constant f > Mpl.

5.1 Axions in String Theory

5.1.1 Axions from p-Forms Axions are plentiful in string compactifica-

tions, arising from p-form gauge potentials integrated on p-cycles of the compact

space. For example, in type IIB string theory, there are axions bi = 2π
∫

Σi
B aris-

ing from integrating the Neveu-Schwarz (NS) two-form B over two-cycles Σi, as

well as axions ci = 2π
∫

Σi
C arising from the Ramond-Ramond (RR) two-form C.

In the absence of additional ingredients such as fluxes and space-filling wrapped

branes, the potential for these axions is classically flat and has a continuous shift

symmetry which originates in the gauge invariance of the ten-dimensional ac-

tion. Instanton effects break this symmetry to a discrete subgroup, bi → bi + 2π

(ci → ci+2π). This leads to a periodic contribution to the axion potential whose

periodicity we will now estimate. We will find that the axion decay constants are

smaller than Mpl in known, computable limits of string theory (52,53). Readers

less familiar with string compactifications can accept this assertion and skip to

§5.2 without loss of continuity.
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5.1.2 Axion Decay Constants in String Theory Let ωi be a basis for

H2(X,Z), the space of two-forms on the compact space X, with
∫

Σi
ωj = α′δ j

i .

The NS two-form potential B may be expanded as

B =
1

2π

∑

i

bi(x)ω
i , (48)

with x the four-dimensional spacetime coordinate. The axion decay constant can

be inferred from the normalization of the axion kinetic term, which in this case

descends from the ten-dimensional term

1

(2π)7g2
sα

′4

∫

d10x
1

2
|dB|2 ⊃ 1

2

∫

d4x
√−g γij(∂µbi∂µbj) , (49)

where

γij ≡ 1

6(2π)9g2
sα

′4

∫

X
ωi ∧ ⋆ωj (50)

and ⋆ is the six-dimensional Hodge star. By performing the integral over the

internal space X and diagonalizing the field space metric as γij → f2
i δij , one can

extract the axion decay constant fi.

It is too early to draw universal conclusions, but a body of evidence suggests

that the resulting axion periodicities are always smaller than Mpl in computable

limits of string theory (52, 53). As this will be essential for our arguments, we

will illustrate this result in a simple example. Suppose that the compactification

is isotropic, with typical length-scale L and volume L6. Then using

α′M2
pl =

2

(2π)7
L6

g2
sα

′3
(51)

we find from Eq. (50) that

f2 ≈M2
pl

α′2

6(2π)2L4
. (52)

In controlled compactifications we require L ≫
√
α′, so that f ≪ Mpl. Qualita-

tively similar conclusions apply in much more general configurations (52,53).
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5.2 Axion Inflation in String Theory

The above result would seem to imply that Natural Inflation from a single axion

field cannot be realized in known string compactifications: string theory provides

many axions, but none of these has a sufficiently large field range. However, there

are at least two reasonable proposals to circumvent this obstacle.

5.2.1 N-flation The first suggestion was that a collective excitation of

many hundreds of axions could have an effective field range large enough for in-

flation (46,54). This ‘N-flation’ proposal is a specific example of assisted inflation

(55), but, importantly, one in which symmetry helps to protect the axion potential

from corrections that would impede inflation. Although promising, this scenario

still awaits a proof of principle demonstration, as the presence of a large number

of light fields leads to a problematic renormalization of the Newton constant, and

hence to an effectively reduced field range. For recent studies of N-flation see

(56,57).

5.2.2 Axion Monodromy We will instead describe an elementary mecha-

nism, monodromy, which allows inflation to persist through multiple circuits of a

single periodic axion field. A system is said to undergo monodromy if, upon trans-

port around a closed loop in the (naive) configuration space, the system reaches

a new configuration. A spiral staircase is a canonical example: the naive configu-

ration space is described by the angular coordinate, but the system changes upon

transport by 2π. (In fact, we will find that this simple model gives an excellent

description of the potential in axion monodromy inflation.) The idea of using

monodromy to achieve controlled large-field inflation in string theory was first

proposed by Silverstein and Westphal (20), who discussed a model involving a

D4-brane wound inside a nilmanifold. In this section we will focus instead on the
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subsequent axion monodromy proposal of Ref. (21), where a monodromy arises

in the four-dimensional potential energy upon transport around a circle in the

field space parameterized by an axion.

Monodromies of this sort are possible in a variety of compactifications, but

we will focus on a single concrete example. Consider type IIB string theory on

a Calabi-Yau orientifold, i.e. a quotient of a Calabi-Yau manifold by a discrete

symmetry that includes worldsheet orientation reversal and a geometric involu-

tion. Specifically, we will suppose that the involution has fixed points and fixed

four-cycles, known as O3-planes and O7-planes, respectively. If in addition the

compactification includes a D5-brane that wraps a suitable two-cycle Σ and fills

spacetime, then the axion b = 2π
∫

ΣB can exhibit monodromy in the potential

energy. (Similarly, a wrapped NS5-brane produces monodromy for the axion

c = 2π
∫

Σ C.) In other words, a D5-brane wrapping Σ carries a potential energy

that is not a periodic function of the axion, as the shift symmetry of the axion

action is broken by the presence of the wrapped brane; in fact, the potential

energy increases without bound as b increases.

In the D5-brane case, the relevant potential comes from the Dirac-Born-Infeld

action for the wrapped D-brane,

SDBI =
1

(2π)5gsα′3

∫

M4×Σ
d6ξ

√

det(G+B) (53)

=
1

(2π)6gsα′2

∫

M4

d4x
√−g

√

(2π)2ℓ4Σ + b2 , (54)

where ℓΣ is the size of the two-cycle Σ in string units. The brane energy, Eq. (54),

is clearly not invariant under the shift symmetry b → b + 2π, although this is a

symmetry of the corresponding compactification without the wrapped D5-brane.

Thus, the DBI action leads directly to monodromy for b. Moreover, when b≫ ℓ2Σ,

the potential is asymptotically linear in the canonically-normalized field ϕb ∝ b.
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Before we give more details of the effects of compactification on the axion

potential, let us qualitatively summarize the inflationary dynamics in this model.

One begins with a D5-brane wrapping a curve Σ, upon which
∫

ΣB is taken to

be large. In other words, the axion b has a large initial vev. Inflation proceeds

by the reduction of this vev, until finally
∫

ΣB = 0 and the D5-brane is nearly

‘empty’, i.e. has little worldvolume flux. During this process the D5-brane does

not move, nor do any of the closed-string moduli shift appreciably. For small

axion vevs, the asymptotically linear potential we have described is inaccurate,

and the curvature of the potential becomes non-negligible; see Eq. (54). At this

stage, the axion begins to oscillate around its origin. Couplings between the axion

and other degrees of freedom, either closed string modes or open string modes,

drain energy from the inflaton oscillations. If a sufficient fraction of this energy

is eventually transmitted to visible-sector degrees of freedom – which may reside,

for example, on a stack of D-branes elsewhere in the compactification – then the

hot Big Bang begins. The details of reheating depend strongly on the form of

the couplings between the Standard Model degrees of freedom and the inflaton,

and this is an important open question, both in this model and in string inflation

more generally. (For representative work on reheating after string inflation, see

(58).)

5.3 Compactification Considerations

Having explained the essential idea of axion monodromy inflation, we must still

ensure that the proposed inflationary mechanism is compatible with moduli sta-

bilization and can be realized in a consistent compactification. An immediate

concern is whether there are additional contributions to the potential, beyond
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the linear term identified above, that could have important effects during infla-

tion. As we have emphasized throughout this review, one expects that in the

absence of a symmetry protecting the inflaton potential, generic corrections due

to moduli stabilization will contribute ∆η ∼ O(1). It is therefore essential to

verify that the continuous shift symmetry which protects the inflaton potential

is preserved to an appropriate degree by the stabilized compactification. For the

special case of moduli stabilization in which nonperturbative effects play a role,

ensuring that the shift symmetry is not spoiled can be quite subtle. We will now

explain this point, but readers less interested in the details can skip to §5.4.

5.3.1 Axion Shift Symmetries in String Theory We first observe that

a continuous shift symmetry b→ b+ const forbids all non-derivative terms in the

effective action for b, but does not constrain terms involving only the spacetime

derivative ∂µb. Therefore, the shift symmetry is unbroken to the extent that all

non-derivative terms are constrained to vanish.

We now check this criterion in the example of interest by recalling the classic

Dine-Seiberg treatment (59) of axion shift symmetries in string theory. Dine

and Seiberg proved that to any order in perturbation theory (in the absence of

D-branes), the effective action for the axion b can only be a function of ∂µb,

i.e. b has a shift symmetry. To show this, they observed that the zero-momentum

coupling of b (corresponding to non-derivative terms) is a total derivative on the

worldsheet, and hence vanishes when the worldsheet has no boundary and wraps

a topologically trivial cycle in spacetime.

Their argument proceeds as follows. The two-form B couples to the worldsheet

as (60)

i

2πα′

∫

Σ
d2ξ ǫαβ∂αX

µ∂βX
νBµν(X) , (55)
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whereXµ are the spacetime coordinates and ξα are two-dimensional string world-

sheet coordinates; i.e. Eq. (55) is the pullback of B onto the worldsheet. If B

is imagined to be a constant in spacetime, then the above coupling is a total

derivative on the worldsheet. Equivalently, the zero-momentum portion of the

axion effective action in spacetime arises from a total-derivative term on the

string worldsheet. (In general backgrounds, B is not constant, but it is the cou-

pling of the constant portion of B that governs zero-momentum terms in the

four-dimensional effective action.)

Hence, if the string worldsheet has no boundary and is topologically trivial,

the zero-momentum coupling of the axion b must vanish, and the axion therefore

cannot have any non-derivative couplings. Thus, as long as the worldsheet has no

boundary, the axion has no non-derivative couplings to any order in sigma-model

perturbation theory (i.e., the perturbation theory of the quantum field theory

living on the string worldsheet, whose coupling constant is the inverse space-

time curvature in units of α′), because worldsheets wrapping nontrivial curves in

the ten-dimensional spacetime contribute only nonperturbatively, as worldsheet

instantons.

However, closed string worldsheets can develop boundaries in the presence of

D-branes, on which the strings can break and end. Therefore, in a compacti-

fication without D-branes, the shift symmetry of b is preserved to all orders in

perturbation theory, while in a compactification containing D-branes, the shift

symmetry can be violated.

5.3.2 The Eta Problem for b In the present setting, we have deliberately

invoked D5-branes, in order to produce a monodromy in the potential. However,

provided that this potential, which we identified with the inflaton potential, is the
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leading effect breaking the shift symmetry, the resulting structure is technically

natural.

Although this sounds promising, in the case of the b axion there is in fact an

additional ingredient which also breaks the axion shift symmetry. Kähler moduli

stabilization is accomplished, in a well-studied class of models (27, 28), by the

inclusion of nonperturbative effects, e.g. from Euclidean D3-branes (D3-brane

instantons). Such effects can circumvent the Dine-Seiberg argument given above,

because Euclidean D-branes are nonperturbative effects and provide boundaries

for string worldsheets.

We will now sketch the specific difficulty presented by Euclidean D3-branes,

referring the interested reader to Ref. (21) for details. Supposing for simplic-

ity that there is only one Kähler modulus, T , the superpotential is of the form

W = W0 +A exp(−2π T ), where the exponential term is the Euclidean D3-brane

contribution. At the energy scales in question, W0 and A are constants depending

on the stabilized values of the complex structure moduli and of the dilaton. Fur-

thermore, the Kähler potential takes the form (61) K = −3M2
pl ln(T + T̄ − d b2),

with d a constant depending on the intersection numbers of the compactifica-

tion and on the stabilized value of the dilaton. Although a shift of b can be

compensated in the Kähler potential by a shift of T + T̄ , the superpotential is

then not invariant. Clearly, the continuous shift symmetry is broken by the non-

perturbative superpotential term generated by Euclidean D3-branes. Euclidean

D3-branes therefore make important contributions to the potential of b, and in

fact generate an eta problem. One can easily verify (21) that this is precisely

analogous to the eta problem in D3-brane inflation.
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5.3.3 Flat Potential for c The situation may seem discouraging, be-

cause even a shift symmetry that was valid to all orders in perturbation theory

has turned out to be inadequate to protect the inflaton potential! However, we

will now find an even more potent symmetry in the case of the c axion.

Although the NS axion b and the RR axion c have many shared features, a

crucial distinction is that c couples to D1-branes, via the electric coupling

∫

Σ
C , (56)

but does not couple directly to D3-branes (or to D3-brane instantons) that carry

vanishing D1-brane charge. Thus, if the moduli are stabilized exclusively by

instantons to which c does not couple, even nonperturbative moduli stabilization

will not violate the shift symmetry of c. We refer to Ref. (21) for a description

of compactifications in which this mechanism is operative.

These considerations suggest the following scenario. Instead of a wrapped D5-

brane introducing a potential for a b axion, we consider a wrapped NS5-brane

that provides a potential for a c axion. Even in the presence of nonperturbative

stabilization of the Kähler moduli, such an axion can enjoy the protection of a

shift symmetry over a super-Planckian range. The corresponding inflationary

scenario is natural in the technical sense.

5.4 Summary and Perspective

In §4 we showed that an observable gravitational wave signal correlates with the

inflaton field moving over a super-Planckian distance during inflation. Effective

field theory models of large-field inflation then require a shift symmetry to protect

the flatness of the potential over a super-Planckian range. It has therefore become

an important question whether such shift symmetries arise in string theory and
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can be used to realize large-field inflation.

In this section, we argued that the first examples of shift symmetries in string

theory that protect the potential over a super-Planckian range are becoming

available. We explained the dual role of the monodromy: i) it results in a large

kinematic field range ∆φ > Mpl by allowing a small fundamental domain to be

traversed repeatedly, and ii) in combination with the shift symmetry it controls

corrections to the potential over a super-Planckian range. The shift symmetry,

only weakly broken by V , controls corrections ∆V within a fundamental domain,

and furthermore relates corrections in one fundamental domain to those in any

other. Monodromy therefore effectively reduces a large-field problem to a small-

field problem (20).

Although more work is required to understand these models and the compact-

ifications in which they arise, monodromy appears to be a robust and rather

promising mechanism for realizing large-field inflation, and hence an observable

gravitational wave signal, in string theory.

6 Outlook

6.1 Theoretical Prospects

As we hope this review has illustrated, theoretical progress in recent years has

been dramatic. A decade ago, only a few proposals for connecting string theory to

cosmology were available, and the problem of stabilizing the moduli had not been

addressed. We now have a wide array of inflationary models motivated by string

theory, and the best-studied examples among these incorporate some information

about moduli stabilization. Moreover, a few mechanisms for inflation in string

theory have been shown to be robust, persisting after full moduli stabilization
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with all relevant corrections included.

Aside from demonstrating that inflation is possible in string theory, what has

been accomplished? In our view the primary use of explicit models of inflation

in string theory is as test cases, or toy models, for the sensitivity of inflation

to quantum gravity. On the theoretical front, these models have underlined the

importance of the eta problem in general field theory realizations of inflation;

they have led to mechanisms for inflation that might seem unnatural in field

theory, but are apparently natural in string theory; and they have sharpened our

understanding of the implications of a detection of primordial tensor modes.

It is of course difficult to predict the direction of future theoretical progress,

not least because unforeseen fundamental advances in string theory can be ex-

pected to enlarge the toolkit of inflationary model-builders. However, it is safe to

anticipate further gradual progress in moduli stabilization, including the appear-

ance of additional explicit examples with all moduli stabilized; entirely explicit

models of inflation in such compactifications will undoubtedly follow. At present,

few successful models exist in M-theory or in heterotic string theory (however,

see e.g. (62) et seq.), and under mild assumptions, inflation can be shown to be

impossible in certain classes of type IIA compactifications (63, 64, 65). It would

be surprising if it turned out that inflation is much more natural in one weakly-

coupled limit of string theory than in the rest, and the present disparity can be

attributed in part to the differences among the moduli-stabilizing tools presently

available in the various limits. Clearly, it would be useful to understand how

inflation can arise in more diverse string vacua.

The inflationary models now available in string theory are subject to stringent

theoretical constraints arising from consistency requirements (e.g., tadpole can-
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cellation) and from the need for some degree of computability. In turn, these

limitations lead to correlations among the cosmological observables, i.e. to pre-

dictions. Some of these constraints will undoubtedly disappear as we learn to

explore more general string compactifications. However, one can hope that some

constraints may remain, so that the set of inflationary effective actions derived

from string theory would be a proper subset of the set of inflationary effective

actions in a general quantum field theory. Establishing such a proposition would

require a far more comprehensive understanding of string compactifications than

is available at present.

6.2 Observational Prospects

The theoretical aspects of inflation described in this review are interesting largely

because they can be tested experimentally using present and future cosmological

data. In order to describe this connection, we will very briefly review recent

achievements and near-future prospects in observational cosmology.

6.2.1 Present and Future Observations Observations of the cosmic

microwave background anisotropies, of the distribution of galaxies on the sky,

and of the redshift-luminosity relations of type Ia supernovae have transformed

cosmology into an exact science. This has revealed a strange universe filled

with 73% dark energy, 23% dark matter, and only 4% baryons. In addition,

we now have a firm qualitative understanding of the formation of large-scale

structures, like the cosmic web of galaxies, through the gravitational instability

of small primordial fluctuations. The perturbation spectrum that forms the seeds

of these structures is found to be nearly (but not exactly) scale-invariant, nearly

Gaussian, and adiabatic (10), precisely as predicted by the simplest models of
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inflation (11,12).

Future observations will dramatically extend our knowledge of the primordial

fluctuations, probe further details of the inflationary paradigm, and allow us to

constrain or exclude a considerable fraction of the proposed scenarios for infla-

tion. The Planck satellite will measure the temperature anisotropies of the CMB

with unprecedented accuracy over a large range of scales; in combination with

small-scale CMB experiments (e.g. ACT (66) and SPT (67)) this will provide

crucial information on deviations of the scalar spectrum from scale-invariance,

Gaussianity and adiabaticity.

CMB polarization experiments from the ground (e.g. Clover (68), QUIET (69),

and BICEP (70)) and from balloons (e.g. EBEX (71) and SPIDER (72)) promise

to provide the first significant constraints on inflationary tensor perturbations. A

planned CMB polarization satellite (CMBPol (12,18,73)) would be designed to be

sensitive enough to detect B-modes down to a tensor-to-scalar ratio of r = 0.01,

thereby including all models of large-field inflation (∆φ > Mpl).

6.2.2 UV Physics in the Sky? The most dramatic confirmation of infla-

tion would come from a detection of B-mode polarization, which would establish

the energy scale of inflation and would indicate that the inflaton traversed a

super-Planckian distance. As we have argued in this review, super-Planckian dis-

placements are a key instance in which the inflaton effective action is particularly

sensitive to the physics of the Planck scale. As a concrete example of the discrim-

inatory power of tensor perturbations, any detection of primordial gravitational

waves would exclude the warped D3-brane inflation scenario of §3 (44), while an

upper bound r < 0.07 (or a detection with r ≫ 0.07) would exclude the axion

monodromy scenario of §5 (21).
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A further opportunity arises because single-field slow-roll inflation predicts null

results for many cosmological observables, as the primordial scalar fluctuations

are predicted to be scale-invariant, Gaussian and adiabatic to a high degree. A de-

tection of non-Gaussianity, isocurvature fluctuations or a large scale-dependence

(running) would therefore rule out single-field slow-roll inflation. Inflationary ef-

fective actions that do allow for a significant non-Gaussianity, non-adiabaticity or

scale-dependence often require higher-derivative interactions and/or more than

one light field, and such actions arise rather naturally in string theory. Although

we have focused in this review on the sensitivity of the inflaton potential to

Planck-scale physics, the inflaton kinetic term is equally UV-sensitive, and string

theory provides a promising framework for understanding the higher-derivative

interactions that can produce significant non-Gaussianity (39,74).

Finally, CMB temperature and polarization anisotropies induced by relic cos-

mic strings or other topological defects provide probes of the physics of the end

of inflation or of the post-inflationary era. Cosmic strings are automatically pro-

duced at the end of brane-antibrane inflation (75,76), and the stability and phe-

nomenological properties of the resulting cosmic string network are determined

by the properties of the warped geometry. Detecting cosmic superstrings via

lensing or through their characteristic bursts of gravitational waves is an exciting

prospect.

6.3 Conclusions

Recent work by many authors has led to the emergence of robust mechanisms

for inflation in string theory. The primary motivations for these works are the

sensitivity of inflationary effective actions to the ultraviolet completion of gravity,
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and the prospect of empirical tests using precision cosmological data. String

theory models of inflation have now achieved a reasonable level of theoretical

control and are genuinely falsifiable by observational data. Indeed, many string

inflation models are already significantly constrained by the current data (77). A

more difficult question is how cosmological observations might possibly provide

evidence in favor of a string theory model of inflation. Present observations and

present theoretical considerations do not oblige us to expect an eventual positive

result. However, if we are fortunate enough to detect evidence for string theory

in the sky, this will most plausibly arise through a distinctive signature that is

unnatural, albeit presumably possible, in field theory models. Perhaps the best

hope would be a striking correlation of many observables.

The theoretical community will eagerly await the coming generation of exper-

imental results (12), in the hope of extracting further clues about the physical

properties of the early universe.
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