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Wrapped branes in string compactifications introduce a monodromy that extends the field

range of individual closed-string axions to beyond the Planck scale. Furthermore, approxi-

mate shift symmetries of the system naturally control corrections to the axion potential. This

suggests a general mechanism for chaotic inflation driven by monodromy-extended closed-

string axions. We systematically analyze this possibility and show that the mechanism is

compatible with moduli stabilization and can be realized in many types of compactifica-

tions, including warped Calabi-Yau manifolds and more general Ricci-curved spaces. In this

broad class of models, the potential is linear in the canonical inflaton field, predicting a

tensor to scalar ratio r ≈ 0.07 accessible to upcoming cosmic microwave background (CMB)

observations.
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1 Introduction: Axion Recycling

An important class of inflationary models [1], chaotic inflation [2], involves an inflaton field

excursion that is large compared to the Planck scale MP [3]. These models have a GUT-

scale inflaton potential, and are accessible to observational tests via a B-mode polarization

signature in the CMB [4, 5].

The Planckian or super-Planckian field excursions required for high-scale inflation may

be formally protected by an approximate shift symmetry in effective field theory. A canonical

class of examples with a field excursion ∆Φ ' MP , known as Natural Inflation, employs a

pseudo-Nambu-Goldstone boson mode (an axion) as the inflaton [6, 7].

Because inflation is sensitive to Planck-suppressed operators, however, it is still of sig-

nificant interest to go beyond effective field theory and realize inflation in string theory, a

candidate ultraviolet completion of gravity. Conversely, CMB observations which discrimi-

nate among different inflationary mechanisms provide an opportunity to probe some basic

features of the ultraviolet completion of gravity.

The lightest scalar fields in string compactifications roughly divide into radial and an-

gular moduli. Radial moduli, such as the dilaton and the compactification volume, have an

unbounded field range as they go toward weak-coupling limits. In these limits their con-

tributions to the potential are typically very steep, not sourcing large-field inflation in any

example yet studied. Angular moduli, such as axions, have potentials that are classically

protected by shift symmetries. However, in the case of axions it has been argued that the

field range contained within a single period is generally sub-Planckian in string theory [8],

leading to proposals to extend the field range by combining many axions [9].

In the present work, we show that in the presence of suitable wrapped branes, the po-

tential energy is no longer a periodic function of the axion. When this monodromy in the

moduli space is taken into account, a single axion develops a kinematically unbounded field

range with a potential energy growing linearly with the canonically normalized inflaton field.

This implements the monodromy mechanism introduced in [10] in a wide class of string

compactifications.

Because the basic idea is very simple, let us indicate it here. Axions arise in string com-

pactifications from integrating gauge potentials over nontrivial cycles. For example, in type

IIB string theory, there are axions bI =
∫

Σ
(2)
I
B arising from integrating the Neveu-Schwarz

(NS) two-form potential BMN over two-cycles Σ
(2)
I , and similarly axions cI =

∫
Σ

(2)
I
C arise

from the Ramond-Ramond (RR) two-form CMN . In the absence of additional ingredients

such as fluxes and space-filling wrapped branes, the potential for these axions is classically

flat, and develops a periodic contribution from instanton effects. A Dp-brane wrapping Σ
(2)
I ,

on the other hand, carries a potential energy that is not a periodic function of the axion:

in fact, this energy increases without bound as bI increases. The effective action for such a
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wrapped brane is the DBI action, given in terms of the embedding coordinates XM(ξ) as s

SDBI = −
∫
dp+1ξ

(2π)p
α′−(p+1)/2e−Φ

√
det (GMN +BMN) ∂αXM∂βXN (1.1)

where we have omitted the corresponding Chern-Simons term, which will be unimportant

for our considerations. A key example is a D5-brane wrapped on a two-cycle Σ(2) of size

`
√
α′, which yields a potential

V (b) =
ε

gs(2π)5α′2

√
`4 + b2 (1.2)

that is linear in the axion field b at large b. (Here we have included a factor ε to represent

the effects of warping, which we describe more carefully below.) Similarly, an NS5-brane

wrapped on Σ
(2)
I introduces a monodromy in the cI direction.

Monodromy is a common phenomenon in string compactifications. In the past, it has been

studied extensively in the context of particle states in field theory [11] and the corresponding

non-space-filling wrapped branes of string theory [12]. The present case of monodromy in the

potential energy arises when a would-be periodic direction γ is “unwrapped” by the inclusion

of an additional space-filling ingredient whose potential energy grows as one moves in the

γ direction, extending the kinematic range of the corresponding scalar field. Because the

wrapped branes are space-filling, their charge must be cancelled within the compactification.

We will do so with an antibrane wrapped on a distant, homologous two-cycle as depicted in

Fig. 2 in §4 below.

In the bulk of this paper, we analyze the conditions under which this yields controlled

large-field inflation in string theory. We find a reasonably natural class of viable models. As

is usually the case in inflationary model building from string theory, much of the challenge is

to gain systematic control of Planck-suppressed corrections to the effective action. After en-

suring that our candidate inflaton potential does not destabilize the compactification moduli,

and that fluxes do not affect the structure of our candidate inflaton potential, we establish

that instanton effects, which produce sinusoidal contributions to the axion potential, can be

naturally suppressed. We assess these conditions for both perturbative and nonperturbative

stabilization mechanisms, drawing examples based both on Calabi-Yau compactifications

and on more general compactifications that break supersymmetry at the Kaluza-Klein scale.

In the case of nonperturbative stabilization mechanisms in type IIB string theory, we find

a controlled set of models for the RR two-form axions cI , while perturbative stabilization

mechanisms suggest opportunities for inflating in the bI as well as in the cI directions. These

varied implementations of our axion monodromy mechanism give identical predictions for the

overall tilt and tensor to scalar ratio in the CMB, as they are all well-described by a linear

potential for a canonically-normalized inflaton.1 Our prediction for these quantities lies well

1There may also be novel signatures from finer details of the power spectrum originating in the repeated
circuits of the fundamental axion period, as we discuss further below.
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within the exclusion contours from present data [13], and is ultimately distinguishable from

the predictions of other canonical models via planned CMB experiments [5, 14] (see Fig. 3).

Our mechanism relies on specific additional ingredients – branes – intrinsic in the ul-

traviolet completion of gravity afforded by string theory. Although string theory restricts

the range of the original axion period in the first place, it then recycles a single axion via

monodromy, providing a simple generalization of [2, 6] with its own distinctive predictions.

The subject of axion inflation has thus almost come full circle.2

2 Axions and the Candidate Inflaton Action

Axions in string theory arise from integrating gauge potentials over nontrivial cycles in the

compactification manifold X. Let ΣI , I = 1, . . . h1,1(X) be an integral basis of H2(X,Z),

and let ωI be a dual basis of H2(X,Z), with
∫

ΣI
ωJ = α′δ J

I . Then for the Neveu-Schwarz

two-form potential B(2), let us write

B(2) = bI(x)ωI2 (2.3)

with x the four-dimensional spacetime coordinate.

In the case of type II theories, additional axions arise from integrating the RR p-form

potentials over p-cycles. Taking ωα, α = 1, . . . bp(X), to be a basis of Hp(X,Z) dual to an

integral homology basis, we can write

C(p) = c(p)
α (x)ωαp (2.4)

In type IIB string theory, for example, we have an RR two-form C(2) which will play a key

role in the case of Calabi-Yau compactifications.

The period of these axions, collectively denoted by a = {b or c}, is

a→ a+ (2π)2 (2.5)

as can be seen from the worldsheet coupling (i/2πα′)
∫

Σ
(2)
I
B in the case of B(2).

2.1 Axion Kinetic Terms

In order to analyze the possibility of inflation with axions, we will need their kinetic and

potential terms. The classical kinetic term3 for the bI fields descends from the |H3|2 term in

the ten-dimensional action, with H3 = dB. In terms of the metric

ds2 = gµνdx
µdxν + gijdy

idyj (2.6)

2Though we hope to have added something to the subject this time around.
3The kinetic terms are in general corrected by worldsheet instantons or D-instantons, in the cases of b

and c, respectively. In our examples below we will ensure that these instanton effects are negligible in our
inflationary solutions.
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we have∫
d10x

√
g

(2π)7g2
sα
′4

1

2
|H|2 ⇒ Skin,b =

∫
d10x

12(2π)7g2
sα
′4
√
ggµν∂µbI∂νbJω

I
ijω

J
i′j′g

ii′gjj
′

(2.7)

and similarly for the C(p) fields, with F (p+1) = dC(p):∫
d10x

√
g

(2π)7α′4
1

2
|F (p+1)|2 ⇒ Skin,c =

∫
d10x

2(2π)7(p+ 1)!α′4
√
ggµν∂µcI∂νcJω

I
i1...ip

ωJi′1...i′pg
i1i′1 . . . gipi

′
p

(2.8)

To simplify the presentation we will now restrict attention to bI and to c
(2)
α ≡ cI , but the

extension to other c
(p)
α is immediate. The four-dimensional kinetic terms for our axions bI , cI ,

collectively denoted as aI = {bI or cI}, may then be written

Skin =
1

2

∫
d4x
√
g4 γ

IJ gµν∂µaI∂νaJ ≡
1

2

∫
d4x
√
g4

∑
I

f 2
aI

(∂a′I)
2 ≡ 1

2

∫
d4x
√
g4

∑
I

(∂φaI )
2

(2.9)

where in the second equality we have diagonalized the metric γIJ , and in the third equality we

have defined the canonically-normalized axion field φaI for the Ith axion of type a = {b or c}.
In much of this paper, we will focus on a single axion at a time, and use the notation φa for

its canonically normalized field. The canonically normalized inflaton field has periodicity

φa → φa + (2π)2fa (2.10)

corresponding to (2.5).

Using (2.7), (2.8), the axion kinetic term depends on the geometry of the compactification

via

γIJ =
1

6(2π)7g2
sα
′4

∫
ωI ∧ ? ωJ (2.11)

for bI , and

γIJ =
1

6(2π)7α′4

∫
ωI ∧ ? ωJ (2.12)

for cI . To express these results in terms of the four-dimensional reduced Planck mass MP,

we use

α′M2
P =

2

(2π)7

V
g2
s

(2.13)

where Vα′3 is the volume of the compactification.

We will use (2.11), (2.12), guided by [8, 15], to determine the decay constants in our

specific examples below. To provide intuition, we now record the result in the simplified case

in which all length scales L
√
α′ in the compactification are the same (and V ≡ L6). From

(2.7) and (2.8) we obtain

φ2
b ∼

L2

3g2
s(2π)7α′

b2, φ2
c ∼

L6−2p

3(2π)7α′
c2 (one scale) (2.14)
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Using (2.13) this gives

φ2
b

M2
P

∼ b2

6L4
,

φ2
c

M2
P

∼ g2
sc

2

6L4
(one scale) (2.15)

2.2 Wrapped Fivebrane Action

As discussed in the introduction, wrapping appropriate branes on cycles threaded by B(2)

and C(p) introduces a non-periodic potential for the axions b and c. This follows immediately

from the DBI action (1.1) in the case of D-branes on cycles with B fields, and can be seen

by duality to apply to (p,q) fivebranes on cycles with both B and C fields.

For D5-branes on a two-cycle Σ(2) of size `
√
α′ with b axions turned on, or NS5-branes

on a two-cycle with a c axion, we have

V (b) =
ε

gs(2π)5α′2

√
`4 + b2 V (c) =

ε

g2
s(2π)5α′2

√
`4 + c2g2

s (2.16)

where ε encodes warp-factor dependence to be discussed in §4. A similar contribution arises

from an anti-fivebrane wrapped on a distant, homologous two-cycle as depicted in Fig. 2

below.

In the large-field regime of interest, this potential is linear in the axion a, and hence in

the canonically normalized field φa:

V (φa) ≈ µ3
aφa (2.17)

with µa a function of the parameters of the compactification that depends on the model. We

will analyze its structure in detail in several specific models in §4 and §5.

Let us also note a useful dual formulation of (1.2), (2.16) which elucidates the monodromy

effect introduced by the wrapped brane. Consider a D5-brane in type IIB string theory

wrapped on a two-cycle arising as the blowup cycle of a supersymmetric R3×S1/Z2 orbifold;

this is equivalent to a fractional D3-brane at the orbifold singularity. There is a T-dual,

“brane box”, description of this configuration, in which the fractional D3-brane becomes

a D4-brane stretched between two NS5-branes on a T-dual circle (see e.g. [16]). Moving

in the b direction through multiple periods in closed string moduli space in the original

description corresponds to moving one of the NS5-branes around the circle, dragging the

D4-brane around with it so as to introduce multiple wrappings. This T-dual description

makes the linear potential manifest; see Fig. 2.

2.3 Basic Phenomenological Requirements

Our candidate inflaton action takes the form

S =

∫
d4x
√
g
(1

2
(∂φa)

2 − µ3
aφa

)
+ corrections (2.18)
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NS5

NS5D4-brane

Figure 1: T-dual, “brane box”, description of this configuration, in which the fractional D3-

brane becomes a D4-brane stretched between two NS5-branes on a T-dual circle. Moving

in the b direction through multiple periods in closed string moduli space in the original

description corresponds to moving one of the NS5-branes around the circle, dragging the

D4-brane around with it so as to introduce multiple wrappings.

where we indicated corrections which we will analyze below, suppressing them using sym-

metries, warping, and the natural exponential suppression of nonperturbative effects.

In order to obtain 60 e-folds of accelerated expansion, inflation must start at φa ∼ 11MP .

In addition, the quantum fluctuations of the inflaton must generate a level of scalar curvature

perturbation ∆R|60 ' 5.4× 10−5, with

∆R|Ne =

√
1

12π2

V 3

M6
PV
′2

∣∣∣∣∣
Ne

(2.19)

This requires

µa ∼ 6× 10−4MP (2.20)

Given fa = φa/a and the above results, the number of circuits of the fundamental axion

period (2π)2fa required for inflation is

Nw = 11
MP

fa(2π)2
(2.21)

We will compute this number of circuits in each of the specific models below. In the very

simple case with all cycles of the same size, this gives, using (2.15),

Nw ∼ 11
√

6
L2

(2π)2
(one scale) (2.22)

for b, while the requisite number of circuits for an RR inflaton c is larger by a factor 1/gs.

2.4 Constraints on Corrections to the Slow-Roll Parameters

Our next task is to ensure that the inflaton potential Vinf ≈ µ3
aφa is the primary term in

the axion potential. All other contributions to the axion potential must make negligible
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contributions to the slow roll parameters

ε =
M2

P

2

(
V ′

V

)2

η = M2
P

V ′′

V
(2.23)

A good figure of merit to keep in mind is that Planck-suppressed dimension-six operators

such as V (φ − φ∗)
2/M2

P , with φ∗ a constant, contribute O(1) corrections to η. In what

follows, we will analyze the conditions for sufficiently suppressing corrections to the slow-roll

parameters.

Our specific setups discussed below will include reasonably generic examples which nat-

urally suppress these corrections well below the one percent level, as is required in standard

slow-roll inflation. In other examples, instanton-induced sinusoidal corrections to the po-

tential lead to oscillating shifts in η of order one. Let us pause to assess the conditions on

the slow-roll parameters in monodromy-driven inflation. In this class of models, the brane-

induced inflaton potential is the leading effect breaking the approximate shift symmetry in

the inflaton direction; other effects – in particular, instantons, in the case of our axion models

– produce periodic corrections to the potential. In general, such models can tolerate larger

oscillating contributions to η, as we now explain.

In the present situation, the corrections ∆ε and ∆η to the slow-roll parameters oscillate

as a periodic function of a = φa/fa with period (2π)2. The potential becomes steeper and

flatter repeatedly during the evolution, and because these two effects can compensate each

other, it is worth analyzing carefully what level of suppression of the amplitude of ∆η is

really necessary to ensure 60 e-folds of inflation overall.

Let us simply give order-of-magnitude, parametric estimates for the net effect of the

steeper and flatter regions. It would be interesting to study this in more detail, with an eye

toward ancillary observational signatures which might arise in the power spectrum of density

perturbations.

The potential takes the form4

V = µ3
aφa + Λ4 cos

(
φa

2πfa

)
(2.24)

with Λ a constant determined by the instanton action.

The second term yields an oscillating contribution to η given, for Λ� µ3
aφa, by

η = M2
p

(
1

2πfa

)2
Λ4

µ3
aφa

cos

(
φa

2πfa

)
(2.25)

The condition that the slope V ′(φa) be non-negative can be written as

11η
2πfa
MP

≤ 1 (2.26)

4Here for simplicity we neglect terms proportional to φacos(φa/2πfa), as they produce subdominant
corrections to the slow roll parameters.
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where we used (2.25) and the fact that φa ≤ 11MP during the 60 e-folds of inflation in our

linear potential.

Let us assume that averaging over the oscillations, the system remains in its slow-roll

regime, and check the conditions for this to be self-consistent. The average field velocity is

then

φ̇a ' −
µ3
a

3H
, (2.27)

and the time ∆t during a period ∆φa ∼ (2π)2fa is of order ∆φa
φ̇a
∼ 3(2π)2faH/µ

3
a. Using

this and the fact that η is of order φ̈a/Hφ̇a, we obtain the change ∆φ̇+ in the field velocity

during the (half-)period in which the potential is relatively steep:

∆φ̇+ ∼ |η|(2π)2faH (2.28)

Similarly, on the flat regions of the potential, φ̈a + 3Hφ̇a ' 0, and we obtain

∆φ̇− ∼ −(2π)2faH (2.29)

Thus, we see that the kinetic energy does not build up over each full period of oscillation

between steeper and flatter potential energy – which ensures that potential-energy dominated

inflation proceeds – as long as |η| . 1. Again, many of the specific examples realizing axion

monodromy inflation described below naturally yield much smaller corrections to η, but

this possibility of larger oscillations in other examples is an intriguing new element worth

investigating further in future work.

3 Necessary Conditions for Controlled Inflation

So far, we have a candidate for inflation along the direction φa, with potential Vinf ≈ µ3
aφa.

We must now ensure that the proposed inflaton action (2.18) indeed arises in a consistent and

controllable string compactification. This entails a series of nontrivial conditions dictated

not directly by observations, but by our goal of producing a consistent and computable string

realization. We first briefly summarize these requirements, then, in the following subsections,

show how each of them can be met. As in [6], we will use the natural exponential suppression

of instanton corrections to the axion potential.

The first, rather obvious condition is that the axion a which is to serve as the inflaton

is actually part of the spectrum. This constrains the structure of the orientifold action used

in moduli stabilization; however, we expect that some suitable modes do survive a generic

orientifold projection. Next, we must demonstrate that the proposed inflaton potential is

in fact the dominant contribution to the total potential for a: additional effects in the

compactification must make subleading contributions to the axion potential. Specifically,

couplings to fluxes and periodic contributions from instantons (worldsheet instantons and

10



D-brane instantons, in the cases of b and c, respectively) must therefore be controlled or

eliminated. Next, we must show that the energy stored in the axion does not source excessive

distortion of the local geometry near the wrapped branes. Finally, the inflaton potential must

remain subdominant to the moduli-stabilizing potential, and shifts in the moduli during

inflation must not give large corrections to the inflaton potential.

3.1 Axions and the Orientifold Projection

We must first ensure that the axions b, c of interest are part of the spectrum. That is,

the orientifolds which are crucially used in moduli stabilization (or their generalizations

in F-theory) must project in the required modes. Some of the conditions for this in the

case of type IIB Calabi-Yau O3/O7 orientifolds appear in [17, 18], where the corresponding

multiplets consist of b and c fields descending from Kähler moduli hypermultiplets in the

“parent” unorientifolded Calabi-Yau manifold.

The worldsheet orientation reversal Ω which is part of every orientifold projection acts

with a (-1) on the Neveu-Schwarz two-form potential BMN . However, orientifolds typically

include a geometric projection – a reflection I9−p on some 9−p directions – at the same time.

Two simple situations in which axions are projected in are the following. First, a BMN field

with one leg along the orientifold p-plane and the other transverse to it will be projected in

by the full ΩI9−p action. Second, the orientifold may exchange two separate cycles Σ1 and

Σ2, independent in homology in the covering space, into each other. This projects in one

combination of the two axions of the parent theory.

3.2 Conditions on the Potential

A generic string compactification will generate additional contributions to the potential for

φa going beyond the candidate inflaton potential (2.16) (2.17). In this subsection, we will

describe the conditions for these corrections to be consistent with inflation.

3.2.1 Conditions on Flux Couplings

We must first ensure that background fluxes do not couple to the putative inflaton in such a

way as to introduce problematic contributions to the potential. Ramond-Ramond fluxes F̃q
include Chern-Simons corrections of the form B2∧Fq−2 and Cq−3∧H3. These contributions,

if present in the flux compactification being used to stabilize the moduli, yield masses for

the corresponding components of b and c through the terms proportional to |F̃q|2 in the

ten-dimensional Lagrange density.

The extra contributions to the generalized field strengths give contributions of the form∫
d10x

√
g

16(2π)7α′4
|B2 ∧ Fp|2 (3.30)

11



or, in the C(p) case, ∫
d10x

√
g

16(2π)7α′4
|Cp ∧H3|2 (3.31)

to the effective action (for definiteness we have given the normalizations for the case of |F̃5|2
in type IIB). It is worth emphasizing that in type IIB flux compactifications on Calabi-Yau

orientifolds, the class of fluxes that are consistent with the no-scale structure derived in

[19, 17], namely imaginary self-dual fluxes, do not contribute to the axion potential: the

axionic fields enjoy a no-scale cancellation of their contribution to the flux-induced potential

[17].

In more general models we will have to ensure that we can make analogous choices of

fluxes to remove flux contributions to the axion potential. If the wedge products (3.30),

(3.31) are nonzero, and if the relevant flux Fp or H3 contributes leading moduli-stabilizing

terms of order the barriers in Umod, then the corresponding axion may be obstructed from

being the inflaton. As an example, consider the case of a product manifold. The coupling

(3.30) scales like ∫
d10x

√
g

16(2π)7α′4
|Fp|2|b/L2|2 ≈

∫
d10x
√
g

3|Fp|2

8(2π)7α′4
φ2
b

M2
P

(3.32)

while the contribution of the Fp flux to the moduli potential scales like∫
d10x

√
g

2(2π)7α′4
|Fp|2 ∼

∫
d4x
√
g4 Umod (3.33)

Thus, a super-Planckian excursion of the φb field would lead to a contribution (3.32) which

would overwhelm the moduli-stabilizing barriers.5 Similar comments apply to curvature

couplings and generalized fluxes.

3.2.2 Effects of Instantons

The effective action for axions is corrected by instanton effects. Worldsheet instantons de-

pend periodically on b type axions, while Euclidean D-branes (D-brane instantons) introduce

periodic dependence on the c type axions (and non-periodic, exponentially damped depen-

dence on b/gs). Both types of instantons are exponentially suppressed in the size of the cycle

wrapped by the Euclidean worldsheet or worldvolume.6

5There are interesting ideas for obtaining a large field range via large-N gauge theory [20], which on
the gravity side might involve warped-down flux-induced monodromy. This may provide a way to use flux
couplings to introduce an inflationary axion potential consistent with moduli stabilization, but this question
requires further analysis.

6One may also consider nonperturbative effects arising in Euclidean quantum gravity, as explored in [21];
these are exponentially suppressed in the controlled regime of weak coupling and weak curvature.
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First, consider the kinetic terms in the effective action. These take the form

1

2

∫
d4x
√
gf 2

a (∂a)2
(

1 + ε1fper(a)
)

(3.34)

where fper(a) is a periodic function of a ' a + (2π)2 normalized to have amplitude 1. This

changes the canonically normalized field to be

φa = fa

∫ a

da′
√

1 + ε1fper(a′) (3.35)

Suppressing corrections to the slow roll parameters requires sufficiently small ε1. In terms

of the bare canonically normalized field φ
(0)
a , our periodic function varies on a scale of order

(2π)2fa: fper = fper(φ
(0)
a /fa). Thus for small ε1, the potential expanded about a local

minimum φ∗ of fper is of the form

Vinf (φa) ' µ3
aφa

(
1 + ε1

(φa − φ∗)2

(2πfa)2

)
= µ3φa

(
1 + ε1

(
MP

2πfa

)2
(φa − φ∗)2

M2
P

)
(3.36)

Thus if

ε1 . 10−2

(
2πfa
MP

)2

≈ 1

4π2N2
w

(3.37)

then the instanton corrections to the kinetic terms do not affect inflation, since the slow roll

parameters ε =
M2

P

2
(V
′

V
)2 and η = M2

P
V ′′

V
remain of order 10−2.

Next, let us consider instanton corrections arising directly in the potential energy term

in the effective action. These we can write as (using similar notation to that above)

Vinf (φa) ∼ µ3
aφa

(
1 + ε2gper(φa/fa)

)
+ ε3

hper(φa/fa)

α′2
(3.38)

As before, let us assess sufficient conditions on ε2 and ε3 to ensure that instanton corrections

to the slow-roll parameters are negligible. From the first term in (3.38), we see that

ε2 . 10−2

(
2πfa
MP

)2

≈ 1

4π2N2
w

(3.39)

From the second term, we find

ε3 . 10−2

(
2πfa
MP

)2 (
Vinfα

′2) ≈ Vinfα
′2

4π2N2
w

(3.40)

Note that the conditions we have imposed here may be relaxed, as discussed in §2.4, because

of the oscillatory nature of the corrections. We will obtain negligibly small corrections to

η in a simple subset of our specific examples below, but it is worth keeping in mind the

possibility of a larger oscillating contribution in other examples.
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So far we have enumerated conditions on the amplitudes εi, i = 1, 2, 3 of various instanton

contributions to the effective action. In order to implement these conditions, we need to

relate the εi to parameters of the stabilized string compactification in a given model. An

exponentially small coefficient εi arises automatically if the instanton wraps a cycle larger

than the string scale. For instantons wrapping small cycles, εi may still be small if the kinetic

term is protected by local supersymmetry in the region near the cycle, or if the instanton

dynamics is warped down. We will consider several of these cases in the specific models

discussed below.

3.3 Constraints from Backreaction on the Geometry

We obtained the effective potential from our wrapped fivebrane using standard results from

ten-dimensional string theory. A basic condition for control of our models is the absence of

backreaction of the brane on the ambient geometry, so that this ten-dimensional analysis

is valid to a good approximation. In particular, the core size rcore of our wrapped brane,

including the effects of the axion, must be smaller than the smallest curvature radius R⊥
transverse to it in the compactification.

A single D5-brane is pointlike at weak string coupling, and a single NS5-brane is string-

scale in size. However, in our regime of interest the branes in effect carry Nw ∼ a/(2π)2

units of D3-brane charge. Nw D3-branes produce a backreaction at a length scale rcore of

order

r4
core ∼ 4πα′2gsNw (3.41)

Thus in order to avoid significant backreaction on our compactification geometry, we require

Nw �
R4
⊥

4πgsα′2
(3.42)

The one-scale expression for Nw derived in §2.3 suggests that this condition will be straight-

forward to satisfy, since the right hand side of (3.42) is ∝ R4, while the expression (2.22)

scales like two powers of the relevant length scale in the problem. However, fitting GUT-

scale inflation into a stabilized compactification requires high moduli-stabilizing potential

barriers, which puts constraints on how large the ambient compactification may be. We will

implement this condition in the specific models to follow.

3.4 Constraint from the Number of Light Species

A related but slightly more subtle condition concerns new light species that arise in our brane

configuration at large b or c. The effectively large D3-brane charge Nw introduces of order

N2
w light species. It is important to check the contribution this makes to the renormalized

four-dimensional Planck mass. In the regime gsNw > 1, the effect of the D3-brane charge

is best estimated using the gravity side of the (cutoff) AdS/CFT correspondence, following
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Randall and Sundrum [22]. As just discussed, in the regime (3.42), the size rcore of the gravity

solution for the D3-branes is smaller than the ambient size L
√
α′ of the compactification.

This leads to a negligible contribution to M2
P .

3.5 Consistency with Moduli Stabilization

A further condition is that our inflaton potential, which depends on the moduli as well

as on φa, not exceed the scale of the potential barriers Umod separating the system from

weak-coupling and large-volume runaway directions in moduli space:

Vinf (φa)� Umod (3.43)

Since our large-field inflation model has a GUT-scale inflaton potential, this requires high

moduli-stabilizing potential barriers.

One must also ensure that the shifts in the moduli induced by the inflaton potential do not

appreciably change the shape of the inflaton potential: in other words, the moduli-stabilizing

potential must not only have high barriers, it must also have adequate curvature at its

minimum. A self-consistent way to analyze such shifts is to use an adiabatic approximation,

in which the moduli σ adjust to sit in instantaneous minima σ∗(φ) determined by the inflaton

VEV:

∂σ

(
Vinf (φ, σ) + Umod(σ)

)∣∣∣
σ=σ∗(φ)

= 0 (3.44)

One then computes the correction this introduces in the inflaton potential V (φ, σ∗(φ)) and

checks whether this correction is negligible.

For moduli stabilization mechanisms which use perturbative effects, this condition is

satisfied provided (3.43) holds, as explained in §2.4.2 of [10]. Let us briefly summarize

this here. The volume and string coupling are exponentials in the canonically normalized

fields σ; for example the volume is Vα′3 = V∗e
√

3σv/MPα′3 where V∗ is the stabilized value

of the volume and σv is the canonically-normalized field describing volume fluctuations. In

perturbative stabilization mechanisms, the leading terms in the moduli potential scale like

powers of L ≡ V1/6: schematically,

Umod ∼
∑
n

cn
Ln

(3.45)

where the coefficients cn depend on other moduli in a similar way. Putting these two facts

together, we see that derivatives of the inflaton potential Vinf and the moduli-stabilizing

potential Umoduli with respect to σ/MP scale like the potential terms themselves. Combining

the tadpole from the inflaton potential Vinf with the mass squared from the moduli potential

Umod yields the moduli shifts
σ

MP

∼ Vinf
Umod

(3.46)
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Plugging this back into the potential yields corrections which change its shape. However,

these are small, giving corrections to η of order ηVinf/Umod.
For mechanisms we will study which employ exponential (e.g. instanton) effects to sta-

bilize the volume [23, 24], the structure of the potential is schematically [17, 18]

Umod ∼
∑
n,m

cn
Ln

exp
(
−Cm

(
L4/gs + γ̃b2

))
(3.47)

where γ̃ is a factor of order unity. From this we can analyze two important consistency

conditions.

First, let us discuss the moduli shifts. In the expression (3.47), there are still power-law

prefactors in the potential (arising from the rescaling of the potential to Einstein frame)

which lead to a similar suppression in the tadpoles for the volume and the string coupling

as in the perturbatively-stabilized case. Furthermore, there are additional contributions to

the masses of the moduli from differentiating the exponential terms which can enhance the

masses relative to the perturbatively-stabilized case, further suppressing the tadpoles.

Second, it will be important to keep track of which combinations of geometrical moduli

and axions are stabilized by a given moduli-stabilization mechanism in calculating the slow-

roll parameters. In the scenario [23], a combination of the volume and b type axions of the

form L4/gs+ γ̃b2 is what is stabilized by Umod. This leads to an η problem for inflation along

the direction of any Neveu-Schwarz axion b, analogous to the η problem identified in [25]. In

this class of models, we will therefore be led to consider instead RR two-form axion inflation.

4 Specific Models I: Warped IIB Calabi-Yau Compactifications

In this section and in §5, we implement our basic strategy in several reasonably concrete

models, imposing the consistency conditions delineated above. This is an important ex-

ercise, necessary in order to ensure that it is indeed possible to satisfy all the conditions

together. Needless to say, there are many ways to generalize – and potentially simplify –

these constructions, and we will indicate along the way some further directions for model

building.

There are two classes of examples which differ in which combinations of scalar fields are

stabilized by the moduli-fixing potential. In the case of mechanisms such as those outlined

in [19, 23, 24, 26] which employ nonperturbative effects in a low-energy supersymmetric

formulation, the moduli potential stabilizes a combination of the geometric and axion modes.

In perturbative stabilization mechanisms such as those outlined in [27, 28, 29, 30], the volume

and other geometrical moduli are directly stabilized. These latter cases will be discussed in

§5.

One canonical class of examples arises in warped flux compactifications of type IIB string

theory on orientifolds of Calabi-Yau threefolds. After a telegraphic review of the resulting
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low-energy supergravity, we show that nonperturbative stabilization of the Kähler moduli

leads to an η problem for a candidate inflaton b descending from B(2). We then demonstrate

that this problem is absent when C(2) is the inflaton, and furthermore show that the leading

remaining dependence of the potential on c, from Euclidean D1-branes, may be naturally

exponentially suppressed. Inflation driven by a wrapped NS5-brane which introduces mon-

odromy in the RR two-form axion direction is therefore a reasonably robust and natural

occurrence in warped IIB compactifications.

4.1 Multiplet Structure, Orientifolds, and Fluxes

Consider a compactification of type IIB string theory on a Calabi-Yau threefold. The result-

ing four-dimensional N = 2 supergravity contains h1,1 + 1 hypermultiplets, one of which is

the universal hypermultiplet containing the axio-dilaton τ . The remaining hypermultiplets

have as bosonic components bA, cA,ReTA, ImTA ≡ θA, where θA =
∫

Σ
(4)
A
C4, and TA is the

N = 1 complexified Kähler modulus, defined more carefully below. The axions suitable for

monodromy inflation with wrapped fivebranes are in the (bA, cA) half of these hypermulti-

plets. The overall volume and other size moduli are contained in the TA.

We now consider orientifold actions, which break N = 2→ N = 1 and play an important

role in moduli stabilization. We will particularly focus on orientifold actions whose fixed loci

give O3-planes and O7-planes. For the orientifold action we take

O = (−1)FLΩσ (4.48)

where σ is a holomorphic involution of the Calabi-Yau, under whose action the cohomology

groups split as:

H(r,s) = H
(r,s)
+ ⊕H(r,s)

− (4.49)

We correspondingly divide the basis ωA, A = 1, . . . h1,1 into ωα, α = 1, . . . h1,1
+ and ωI , I =

1, . . . h1,1
− . As explained in detail in [17], half of the fields are invariant under the orientifold

projection and are kept in the four-dimensional theory. Specifically, Kähler moduli Tα

corresponding to even cycles and axionic moduli GI = cI − τbI corresponding to odd cycles

survive the projection.

Let us indicate two classes of odd cycles we can project in by orientifolding Calabi-Yau

manifolds. The first, considered in [17, 18], consists of zero-size cycles which intersect the

orientifold fixed plane in a locus of real dimension one. In this case, the orientifold can project

in BMN and CMN with their legs oriented so that M (say) is parallel and N transverse to

the orientifold fixed plane. The size modulus for the two-cycle is projected out in this case.

The second construction arises when the orientifold maps two separate cycles Σ1 and Σ2,

independent in homology in the covering space, into each other. In this situation, the size

modulus T+ of the even combination Σ+ of the two two-cycles is projected in, while the G

modulus G− of the odd combination Σ− of the two-cycles is projected in. It is important to
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note that this requires the sizes v1 and v2 of the two-cycles in the covering Calabi-Yau space

to be the same: v1 = v2 ≡ 1
2
v+. The odd volume modulus v− = v1 − v2 – the difference

in size of the two-cycles – is projected out. Note that this allows for a situation in which

there are no small geometrical sizes anywhere in the orientifold, if v+ is large. In particular,

as long as v+ is large, the fact that v− is zero does not indicate the presence of any small

curvature radii or small geometrical sizes in the compactification.

Let us consider the latter ‘free exchange’ case for definiteness. In order to straightfor-

wardly satisfy Gauss’ law in the compactification, it is simplest to consider two families of

two-cycles Σ1 and Σ2, extending into warped regions of the parent Calabi-Yau. Within each

family, place a fivebrane in a local minimum of the warp factor, and an anti-fivebrane at

a distant local minimum of the warp factor. The orientifold exchanges the two families,

yielding families of (anti)invariant two-cycles Σ+(Σ−). The warped fivebrane, with its mon-

odromy in the axion direction, provides our candidate inflationary potential energy. This is

illustrated schematically in Fig. 2.

As a standard example, we may consider a warped throat which is approximately given

by AdS5×X5, where X5 is an Einstein space, the two factors have common curvature radius

R ∼ L
√
α′, and the throat is cut off in the IR and UV [22, 31, 19].

ds2 = e2A(r)ηµνdx
µdxν + e−2A(r)

(
dr2 + r2ds2

X5

)
(4.50)

with warp factor eA(r) ∼ r/R.

To complete the definition of the Kähler moduli, we first define the Kähler form J = vαω
α.

The compactification volume Vα′3 satisfies7

V =
(2π)6

6
cαβγvαvβvγ (4.51)

where cαβγ are the triple intersection numbers. Then the complexified Kähler modulus is

given by [17]

Tα =
3

4
cαβγvβvγ +

3

2
iθα +

3

8
eφcαIJGI(G− Ḡ)J (4.52)

In the instructive simple case where h
(1,1)
+ = 1 (so that the index α takes a single value, L,

corresponding to the overall volume modulus), the classical Kähler potential for the sector

descending from non-universal hypermultiplets takes the form

K = −3 log

(
TL + T̄L +

3

2
e−φcLIJbIbJ

)
+ . . . (4.53)

The quantity inside the logarithm depends only on the overall volume and string coupling.

7This formula follows our convention (2.13); another common convention is to define the volume in units
of ls = 2π

√
α′ (see the appendix of [32]).
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anti
5B

5B

5B

∫
C(2) = c

anti
5B

Figure 2: Schematic of tadpole cancellation. Blue: Two-real-parameter family of two-

cycles Σ1, drawn as spheres, extending into warped regions of the Calabi-Yau. Red: We have

placed a fivebrane in a local minimum of the warp factor, and an anti-fivebrane at a distant

local minimum of the warp factor. In the lower figure, Σ1 is drawn as the cycle threaded by

C(2), and global tadpole cancellation is manifest.

Moduli stabilization is essential for any realization of inflation in string theory, and we

must check its compatibility with inflation in each class of examples. In type IIB compactifi-

cations on Calabi-Yau threefolds, inclusion of generic three-form fluxes stabilizes the complex

structure moduli and dilaton [19]. A subset of these three-form fluxes – imaginary self-dual

fluxes – respect a no scale structure [19, 18]. This suffices to cancel the otherwise dangerous

flux couplings described in §3.2.1.

4.2 An Eta Problem for B

In this class of compactifications, however, the stabilization of the Kähler moduli leads to an

η problem in the b direction. This problem arises because the nonperturbative effects (e.g.
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from Euclidean D3-branes or strong dynamics on wrapped sevenbranes) stabilize the Kähler

moduli [23] Tα rather than directly stabilizing the overall volume Vα′3.

Consider a setup with one or more D5-branes wrapping a curve Σ
(2)
I ; as already explained,

bI is the candidate inflaton in this case. Now, the action for a Euclidean D3-brane wrapping

the even four-cycle Σ
(4)
L is proportional to TL, so the nonperturbative superpotential depends

specifically on the Kähler modulus TL,8

WED3 = Ae−aLTL (4.54)

On the other hand, the compactification volume involves a combination (4.53) of the Kähler

modulus and the would-be inflaton bI . The volume appears in the four-dimensional potential,

as usual, through the rescaling to Einstein frame; equivalently, the volume V appears in the

F-term potential via the prefactor eK . This inflaton-volume mixing is exactly analogous to

the problem encountered for D3-brane inflatons in [25]; just as in that case, expansion of

the potential around the stabilized value of TL immediately reveals a Hubble-scale mass for

the canonically-normalized field φb corresponding to the axion b. Hence η ∼ 1, preventing

prolonged inflation.9

We remark that this problem is apparently absent for the case of a perturbatively-

stabilized volume. Moreover, because the volume depends on bI but not on cI , inflaton-

volume mixing is also not a problem for a model in which cI is the inflaton, which we now

consider in detail.10

4.3 Instantons and the Effective Action for RR axions

We are now led to consider a compactification on an orientifold of a Calabi-Yau, in which

one or more NS5-branes wrap a curve Σ
(2)
I , and the leading moduli-stabilizing effects from

fluxes and Euclidean D3-branes – or gaugino condensation effects – do not contribute to the

potential for cI . The next task is to determine whether there are any further contributions

to the inflaton potential which might lead to overly strong dependence on our candidate

inflaton direction cI . In particular, Euclidean D1-branes, when present, introduce sinusoidal

contributions. So we must study and control the effects of Euclidean D1-branes.

4.3.1 Instanton Contributions to the Superpotential

A priori, one might expect the superpotential to take the schematic form

W =

∫
(F3−τH3)∧Ω+Ae−aLTL+Be−ã(v+−G−/(2π)2)+Ce−aLTL−aLG−/(2π)2 +∆W (T+), (4.55)

8We will soon consider the possibility of axion dependence in the prefactor A; aL is a constant.
9Note that this is not an oscillating contribution to η, and hence must be suppressed well below O(1).

10In [33] it was recognized that bI receives a mass from the leading nonperturbative stabilization effects,
whereas cI does not.
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where for simplicity of presentation we have restricted attention to a single pair of cycles

freely exchanged by the orientifold, with corresponding fields T+, G−, as well as an additional

four-cycle Σ
(4)
L associated with the overall volume; the prefactors A,B,C are constants.

Let us discuss each term in turn. The first two terms represent the moduli-stabilizing

contributions of [19] and [23]; we will discuss additional features arising in the case of the large

volume scenario [24] below. The next putative term represents the contribution of Euclidean

D1-branes. Here v+ is the volume of the orientifold-even two-cycle Σ
(2)
+ ; as explained in [17],

v+ belongs to a linear multiplet, not a chiral multiplet. Holomorphy therefore forbids the

superpotential from depending on v+ (said another way, the proper Kähler coordinates are

TL, T+, which are four-cycle volumes), but at the same time any Euclidean D1-brane effect

must vanish at large volume. So the final term in (4.55) must be absent [34].

The next term, proportional to C, represents Euclidean D1-brane corrections to the

Euclidean D3-brane action (which we will refer to as ED3-ED1 contributions), in the case

without wrapped sevenbranes on the corresponding four-cycle. (We will discuss the case of

strong dynamics on sevenbranes further below.) When present, this arises from a Euclidean

D1-brane dissolved as flux in a Euclidean D3-brane; see e.g. [35]. Such a contribution

requires that (a supersymmetric representative of) the two-cycle carrying our C(2) axion be

embedded in the (supersymmetric) four-cycle wrapped by the original Euclidean D3-brane.

When the cycles are configured in this way, the resulting dependence of the superpotential

on cI appears to be unsuppressed compared to the leading moduli-dependence, and in those

cases one should worry that the moduli-stabilizing superpotential gives the inflaton a large

mass-squared, of order Umod/(2πfa)2 > H2.

We could attempt to control this effect using warping. That is, if the two-cycle in

question, and all two-cycles in its homology class, are localized in a warped region, then the

coefficient C in (4.55) is suppressed, on dimensional grounds, by three powers of the warp

factor eAtop at the top of the two-cycle fixed locus in the throat

C ∼ e3Atop . (4.56)

Since this contribution was marginally dangerous to begin with, a modest warp factor sat-

isfying

e3Atop < ∆η(2πfa/MP )2, (4.57)

with ∆η constrained as described in §2.4, suffices to avoid significant contributions to the

slow-roll parameters.

However, examples generating this contribution to the superpotential are tightly con-

strained with respect to the basic backreaction condition (3.42), as follows. A computation

of the kinetic term for c shows11 that the axion decay constant fc is proportional to the max-

imal warp factor arising in the homology class of the corresponding two-cycle: fc ∼ eAtop f̂c.

11This analysis proceeds as in [22], with c a bulk scalar field in the throat, or alternatively by the method
reviewed in §2.1.
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This implies Nw ∼ 11e−Atop/(f̂c(2π)2). Putting this together with (3.42), we obtain the

constraint eAtop > 11f̂c/(πgsMP ). But the condition (4.57) is equivalent to the condition

eAtop < (2π)2∆ηf̂ 2
c /M

2
P . Together these would require ∆η > 11MP/(4π

3g2
s f̂c).

Because of these issues, we will consider examples where the dangerous ED3-ED1 terms

do not arise. One situation in which this occurs naturally is the following. Consider, as in

[23], the case that the moduli-stabilizing nonperturbative superpotential arises from gaugino

condensation on sevenbranes wrapping four-cycles. In that situation, the physics below the

KK scale of the four-cycles is given by pure N = 1 SU(NL) supersymmetric Yang-Mills

theory. In terms of its holomorphic gauge coupling τYM = θ/(4π) + i/g2
YM , this theory has

an exact superpotential of the form [36]

W = Λ3 = Ae
8π2

NL
iτYM (4.58)

In order to determine the dependence of our superpotential on TL and G− (and in general

on other moduli), we must determine the Yang-Mills gauge coupling, including all significant

threshold corrections to it at the KK scale. The Yang-Mills gauge coupling on the seven-

branes is classically given by 8π2/g2
YM = 2πReTL (in the absence of magnetic two-form flux

on the D7-branes [37]), and similarly for other four-cycles in cases with more Kähler moduli.

Comparing to (4.58), we can identify the parameter aL in (4.55) as 2π/NL for this case.

The holomorphic gauge coupling function τYM , like the superpotential itself [34], is con-

strained by holomorphy combined with the condition that in our weakly-coupled regime, all

nonperturbative corrections decay exponentially as the curvature radii grow. This means

that τYM , like W , cannot develop pure ED1 corrections of order e−2πG−/NL ; instead, the

leading correction to the gauge coupling function must be exponentially suppressed in TL.

Plugging this into (4.58), we see that the leading corrections from such threshold effects to the

superpotential itself are exponentially suppressed relative to the leading moduli-stabilizing

terms in (4.55). In particular, the coefficient C in (4.55) is negligible in this setup.

4.3.2 Instanton Contributions to the Kähler potential

Next, we note that the corrected Kähler potential can be written schematically as follows12

(with similar terms depending on T+):

K = −3 log

(
TL + T̄L +

3

2
e−φcLIJbIbJ + C+ Re e−2πv+−G−/(2π)

)
+ . . . (4.59)

In contrast to the holomorphic gauge coupling and superpotential just discussed, the Kähler

potential is not protected by holomorphy. The dependence on φc arising through the ap-

pearance of G− in (4.59) can naturally be suppressed to the necessary extent by using the

12See e.g. [38] for related work in the type I string.
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exponential suppression in the size v+ of the two-cycle. The ED1 contribution here yields a

shift of η of order

∆η ∼ Umod
Vinflation

(2π)2C+

gs
e−2πv+ (4.60)

This is straightforward to suppress with a modest blowup v+ of the even cycle. (Alternatively,

one may consider the possibility discussed in §2 of larger oscillating contributions to η.)

In general, there are several mechanisms one can consider for suppressing instanton ef-

fects, including use of local symmetries, warping, and (as just mentioned) exponential sup-

pression of instanton effects with the geometrical sizes of cycles they wrap. Let us elaborate

on the latter approach, which is likely to be the generic situation.

In the KKLT mechanism of moduli stabilization, nonperturbative effects are used to

stabilize Kähler moduli. Consider using this mechanism to stabilize the Kähler modulus

T+ corresponding to the geometric size of the two-cycle wrapped by our NS5-brane (strictly

speaking, the Kähler modulus corresponds to the size of the dual four-cycle, and we implicitly

use the relation between the Tα’s and vα’s.) In doing this, we must keep both T+ and the

overall volume sufficiently small that the barrier heights exceed the GUT scale of our inflaton

potential, which takes the form (2.16):

V (c) =
ε

g2
s(2π)5α′(6−p)/2

√
v2

+ + c2g2
s (4.61)

The v+ dependence in (4.61) tends to compress the wrapped two-cycle, so a crucial consis-

tency condition, as discussed in §3.2 for the overall volume and dilaton, is that the modulus

T+ be stabilized strongly enough so as not to shift in such a way as to destabilize inflation.

As in §3.2, we must therefore compare the tadpole from (4.61) with the scale of the mass in-

troduced by the moduli stabilization potential Umod. Unlike the overall volume, T+ need not

be exponentially related to its canonical field σ+ if it makes a subleading contribution to the

physical volume V appearing in the Kähler potential, so we must assess its shift separately.

It is convenient – and equivalent – to work out the shift δv+ of v+ rather than that of

the canonically normalized field σ+, and then substitute the result back into the potential

to determine the size of the resulting corrections to slow roll parameters in the φc direction.

We obtain from the added exponential terms in Umod the leading contributions to the mass

term for δv+

∂2
v+
Umod ∼

(∂T+

∂v+

)2

Umod ∼ (c++LvL + 2c+++v+)2Umod (4.62)

The tadpole introduced by the expanding the inflaton potential (4.61) in powers of v2
+/(cgs)

2

is of order

∂v+V ∼ V
v+

(cgs)2
(4.63)

This leads to a shift in v+ of order

δv+ ∼
V

Umod
(v+/c

2g2
s)

(c++LvL + 2c+++v+)2
(4.64)
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and a corresponding correction to the full scalar potential of order

∆Utot ∼ V
V

Umod
(v+/c

2g2
s)

2

(c++LvL + 2c+++v+)4
(4.65)

This shift is negligible since 1� v+ � cgs.

Once the cycle v+ is stabilized at a value larger than string scale, the Euclidean D1-brane

corrections to the Kähler potential are exponentially suppressed. This provides a natural

mechanism for ensuring the conditions (3.37), (3.39), (3.40) that ε1, ε2, and ε3 are sufficiently

small.

4.3.3 Effects of Enhanced Local Supersymmetry

In some cases, the instanton corrections might be small without blowing up the cycle Σ
(2)
I .

There is ongoing research on stringy instanton effects; a systematic understanding of these

effects would substantially improve our ability to build concrete axion inflation models. In

particular, in some recent works, desired D-instanton corrections were difficult to obtain

because of cancellations arising from extra fermion zero modes [39]. For our purposes this

cancellation is advantageous; one situation in which it is particularly likely is when the region

near the two-cycle locally preserves extra supersymmetry. A more specific setup of this sort

is one in which our two-cycle is locally a C2/Z2 orbifold blowup cycle in a warped throat. In

particular, consider such an orbifold singularity, with the fixed point locus extending up the

radial direction of the warped throat to a maximal warp factor eAtop (see Fig. 2) and along

a circle of size 2πR in the internal X5 directions.

In this case, in the local six-dimensional system the modulus vI corresponds to a geo-

metrical blowup of the two-cycle, and is linearly related to the canonically normalized scalar

field (as can be seen for example by its T-dual relation to relative positions of NS5-branes).

In the case of a Klebanov-Strassler throat, for example, we can orbifold to obtain a fixed

point locus which extends radially up the warped throat and along an S1 within the internal

T 1,1, as follows. In the standard presentation of the deformed conifold,

4∑
i=1

z2
i = ε2 (4.66)

we obtain this with an orbifold action under which (z1, z2, z3, z4) → (−z1,−z2, z3, z4). This

system has N = 4 supersymmetry locally, and the extended nature of the fixed point locus

of the orbifold implies the presence of bosonic and fermionic zero modes corresponding to the

collective coordinates describing the instanton’s position in the radial direction and along

the S1 within the T 1,1. For this configuration, we note that using (2.12), the axion decay

constant is given by

φc ∼
c√
α′
eAtop

(
R√
α′

)
∼MP e

Atop
cgs
L2

(4.67)
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where again we keep track of the maximal warp factor in the region explored by the entire

family of homologous blowup two-cycles, a quantity which is determined by the way in which

the warped throat is connected to the rest of the compactification. It is worth emphasizing

that the simplest methods we outlined above for suppressing corrections to the slow-roll

parameters do not require warping of the entire family of two-cycles; one may simply take

eAtop ∼ 1 provided that the cycle wrapped by the NS5-brane is stabilized at finite volume

and that the moduli-stabilizing nonperturbative effects arise from sevenbranes.

4.4 Backreaction Condition

Let us next address the question of backreaction of our wrapped brane inside the warped

Calabi-Yau. The basic condition (3.42) becomes

Nw �
π3

4
Re(TL) (4.68)

where we used the relation Re(TL) = Vol4
(2π)4gs

between the chiral field TL and the size Vol4α
′2

of the corresponding four-cycle in the Calabi-Yau (which we then identified with L4 ∼
(2R⊥)4/α′2). Now let us combine this with the condition that the moduli potential barriers

exceed the scale of our inflation potential. The scale of the moduli-stabilizing barriers is

given in terms of the rank of the gauge group NL on the sevenbranes as

Umod '
|A|2

T 3
LM

2
P

e−4πTL/NL . (4.69)

Setting Umod ≥ Vinf ' 2.4× 10−9M4
P yields the constraint

TL ≤ −
NL

4π
log

(
2.4× 10−9T 3

L

M6
P

|A|2

)
⇒ Nw � −

π2

16
NL log

(
2.4× 10−9T 3

L

M6
P

|A|2

)
(4.70)

The coefficient A in the superpotential may depend holomorphically on complex structure

moduli. As in much of the previous literature on KKLT moduli stabilization, we will take

A ≈ M3
P . However, we should note a standard subtlety with loop corrections to the gauge

coupling and how it affects our considerations. In our system, the four-dimensional N = 1

supersymmetric Yang-Mills theory on the sevenbranes crosses over at the KK scale MKK ∼
(2π)gsMP/L

4 to an eight-dimensional maximally supersymmetric gauge theory. The effective

cutoff scale in the quantum field theoretic analysis of the N = 1 supersymmetric Yang-

Mills theory [36, 40] is therefore MKK . This might naively suggest A ∼ M3
KK , but this

would not be holomorphic. The holomorphy of the superpotential (4.58) may be maintained

by an appropriate redefinition of the chiral superfield Tα appearing in the gauge coupling

function for the sevenbrane stack wrapping the four-cycle Σ
(4)
α . This in turn introduces a

shift proportional to −Nα
2π

log(Tα + T̄α) (plus a constant) in the argument of the logarithm

appearing in the Kähler potential (4.53). Since we require relatively high moduli-stabilizing
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barriers, our system lies close to the interior of Kähler moduli space, and this shift can

become significant depending on the details of the example. A preliminary investigation

suggests that with reasonable numbers the effect is (barely) neglibigle in the stabilization of

Tα, and that more generally it may in fact push Tα to larger values at fixed, high, barrier

heights. Overall, we find that with modest choices of NL, our system can tolerate hundreds

of circuits of the basic axion period.

4.4.1 The Large Volume Scenario

In the large volume mechanism [24] for stabilizing Calabi-Yau flux compactifications, both

power-law and nonperturbative terms play a role in stabilizing the Kähler moduli. In this

setting, one can increase the volume, maintaining the required high barrier heights, by

increasing W0. This provides another method for ensuring satisfaction of the backreaction

constraint.

4.5 Numerical Toy Examples

Our analysis of the conditions for inflation suggests that they are reasonably straightforward

to satisfy. Because the full potential is somewhat complicated, it is worth checking numer-

ically how the scales work out in a four-dimensional supersymmetric effective action which

encodes the essence of our mechanism, including the basic structures required for moduli

stabilization and inflation. We will therefore consider the four-dimensional action descend-

ing from a compactification with the minimal possible content – h1,1
+ = 2 and h1,1

− = 1 –

required for the mechanism described above, including the effects of the orientifold action.

We will consider setups of the sort described in the previous subsection, with two size

moduli denoted by an index α = L for the overall volume mode and α = + for the even com-

bination of cycles under an orientifold action. (The odd combination of cycles, as described

above, supports our C(2) inflaton field, c− = Re[G−].)

To mock this up, guided by the structure of orientifolds of Calabi-Yau manifolds such as

P4
11169 and P4

13335, we define a class of toy models by a classical Kähler potential of the form

K = −2 lnVE = −2 ln

{
(TL + T̄L)3/2 −

[
T+ + T̄+ +

3

8
gsc+−− (G− + Ḡ−)2

]3/2
}

. (4.71)

plus contributions depending on the dilaton and complex structure moduli, where we defined

VE =
L6

g
3/2
s (2π)6

=
V

g
3/2
s (2π)6

. (4.72)

From the requirement of getting a positive-definite kinetic term for G− we deduce c+−− > 0

and for the following examples we choose for convenience c+−− = +1. We also include

corrections to K of the form given in (4.59).
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The superpotential we take to be of a generalized KKLT-type structure [23, 26]

W = W0 + A+e
−a+T+ +

{
ALe

−aLTL “KKLT”

A
(1)
L e−a

(1)
L TL + A

(2)
L e−a

(2)
L TL “KL”

. (4.73)

For simplicity in this section, we will work in units of MP .

Moduli stabilization then proceeds from the F-term scalar potential for the fields TL, T+, G−
which is determined by

VF (TL, T+, G−) = eK
(
KIJ̄DIWDJW − 3|W |2

)
(4.74)

where KIJ̄ is understood to be the inverse Kähler metric derived by keeping the dilaton

dependence in K (and thus for its determination the tree-level dilaton Kähler potential

Kτ = − ln [−i(τ + τ̄)] has to be included in K). The dilaton is assumed to be fixed by

three-form fluxes at DτW = 0, and we will take gs ∼ 1/2 for concreteness. Thus, here I, J

run over the values L,+,−, corresponding to the fields TL, T+, G−.

With a choice of parameters in e.g. the KKLT case of

AL = −1 , A+ = 1 , aL =
2π

25
, a+ =

2π

3
, W0 = 3× 10−2 “KKLT” (4.75)

this setup stabilizes TL ∼ 20, T+ ∼ 4 and b ∼ 0 in a way consistent with the most basic

conditions for inflation. In particular, the moduli potential barriers exceed Vinf , and the

moduli suffer practically negligible shifts in their VEVs during inflation driven by an NS5-

brane wrapped on the blown-up two-cycle. 13

In terms of the supersymmetric multiplets, the NS5-brane potential is given by

VNS5 = M4
Pe

4Abottom
(2π)9

gsV2
E

√√√√√gs
T+ + T̄+ + 3

8
gsc+−−(G− + Ḡ−)2

2︸ ︷︷ ︸
this is v2+

+g2
sc

2 (4.76)

with eAbottom denoting the warp factor at the bottom of the throat. We obtain a GUT-scale

inflaton potential for eAbottom ∼ 2 × 10−4. Inputting the axion decay constant for this case

(4.67), with eAtop ∼ 1, we find of order Nw ∼ 100 cycles during inflation, easily satisfying

the backreaction constraint. Increasing a+ to π introduces oscillating corrections to η of

amplitude ∼ 0.04.

In all cases discussed above, the uplifting contribution of an anti-D3-brane

δVD3−uplift =
δD3

V4/3
E

(4.77)

is assumed present and is fine-tuned as in [23] so as to provide the post-inflationary minimum

at c = 0 with small positive cosmological constant.

13Note that given a fully explicit model, knowledge of the intersection numbers in T+ = c+αβv
αvβ may

allow for having smaller values of T+, while still yielding v+ ∼ 2, as necessary for sufficiently suppressing
the ED1 contributions to the Kähler potential.
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Figure 3: Linear axion inflaton potential V (ReTL, φc) with KKLT Kähler moduli stabiliza-

tion scenario. The linear inflaton valley is clearly visible. The potential looks very similar

(but for the second AdS minimum at larger volume) for the KL case. The cut-off surfaces

at the top of the plotted box denote the further rise of the scalar potential in the barriers.

4.6 Gravity Waves and Low-Energy Supersymmetry

It is interesting to consider the possibility of combining low-energy supersymmetry with high-

scale inflation. The present work moves a step closer to an understanding of this question by

implementing large-field inflation in string compactifications which have a four-dimensional

effective theory with spontaneously broken N = 1 supersymmetry.

In the particular case of KKLT moduli stabilization – with an uplift of a SUSY-breaking

AdS minimum – the scale of the moduli barriers decreases with decreasing scale of super-

symmetry breaking. Kallosh and Linde [26] explained how – with extra fine-tuning via an

additional racetrack in the superpotential – one may decouple these scales (see also the recent

work [41]).

In our setup, we may also apply this mechanism, with the following caveat. Our wrapped

fivebrane action, at its post-inflationary minimum, itself constitutes a supersymmetry-breaking

“uplifting” contribution to the potential energy for nonzero v+. This contribution would need
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to be very small in order to obtain a low scale of supersymmetry breaking. Such a suppres-

sion might be possible by (i) blowing down v+, which may lead to a larger, but still viable,

oscillating contribution to η (modulo suppressions coming from the enhanced local super-

symmetry near the cycle in some examples), or (ii) warping the NS5-brane further down, as

long as this is consistent with the backreaction constraints.

It is worth emphasizing that despite much progress in recent years, specific models arise

very much under a lamppost, and it is difficult – if not impossible – to determine generic

patterns without a systematic analysis of string compactifications.14 Thus, although there is

no known natural construction combining high-scale inflation with low scale supersymmetry,

neither is there is a compelling “no go” theorem. The answer to this question must await

further development of the subject.

5 Specific Models II: Perturbatively Stabilized Compactifications

Let us next briefly outline some potential examples of our mechanism in the context of

perturbative stabilization of moduli. This class of examples includes compactifications on

more generic – Ricci-curved – manifolds, and a correspondingly higher scale of supersym-

metry breaking. The conditions that the flux-induced axion masses not lift b and c, which

were automatically satisfied in the no-scale type IIB Calabi-Yau compactifications discussed

above, will need to be assessed separately in these cases. The perturbative models, on the

other hand, enjoy some complementary simplifications of their own, such as the fact that one

need not balance classical effects against nonperturbative effects to stabilize moduli. The

moduli-stabilizing barriers, being power law in the volume as well as in the dilaton, may be

naturally higher, and the η problem for b derived in the previous section does not directly

apply when the volume is perturbatively stabilized.

As with Calabi-Yau compactifications, only a small subset of models in this class have

been analyzed in any detail. The simplest examples of this sort involve known classical

compactification geometries and a relatively small set of additional ingredients, and are

therefore accessible to more detailed analysis than the typical Calabi-Yau compactification

(as in [30, 10]). The most specific, tractable examples, however, do not incorporate the

warping effects one expects to arise in a typical compactification (whether low-energy super-

symmetric or not). Clearly the implementation of our mechanism for linear inflation from

axion monodromies will benefit from further developments in string compactification.

14Moreover, generic compactifications with this much supersymmetry involve many further ingredients,
such as generalized fluxes, which significantly affect questions of genericity.
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5.1 Compactifications on Nilmanifolds

First, consider compactifications of type IIA string theory on a product of two nilmanifolds

ds2
Nil×Nil =

L2
u

β
du2

1 +βL2
udu

2
2 +L2

x (dx+Mu1du2)2 +
L2
u

β
dũ2

1 +βL2
udũ

2
2 +L2

x (dx̃+Mũ1dũ2)2 ,

(5.78)

compactified via projection by a discrete set of isometries, and stabilized for example with

the ingredients described in [30], including an orientifold action exchanging the tilded and

untilded coordinates. In the presence of D4-branes, these manifolds yield monodromy-driven

large field inflation with a φ2/3 potential [10]. It is interesting to consider the angular closed

string moduli in [10], to see if monodromy from wrapped branes might yield linear inflation

in axion directions also in these models.

To begin, we note that the flux couplings in §3.3 prevent inflation in the Neveu-Schwarz

axion (b) directions in this model, because of the zero-form flux m0 which plays a lead-

ing role in moduli stabilization. Ramond-Ramond axions come from those components of

C(1), C(3), and C(5) that are invariant under the orientifold projection. With the NS-NS H3

flux configuration of the specific example analyzed in [30], C(1) ∧H3 is always nonzero.

Many components of C(3) consistent with the orientifold projection satisfy C(3)∧H3 = 0.

The next question is whether any ingredients which fit into the compactification introduce

monodromy in one or more of these directions. Consider (2.16) for the case of an NS5-brane

in the presence of a C(2) axion (i.e. p = 2). T-duality in a direction y⊥ transverse to the NS5-

brane yields a KK5-brane – a Kaluza-Klein monopole with fiber direction y⊥. The T-duality

transforms the C(2) field to a C(3) field with two legs along the KK5-brane worldvolume and

one along y⊥. Hence a KK5-brane thus oriented with respect to a C(3) axion c3 introduces

a linear potential for c3.

The setup [30, 10] includes of order 1/β sets of M KK5-branes wrapped along a linear

combination of the u2 and ũ2 directions times a combination of the x and x̃ directions, with

its fiber circle in the transverse combination of x, x̃ directions. The components of C(3) with

legs along these three directions are lifted by the nilmanifold’s “metric flux” – that is, the

fiber circle is a torsion cycle. Thus, in order to implement c3 axion inflation we need to add

additional wrapped branes.

Consider adding a second set of M KK5-branes wrapped along the u2 and ũ2 directions,

with their fiber circle in a linear combination of the x and x̃ directions. Let us denote this set

by KK5′. They carry a linear potential in the c3 direction. The ratio of the KK5′ potential

energy to the original KK5 potential energy is

β1/2

LxLu

√
β2L4

u + c2
3g

2
s/L

2
x (5.79)

We now observe that the decay constant of an axion arising from a potential that threads a
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product space of the form Σ(p) × Σ(6−p) is given by

φ2
c ∼

L6

(2π)7`2p
(p)α

′
c2 ∼M2

P

g2
sc

2

2`2p
(p)

(product space) (5.80)

Using (5.80), (2.21) for p = 3, we find that gsNw ∼ cgs/(2π)2 ∼ 11(2βL3)/(2π)2. In order

for our added KK5′ branes to be subdominant to the moduli potential all along the inflation

trajectory, we need to tune the anisotropy β such that the ratio (5.79) is less than unity.

Next let us assess systematically the rest of the consistency conditions delineated in §3.

First, consider the KK5′ branes before the effect of the axion VEV c3. The core size of a

KK monopole is its fiber size, here Lx; in the present case we obtain rKK
′

core ∼MLx. This fits

well within the transverse u1, ũ1 directions, and is marginal for M ∼ 1 within the transverse

linear combination of x, x̃ directions.

We now consider the effect of c3 on the core size of the object. In the present case where

our manifold is locally a product space, the c3 term in the brane action contributes to its

effective tension. In our regime of interest, the tension is of order φc
MP
∼ 11 times what its

tension would be at c3 = 0. In other words, it behaves like 11 sets of KK5′ branes. This

increases the core size by a factor of 11.

Locally in the u1 directions, the KK5′ branes are BPS objects, and hence the corre-

sponding formula for their tension applies to good approximation. Moreover, as discussed

in [30], there are more elaborate methods which might be used to warp down the tensions

of KK5-branes in this space to separate such marginal ratios of scales, bringing NS5-branes

wrapped on the x and x̃ directions close to the positions of the KK5′ branes.

Finally, we note that instanton effects which depend on c3 arise from Euclidean D2-branes.

These are safely suppressed by a factor of order exp[−βL3/gs].

5.2 Compactifications on Hyperbolic Spaces (Riemann Surfaces)

Generic compact manifolds are negatively curved, and moduli stabilization has been outlined

for a very special case of this – type IIB string theory on a product of three Riemann surfaces

[28]. Let us therefore sketch the possibilities for linear inflation from axion monodromies in

this class of compactifications.

Because the volume is directly stabilized, these models do not suffer from the η problem

discussed in §4.1.1 in the Neveu-Schwarz axion (b) directions. Moreover, in contrast to the

massive IIA models discussed in the previous subsection, the flux couplings of §3.3 do not

immediately lift all the b type axions. It is therefore possible that inflation with b type axions

as well as c type axions might arise in this example. The main potential obstruction to this is

the rich set of intersecting (p,q) sevenbranes prescribed in [28]. Some of these – in particular

those which combine to form O7-planes – impose boundary conditions that components of

BMN vanish which are fully transverse or fully parallel to the O7. The negative term in the
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moduli-fixing potential in [28] arises from triple intersections of (p,q) sevenbranes (which

contribute anomalous O3 tension as in [19]).

Finally, we note an intriguing feature of more general supercritical compactifications

(of which a special case was studied in [27]) – compactifications of D-dimensional type II

string theory contain exponentially many RR axions, of order 2D with D the total spacetime

dimension. On the other hand, there are many a priori possible flux-induced masses for

these axions. Again in this setting, a systematic analysis of axion monodromy inflation

awaits further progress in the study of string compactification.

6 Observational Predictions

We have seen that the monodromy produced by wrapped branes yields a linear potential,

over a super-Planckian distance, for the canonically-normalized axion field. The leading

corrections to this structure are periodic modulations induced by instantons.

Because of the natural exponential suppression of instanton effects, it is reasonably

straightforward to arrange that these modulations are negligible, as we argued in our exam-

ples above. When this is the case, the linear inflaton potential gives for the tensor to scalar

ratio r and tilt ns of the power spectrum

r ≈ 0.07 ns ≈ 0.975. (6.81)

The uncertainty comes only from the usual fact that the number of e-folds is not known

precisely in the absence of a specification of reheating. The resulting predictions are indicated

in the figure, which exhibits their consistency with current exclusion contours. We note that

several authors have exhibited a preference in the data [42] for potentials with V ′′ ≤ 0, which

arises naturally in the case of monodromy-driven inflation . Upcoming CMB experiments

promise to reduce these contours to O(10−2) in both directions, which will go a long way

toward discriminating different inflationary mechanisms.

However, it is very interesting to consider the more general case in which the instanton-

induced15 modulations of the linear potential are non-negligible; one example like this might

involve a vanishing v+ in the models described in §4. In this case we must incorporate oscil-

lating corrections to the slow roll parameters, and correspondingly to the power spectrum.

We leave a complete study of this case for the future. For now we note only that modula-

tions of sufficiently high frequency but non-negligible amplitude may not affect the average

tilt, but could conceivably lead to signatures in the more detailed structure of the power

spectrum.

15Shifts of the moduli during inflation may be contrived to give small corrections to the potential, but this
requires inflationary energy that is marginally sufficient to destabilize the compactification. We expect that
most successful models of inflation based on our mechanism have negligible corrections from this effect.
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Figure 4: Red: 5-year WMAP+BAO+SN [13] combined joint 68% and 95% error con-

tours on (ns, r). Recycling symbol: general prediction of the linear axion inflation potential

V (φc) = µ3
cφc, for N = 50, 60 e-folds before the end of inflation.

Let us also remark that the prospect of recurrent modulations of the perturbation spec-

trum is quite general in systems making use of the monodromy mechanism [10]: as the system

moves repeatedly around the monodromy direction, it may interact periodically with local-

ized degrees of freedom, including, for example, degrees of freedom into which the system

reheats.

7 Discussion

Monodromy is a generic phenomenon in string compactifications. We have shown that the

axion monodromy introduced by space-filling wrapped fivebranes leads to a linear poten-

tial, over a super-Planckian distance, for the canonically normalized axion field. Axion
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monodromy therefore provides a mechanism for realizing chaotic inflation, with a linear po-

tential, in string theory. We have shown that this mechanism is compatible with various

methods of moduli stabilization, including nonperturbative stabilization of type IIB string

theory on warped Calabi-Yau manifolds, as well as perturbative stabilization on more general

Ricci-curved spaces. This produces a clear signature in the CMB of r ≈ 0.07, with model-

dependent opportunities for further, novel, signatures arising from oscillating corrections to

the slow-roll parameters.

Our mechanism is reasonably robust and natural because of the presence of perturba-

tive axionic shift symmetries. In our examples, the inflaton potential itself is the leading

effect that breaks the shift symmetry, with instanton corrections naturally exponentially

suppressed. We would like to remark that a related symmetry structure is plausibly also

present in configurations with more general monodromies not involving axions. Monodromy

in the potential energy arises when a would-be circle in a direction γ in the approximate

moduli space is lifted by an additional ingredient whose potential energy grows as one moves

in the γ direction. This unwraps the circle direction and extends the kinematic range of

the corresponding field. Then, symmetries translating around the original circle do much

to control the structure of the potential along the eventually-unwrapped direction. Thus,

monodromy-extended directions are not just long; they also generically profit from approx-

imate symmetries. Monodromy-extended directions can be used for large-field inflation if

the underlying moduli potential depends sufficiently weakly on γ and if all corrections to

the slow-roll parameters are sufficiently suppressed; the classes of compactifications analyzed

here and in [10] provide two particular realizations of this effect.16

There is much more to be done at the level of model building. The examples we have

provided in this work are useful as proofs of principle, and to that end we have focused

on demonstrating parametric suppression of corrections to the inflaton potential, and in

particular on enumerating a wide array of mechanisms, such as warping, axionic symmetries,

extended local supersymmetry, etc., that serve to control such contributions. We have not yet

attempted to construct a minimal realization of linear axion inflation that uses the smallest

possible subset of these control mechanisms. This is an interesting problem for future work,

as methods for analyzing string compactifications and string-theoretic instantons improve.

A further lesson of this work, as of [10], is that in large-field models based on monodromy,

a degree of suppression of otherwise problematic contributions to the potential that suffices

for inflation is also sufficient to make firm predictions for the tilt of the scalar power spectrum.

This is in sharp contrast to typical small-field models, where fine-tuning the inflaton potential

to be flat enough for inflation is not a strong enough restriction to be predictive: slight

variations in the fine-tuned contributions can noticeably change the tilt. The difference

in our case is that the problematic terms arise as periodic modulations of the potential;

requiring that inflation occurs at all implies that the amplitude of these modulations is small

16Recently, monodromy has been used as a method to model Chain Inflation [43] in string theory [44].
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compared to the scale of changes in the inflaton potential itself. In turn, this implies that the

average tilt is not affected at a detectable level by these modulations. On the other hand,

it would be very interesting if the oscillations in the detailed power spectrum produced by a

modulated linear potential had characteristic features accessible to future observations. In

any case, this class of models is falsifiable on the basis of its gravity wave signature.
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