Homework

Lectures by Edward Witten

(1) (a) Consider a four-dimensional theory with N' = 1 supersymmetry and
two free massless chiral superfields ®;, ®,. By analyzing the global symme-
tries (somewhat as done in the lecture for a combination of an N' = 1 vector
multiplet and an N' = 1 chiral multiplet) show that this theory actually has
N = 2 supersymmetry.

There is one thing that might make this exercise slightly tricky. If you
literally write down all of the global symmetries of the model, there are too
many to be useful. I suppose that without giving too much away, I can point
out that the full global symmetry group of the model includes SU(2)* x U(1),
but that there is an SU(2)? x U(1) subgroup that is most useful. Here one
SU(2) acts on scalars only, and the second on both scalars and fermions.
What does the U(1) act on?

(b) In addition to the SU(2)? x U(1), can you see some spontaneously
broken global symmetries? Answer this question just for the theory of a
single massless chiral superfield ®. And (without changing the Lagrangian
of the theory) can you see how to modify the usual supercurrent of this theory
(for simplicity still for A" = 1 with a single chiral superfield) so as to get a
theory with spontaneously broken supersymmetry, the fermion becoming a
Goldstone fermion? A Goldstone fermion is a fermion that appears as a
pole in the two point function of the supercurrent. Usually, when there is
a Goldstone fermion, bosons and fermions have different masses; is that so
here?

(¢) Returning to (a), a more advanced form of the exercise is to write
the conserved supercurrent that generates N' = 2 supersymmetry and show
that it does have the right commutation relations. Let me suggest using an
SU(2) x SU(2)-invariant notation in doing this.

(d) Now consider the case of giving equal masses to ®; and ®, by adding
a superpotential W = m®,®P,, or equivalently, up to a redefinition of the
fields, W = m(®? + ®2). Does the model still have A" = 2 supersymmetry?
How much of the global symmetry is still present?

(2) This exercise is intended to fill a gap in the explanation in the lectures
concerning the electric charge of a magnetic monopole.

Consider a theory with SU(2) spontaneously broken to U(1) by a scalar



field ¢ in the adjoint representation. We assume that at infinity ¢ has an
expectation value

¢ — <8 —Oa) for r — oo, (1)

up to a gauge transformation. (We will write & for coordinates of R* and r =
|Z|.) However, in the field of a magnetic monopole, the gauge transformation
required to put ¢ in the stated form depends on the direction in which we
go to infinity. A better formula is

¢_) — 0, (2)

where f(r) is a smooth function that is proportional to r for small  and ap-
proaches the limit @ at infinity. (The &’s are the usual Pauli sigma matrices.)
If one goes to infinity along the z axis, (2) is equivalent to (1); in general, if
one goes to infinity in any direction, they are equivalent up to a gauge trans-
formation. But there is no way to make a continuous gauge transformation
that turns (2) into (1) everywhere; if you try to do that, you will generate the
Dirac string singularity. The whole idea of the 't Hooft-Polyakov monopole
in nonabelian gauge theory is that the Dirac string singularity goes away
when U(1) is embedded in a simple Lie group such as SU(2), even though
SU(2) is broken to U(1) at low energies.

The exercise we are going to carry out has nothing to do with supersym-
metry. In a nonsupersymmetric theory, ¢ might be a hermitian field and
then a would be real. Even if ¢ is a general complex field (not hermitian or
antihermitian) as in N' = 2 supersymmetry, we can after redefining ¢ by a
phase assume that a is real. In this case, only the hermitian part of ¢ is rel-
evant in the following discussion, and for brevity I will just use the notation
“@” for this hermitian part.

Electric charge is the conserved quantity that is generated by a gauge
transformation that preserves the value of the Higgs field ¢ at infinity. Let
us write ¢ = ) €T, (here T, are the generators of the Lie algebra of the
gauge group) for the generator of such a gauge transformation. As usual, the
infinitesimal gauge transformation generated by ¢ acts on a charged field ®
by d® = —ie® (where ¢ acts on ® in the appropriate representation, and we
need the —i if we consider € to be hermitian, as is conventional in the physics
literature; actually many formulas of gauge theory look more natural if the
Lie algebra is understood to consist of antihermitian matrices, in which case




there is no —i in the formula — but we will keep the —i here). But what
is a gauge transformation that preserves the Higgs field at infinity? The
generator of such a gauge transformation is ¢ itself (since ¢ commutes with
itself), except that we probably want to normalize the generator to remove
the factor of a at infinity. So we take

e=a'o. (3)

Notice that we are defining electric charge so that a W boson has charge 2,
and a “quark” (in the fundamental representation of SU(2)) has charge 1.
(Warning: in the lecture, I use a normalization in which the electric charge of
a W boson is 1 and that of a quark is 1/2. I think the convention used here
makes the explanation of the topology more straightforward. Seiberg and I
also, naturally enough, found the present convention to be useful when we
considered the theory with elementary quark fields included; this case was
discussed in our second paper on N = 2 dynamics but there won’t be time
for it in the lectures.)
You might have been tempted to use

F=a (g _0a> , (4)

where the matrix given is the vacuum expectation value of ¢ at infinity, so
as to define U(1) as an “unbroken global gauge transformation,” i.e. a gauge
transformation whose generator is a constant. This is probably the most

elementary explanation given in textbooks of the unbroken gauge symmetry
when SU(2) is broken to U(1): it is the gauge symmetry that leaves fixed
the vacuum, i.e. the state in which ¢ is constant. The trouble with this
approach is that in the field of a magnetic monopole, it is impossible to go
to a gauge in which, even at infinity, ¢ is everywhere of the diagonal form
that would commute with (4). So if we want to study the electric charge of
a magnetic monopole, we cannot use this kind of definition. We use instead
(3), since it makes sense for any finite energy configuration, including those
with magnetic charge.

Now having arrived at the right definition of electric charge Q. (as the
gauge transformation generated by ¢), we would like to ask if it is integer-
valued. Equivalently, we want to know if the operator exp(2miQ).) is equal
to 1. This operator is the gauge transformation

g(Z) = exp(—2mie). (5)
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You should immediately note that g(Z) is not identically equal to 1.

(a) Show, however, that g approaches the limit 1 for ¥ — oc.

The importance of (a) is that we can “compactify” the region at infinity,
so that space becomes S3. Then we can think of g as a map from S® to the
SU(2) group manifold. Such a map has a winding number

N = k;/d3xeijkTrg_18,-gg_lajgg_l(?kg. (6)

(b) Show that N is unchanged if ¢ is wiggled slightly, say by g — g(1+if)
where you work to first order in f. (You will have to integrate by parts.) It
follows, since you can iterate the operation of wiggling ¢ slightly, that N is
invariant if g is deformed in an arbitrary way in its homotopy class. What
is the value of k such that N is integer-valued?

A map from S? to SU(2) is “homotopic to the identity” if and only if
N = 0. The importance of this is that the Gauss law constraint of gauge
theory says that a gauge transformation acts trivially on quantum states if
(i) it is 1 at infinity, and (ii) it is homotopic to the identity.

(¢) Explain the claim in the last sentence.

(d) Show that if the magnetic charge is 0, the gauge transformation g
defined in eqn. (5) has N = 0. (In showing this, you may assume that zero
magnetic charge means that at infinity, you can take ¢ to be constant, that
is, to be everywhere in the form (4). Using this, show that N = 0.)

The 6 angle of gauge theory enters the Hamiltonian formalism in the
following way. Let T" be a gauge transformation that is 1 at infinity and has
N = 1. Then in acting in physical states,

T = exp(if), (7)

where 6 is the gauge theory 0 angle. It does not matter precisely what T" we
use, since if T” is another gauge transformation with the same properties as
T (it is 1 at infinity and has N = 1), then 7" = g7 where ¢ is 1 at infinity
and has N = 0. So g = 1 in acting on physical states of gauge theory and T’
is equivalent to T

A generalization of (7) is that if W is any gauge transformation of any
winding number N, equal to 1 at infinity, then acting on physical states,

W = exp(iNG). (8)



(e) Make sure you understand this explanation of what the 6 angle means.!
Show that (8) only makes sense if winding number adds when we multiply
gauge transformations, that is we need to know the following: if W, has wind-
ing number N; and W5 has winding number N,, then the winding number
of the product W = W W5 is

N = N; + Ny (9)

This is a standard fact; can you prove it from the formula (6)?

Conversely, if you know (9) and (7), then (8) follows, since T™ has winding
number N and clearly obeys (8), and moreover any gauge transformation of
winding number N is homotopic to TV

Now, let us go back to our problem of the magnetic monopole.

(f) Show that if the magnetic charge is 1, that is if ¢ looks like (2) near
infinity, then, g has N = 2.

You can do this exercise by using the definition (6) of N, but there ac-
tually is a faster way. N = 1 for a gauge transformation gy such that every
point on the SU(2) manifold is go(Z) for a unique z. Actually, this criterion
only ensures that N = #1. If g has the stated property, then so does g;*,
and N is odd under gy — g;*. (To distinguish N = 1 from N = —1, one
takes an arbitrary value of ' at which the three elements of the Lie algebra
of SU(2) given by the spatial derivatives a; = g, 'dgo/dx;, i = 1,2,3 are
linearly independent. Then, the sign of N is the sign of Trajasas. There is
a general criterion to compute N for any g(Z) that generalizes the criterion
just stated if N = +1: one counts the points & with go(Z) = b, for a generic
b € SU(2), and weights each such point with the sign of Trajasas.) For the
present purposes, don’t worry too much about the sign as we have not been
very precise with all of our sign conventions. So:

(f”) Show that if ¢ is everywhere of the form

¢ — M& - T, (10)

r

Tn the lecture, I will follow a slightly different, but also standard, approach in which
the quantum wavefunction is invariant under all gauge transformations, with N = 0 or
not, and # appears as the coefficient of an interaction in the Lagrangian. We might call this
the Lagrangian approach to the 6 angle. In these notes, I use an alternative Hamiltonian
approach in which 6 is incorporated as the phase by which a topologically nontrivial gauge
transformation acts on the quantum states. It is best to be familiar with both of these
(standard) points of view.



then
90(Z) = exp(ime) (11)

assumes every value on the SU(2) manifold precisely once. (One includes
the value at ¥ = 00.) Note that gg is not the same as g. It is defined with
an extra 1/2 in the exponent, as if we were normalizing the electric charge
so that a W boson (rather than a quark) has unit electric charge; hence
go — —1 at infinity, rather than +1. Still, go is constant at infinity so the
definition of winding number and all our statements about it make sense.
Since it assumes every value once, gy has winding number N = 1. As g = ¢Z,
deduce from (9) that g has N = 2.

Finally, from (8), we learn that the action of g on a physical state of
magnetic charge 1 is

g = exp(2i0). (12)

Since g = exp(2miQ.), we learn that magnetic monopoles (of monopole
charge 1) obey

exp(2miQ).) = exp(2if), (13)

so that the electic charge of such a monopole is an integer plus 26/27. Thus,
under 8 — 6 + 2, the electric charge of a monopole is shifted by the charge
of a W boson.

Let us now ask what is the complete electric charge spectrum of magnetic
monopoles at § = 0. Let us first assume that at § = 0, one of the possible
values of the electric charge of a magnetic monopole is Q. = 0.2 By shifting
0 by 27, find that at # = 27, the theory has a monopole of magnetic charge
1 and electric charge 2 (that is, electric charge equal to that of a W boson).
On the other hand, physics is invariant under shifting # by 27. That is why
it is called a theta angle. So the theory at § = 0 must have a monopole with
W boson charge as well as one with electric charge 0. Repeating this process,
we see that at # = 0, a monopole may have an electric charge equal to any
integer multiple of the charge of a W boson.

Explicit semiclassical quantization gives this answer. Now let us ask: why
isn’t there also, at the same value of 6, a monopole with half the charge of
a W boson, that is, a monopole with the electric charge of a quark? Such

2This almost follows from CP, which reverses the sign of electric charge without re-
versing the sign of magnetic charge. There is one subtlety: CP would allow the values
of Q. for a magnetic monopole to be either all integers or all half-integers. For here, we
will not worry about this; we simply define 8 = 0 (as opposed to § = 7, which is also CP
conserving) to be the value of § at which a monopole can be electrically neutral.
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a monopole could annihilate with an antimonopole of electric charge zero
to make a magnetically neutral particle of electric charge half that of a W
boson. This would contradict the fact that in the present theory, as there
are no quark fields, the W boson charge is the basic unit of electric charge.



