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Abstract: Here are some problems to think about together with a list of some papers
which will serve as background and source for the PiTP lectures of G. Moore. They will
also be relevant to the lectures of D. Gaiotto.
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1. Problems

1.1 Angular momentum of a pair of dyons

Consider two dyons of (magnetic, electric) charge (pi, qi), i = 1, 2.
a.) By computing the Poynting vector of the electromagnetic field show that the two-

dyon system carries classical angular momentum (in cgs units) (♣ around what origin? ♣
)

~J =
1
c
(p1q2 − p2q1)r̂ (1.1)

where r̂ is the unit vector pointing from dyon 2 to dyon 1.
b.) Using quantum mechanical quantization of angular momentum conclude that

(p1q2 − p2q1) =
~c
2

n (1.2)

where n is an integer.
c.) Show that the antisymmetric bilinear form

〈(p1, q1), (p2, q2)〉 := p1q2 − p2q1 (1.3)

defines a symplectic form on R2.
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1.2 Group Theory

a.) Let ρn denote the n-dimensional representation of SU(2). What is the maximal spin?
b.) The character of a representation V of SU(2) is defined to be χV (y) = Try2J3

where J3 is any generator. Show that

χρn(y) =
yn − y−n

y − y−1
(1.4)

Evaluate the limits y → ±1 using L’Hopital’s rule.
c.) An arbitrary finite dimensional representation of SU(2) is completely reducible

and hence isomorphic to
∑

n≥1 anρn for some integers an ∈ Z+. Show that the character
of a representation V of SU(2) determines V uniquely up to isomorphism.

d.) A virtual representation is a formal sum
∑

anρn where an are integers. Show that
the virtual representations form a ring. Show that the character of a virtual representation
does not determine it uniquely.

1.3 N = 2 Algebra and its BPS Bound

We follow the conventions of Bagger and Wess [REF] for d = 4,N = 1 supersymmetry. In
particular SU(2) indices are raised/lowered with ε12 = ε21 = 1. Components of tensors in
the irreducible spin representations of so(1, 3) are denoted by α, α̇ running over 1, 2. The
rules for conjugation are that (O1O2)† = O†2O†1 and (ψα)† = ψ̄α̇.

The N = 2 supersymmetry operators are (Q A
α , Q̄α̇B) where A, B are SU(2)R indices

running from 1 to 2. They satisfy the Hermiticity conditions

(Q A
α )† = Q̄α̇A (1.5)

and the N = 2 algebra

{Q A
α , Q̄β̇B} = 2σm

αβ̇
PmδA

B

{Q A
α , Q B

β } = 2εαβεABZ̄

{Q̄α̇A, Q̄β̇B} = −2εα̇β̇εABZ

(1.6)

where Z is the central charge and Pm is the Hermitian energy-momentum vector with
P 0 ≥ 0.

a.) Check that the above commutation relations are consistent with Hermiticity.
b.) Define

R A
α = ξ−1Q A

α + ξσ0
αβ̇

Q̄β̇A (1.7)

Here ξ is a phase: |ξ| = 1. Show that these operators satisfy the Hermiticity conditions

(R 1
1 )† = −R 2

2

(R 2
1 )† = R 1

2

(1.8)

and the algebra
{R A

α ,R B
β } = 4 (E + Re(Z/ζ)) εαβεAB (1.9)
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where ζ = ξ−2.
c.) By choosing a suitable phase ξ deduce the BPS bound E ≥ |Z|.
d.) Introduce TA

α = ξ−1QA
α − ξσ0

αβ̇
Q̄β̇A. For your special value of ξ interpret the T

and R supersymmetries as those which are “preserved” and “broken” on quantum states
saturating the BPS bound.

1.4 BPS representations

♣ Problem on BPS reps and their characters. ♣

1.5 Reduction of a U(1) gauge field to three dimensions and dualization

Consider a U(1)r gauge field on R1,2 × S1 with metric ds2 = dxµdxµ + R2(dx3)2 and
x3 ∼ x3 + 2π. The action is

∫
− 1

4π
ImτIJF I ∗ F J +

1
4π

ReτIJF IF J (1.10)

where I, J = 1, . . . r, F I is the 2-form fieldstrength and τIJ is a symmetric complex matrix
with positive definite imaginary part. It may be spacetime-dependent.

Show that the low energy effective action in three dimensions is a sigma model with a
torus as target space and action

∫
− 1

2R
(Imτ)−1,IJdzI ∗ dz̄J (1.11)

where dzI = dϕm,I − τIJdϕJ
e where ϕI

e and ϕm,J are real scalar fields with period 1.
Hints:
Consider the dimensional reduction to R3. Write F I = dϕI

e ∧ dx3 + F̄ I where ϕI
e is a

scalar in R1,2 with period 1. Dualize the 3d vector field with fieldstrength F̄ I by introducing

exp i

∫
F̄ Idϕm,I (1.12)

into the path integral and integrating out F̄ I through a Gaussian integral.
For more help see [14] and [13].

1.6 Dual torus

Let Γ be a symplectic lattice of rank r.
a.) Show that T := Γ∗⊗R/Z is an algebraic torus of dimension r, i.e. it is isomorphic

to C∗ × · · · × C∗ (with r factors).
b.) Show that for any vector γ ∈ Γ there is a canonical C∗-valued function Xγ on T .
c.) Show that T has a holomorphic symplectic form, and express it in terms of functions

Xγ .
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1.7 Reduction of Hitchin equations

Write the self-dual Yang-Mills equations in four-dimensions and dimensionally reduce to 2
dimensions along two dimensions transverse to the lightcone.

Show that these equations take the form

Fzz̄ + [Φz, Φ̄z̄] = 0

∂z̄Φz + [Az̄,Φz] = 0
(1.13)

where z, z̄ are lightcone coordinates.
WARNING: I haven’t set conventions carefully here yet.

2. Some Sources for the Lecture

The course will cover material primarily from papers by Denef and Moore and by Gaiotto,
Moore, and Neitzke.

A previous knowledge of some aspects of N=2 susy and of the attractor mechanism
and the split attractor flows would be helpful.

For general background on N=2 supergravity, special geometry, the attractor mecha-
nism, and black hole entropy see [8].

The viewpoint on the attractor mechanism we will use is reviewed in Section 2 of [9].
For a nice introductory discussion of split attractor flows see [1].
In lecture one we will begin with wall-crossing formulae from the viewpoint of super-

gravity. For a brief qualitative overview see [3]. More details are in [2].
For essential background for the paper [4] see
Nigel Hitchin, “Hyperkahler manifolds,” Seminaire N. Bourbaki, 1991-1992, exp. no.

748, p.137-166.
available online at http://www.numdam.org for a nice review of hyperkahler geometry.
A key role will be also played by reduction of N=2 theory from four to three dimensions.

We recommend [10].
For the paper [6] an important role will be played by a hypothetical six-dimensional

superconformal theory. For some background on this theory see [11, 16].
The essential geometrical construction of some N=2 d=4 theories from M5 branes

was introduced by Witten in [15]. See [6], section 3 and [5] for further explanation and
development.

The geometrical picture of BPS states in this context was first discussed in [7] and
some nice aspects of wall-crossing in a special class of theories was discussed in [12]. This
geometrical picture for BPS states is used extensively in [6].
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