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These are two lectures dealing with supersymmetry (SUSY) for branes and strings.
These lectures are mainly based on ref. [1] which the reader should consult for original
references and additional discussions.

1 Introduction

To make contact between superstring theory and the real world we have to understand
the vacua of the theory. Of particular interest for vacuum construction are, on the
one hand, D-branes. These are hyper-planes on which open strings can end. On the
world-volume of coincident D-branes, non-abelian gauge fields can exist. Moreover, D-
branes support chiral matter. On the other hand, fluxes, which are higher dimensional
generalizations of gauge fields, play an important role.

In one approach to semi-realistic models for particle physics we can start with the
10d heterotic string on a space-time background of the form

ME ×X, (1)

where ME is 4d Minkowski space and X a Calabi-Yau 3-fold. For a particular choice
of vector bundle it is possible to obtain GUT gauge groups like E6, SO(10) and SU(5).
However, besides fields known to exist like non-abelian gauge fields and chiral matter,
the 4d spectrum also contains massless scalar fields, the so-called moduli fields. These
moduli fields arise from the deformations of X. In the above example we could have
compactified on a space X of any size. There is an entire family of solutions labeled
by the different shapes and sizes of X. This leads to massless scalar fields in 4d which
are ruled out experimentally. Moreover, if the size of X is not determined there is
no a priori reason why space-time compactified in the first place. A non-compact 10d
space-time looks as natural as compactified space.

Luckily the above compactification is very special. In the generic case vacuum
expectation values for fluxes (in this case 3-form flux) could also have been considered
as part of the background. In the presence of flux potentials for some moduli fields are
generated while preserving SUSY in 4d.

In the context of M-theory or type II compactifications fluxes modify the space-
time geometry ‘mildly’. Instead of a direct product the space-time becomes a warped
product. An example of a warped product, which we will discuss later in more detail,
is an 11d space-time with metric

ds2 = ∆−1(−dx20 + dx21 + dx22) + ∆1/2ds2X . (2)

Here X is some 8d space, which we can take to be a Calabi-Yau 4-fold and ∆ = ∆(y),
the warp factor, is a function depending on the coordinates of X. It turns out that in
regions of large warping a large hierarchy of scales can be generated in a natural way.
Applied to 4d flux compactifications this idea provides one of the few natural solutions
to the hierarchy problem in string theory as will be explained in a forthcoming lecture.
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2 String duality

Traditionally there have been 5 consistent superstring theories in 10d (type IIA, IIB, I
and the heterotic SO(32) and E8 ×E8 string theories) and one SUGRA theory in 11d,
whose ‘quantum version’ is called M-theory.

type IIA
type IIB

SO(32) heterotic

E8 x E8 heterotic

type I

11d SUGRA

Figure 1: The web of string dualities.

Even though these theories look very
different at weak coupling nowadays we
believe they are related to each other
through a web of string dualities. One
theory can be the strong coupling limit of
the other. In the figure 11d SUGRA, for
example, is believed to be the limit of type
IIA string theory in which gs, the string
coupling constant, becomes very large. It
is only perturbation theory which causes
the theories to look different.

2.1 T-duality and closed bosonic strings

T-duality is the simplest example of string duality and it can be described in pertur-
bation theory for closed bosonic strings. Lets consider a space-time which is flat with
one direction compactified on a circle, S1, of radius R. T-duality states that the same
theory is obtained if the radius of the circle is α′/R.

Figure 2: A closed string with W = 2

Evidence for T-duality appears in the
spectrum. If one direction is a circle the
closed string can wind around the compact
direction. Associated to this winding is a
winding number, W ∈ Z, which for the
string in the in the figure is W = 2.

To describe a string winding a W number of times set

X(σ + 2π, τ) = X(σ, τ) + 2πRW, (3)

where −∞ ≤ τ ≤ ∞, 0 ≤ σ ≤ 2π are the world-sheet coordinates. To satisfy these
boundary conditions the zero mode piece includes a term proportional to σ

X(σ, τ) = x+RWσ + α′K

R
τ + . . . . (4)

Here the term proportional to τ describes the center of mass momentum in the compact
direction. This momentum is quantized and given by p = K/R, with K ∈ Z. Moreover,
the dots represent the oscillators.
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The states in the spectrum have masses (see ref. [1] for more details)

α′M2 = α′

[(
K

R

)
+

(
WR

α′

)2
]
+ 2NL + 2NR − 4. (5)

with NR −NL =WK. The mass formula is symmetric under the interchange

K ↔ W, R ↔ α′

R
. (6)

This is T-duality. It follows that closed bosonic strings compactified on large and small
circles have the same mass spectra. This illustrates the idea of string geometry, which
is the geometry probed by strings, and which as shown explicitly in the above example
differs from the geometry probed by point particles.

There is an alternative way to express T-duality which will be useful later during
these lectures. It is found by splitting X(σ, τ) into left movers, depending on τ + σ,
and right movers, depending on τ − σ, according to

X(σ, τ) = XL(τ + σ) +XR(τ − σ)

=
x

2
+

(
α′K

R
+WR

)
(τ + σ) +

x

2
+

(
α′K

R
−WR

)
(τ − σ) + . . . ,

(7)

where only the zero-mode piece is shown. T-duality takes

XL → XL, XR → −XR. (8)

2.2 T-duality and open strings

The closed bosonic string is mapped to itself under T-duality. When applied to open
strings, T-duality interchanges Neumann (N) and Dirichlet (D) boundary conditions.
Indeed, the coordinates of open bosonic strings with N boundary conditions can be
expanded in the Fourier series (setting α′ = 1/2 and taking 0 ≤ σ ≤ π)

X(σ, τ) = x+ pτ + i
∑
n̸=0

1

n
αne

−inτ cos(nσ)

=
x+ x̃

2
+
p

2
(τ + σ) +

x− x̃

2
+
p

2
(τ − σ) + . . . ,

(9)

where the zero-mode piece has been split into left- and right-movers. Applying T-
duality by changing the sign of the R movers leads to the mode expansion of the dual
field

X̃(σ, τ) = x̃+ pσ +
∑
n̸=0

1

n
e−inτ sin(nσ). (10)

From here we can read off the boundary conditions of X̃

X̃(0, τ) = x̃,

X̃(π, τ) = x̃+ πp = x̃+ π
K

R
= x̃+ 2πR̃K.

(11)
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X=x~
~

Figure 3: The dual string with K = 1.

Here we have used that momentum in the
compact direction is quantized as
p = K/R, where K ∈ Z and the dual
radius is denoted by R̃ = 1/(2R). The
dual string has D boundary conditions in
the compact directions. Both ends of the
string are fixed at the hyperplane X̃ = x̃
after winding K times the compact
direction.

Hyperplanes on which strings can end are called Dp-branes, where p denotes the number
of spatial dimensions of the hyperplane. As we will see below in supersymmetric theories
Dp-branes are charged and therefore stable due to charge conservation.

The interchange of N and D boundary conditions goes both ways. This can be
rephrased into the following rule: if a T-duality is done along an S1 parallel to a Dp
brane, it becomes a D(p − 1) brane. On the other hand, if the T-duality is done
transverse to the brane the Dp brane becomes a D(p+ 1) brane.

2.3 Buscher rules

So far we have applied T-duality to strings propagating in a flat space-time with one
circle direction and found that R gets interchanged with α′/R. It is possible to gener-
alize T-duality to backgrounds specified by a metric gµν , Bµν ,Φ if in one direction, lets
denote it by y, there is an isometry. As discussed in the homework session the data of
the T-dual background written in terms of the original background are

g̃yy =
1

gyy
, B̃yµ =

gyµ
gyy

g̃yµ =
Byµ

gyy
, B̃µν = Bµν +

gyµByν −Byµgyν
gyy

g̃µν = gµν +
ByµByν − gyµgyν

gyy
, Φ̃ = Φ− 1

2
log gyy.

(12)

3 Low-energy effective actions

Low-energy effective actions describe the interactions between the massless fields of a
given string theory.

3.1 Type II theories

There are two theories with an N = 2 local SUSY in d = 10, type IIA and type IIB
string theory.
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3.1.1 Massless bosons

After taking the direct product of L- and R-movers the spectrum of space-time bosons
receives contributions from the NS-NS and R-R sectors.

NS-NS sector: The NS-NS sector for type IIA and type IIB strings is the same.
After GSO projection the massless states arise from the direct product of two SO(8)
vectors

b̃i−1/2 | 0⟩NS ⊗ bj−1/2 | 0⟩NS. (13)

= + ++

Figure 4: Decomposition of the direct
product of two SO(8) vectors into irre-
ducible representations.

Here b are oscillators for the world-sheet
spinors with NS boundary conditions and
i, j are indices labeling the components of
two SO(8) vectors. Taking the direct
product and decomposing into irreducible
representations gives a singlet, which is the
dilaton Φ, a traceless symmetric tensor,
which is the metric gµν and an anti-
symmetric rank 2 tensor which is the Bµν

field.

R-R sector: The massless bosonic fields of the type IIA string in the R-R sector can
be obtained by taking the direct product of two SO(8) spinors of opposite chirality

| +⟩R⊗ | −⟩R. (14)

The direct product of two spinors of opposite chirality is decomposed into irreducible
tensors according to

8⊗ 8′ = 56⊕ 8. (15)

The 56 representation is an anti-symmetric rank 3 tensor and the 8 representation an
SO(8) vector.

The massless states in the R-R sector for the type IIB string are obtained by taking
the direct product of two spinors of the same chirality

| +⟩R⊗ | +⟩R. (16)

It is decomposed as
8⊗ 8 = 35+ ⊕ 28⊕ 1. (17)

These are the degrees of freedom of rank 4, 2 and 0 tensors. Note that the rank 4
tensor only has 35 components, the reason being that the corresponding 5-form field
strength is self-dual in ten-dimensions. The self-duality constraint eliminates 1/2 of the
components.
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3.1.2 Charges of D-branes

Recall that a vector A = Aµdx
µ couples naturally to a particles world-line via

SA = q

∫
dτAµ

dxµ

dτ
= q

∫
A. (18)

D-branes carry R-R charges. The above interaction generalizes naturally to tensors
of higher rank. So for example, a rank 3 tensor couples naturally to a membrane or
D2-brane since the 3-form can be integrated over a 1+2 dimensional world-volume. In
general, a C(p+1) form couples to a Dp-brane via the interaction

Sp ∼
∫
Dp

C(p+1). (19)

Because of charge conservation the corresponding Dp-branes are stable.
Type IIA string theory therefore contains stable D2 and D0 branes which are charged

under C(3) and C(1). The magnetic duals are D4 and D6 branes. The D8 brane also
appears but has no propagating degrees of freedom. So type IIA contains Dp branes
with p even.

On the other hand type IIB contains Dp-branes with p odd. C(0), C(2) and C(4)

couple to D(-1), D1 and D3 branes. The magnetic duals are D7 and D5 branes while
the D3 brane is self-dual. The D9 brane is non-dynamical but can lead to consistency
requirements as we will later see.

3.1.3 T-duality for type II theories

Recall that under T-duality in the X9 direction

X9
L → X9

L, X9
R → −X9

R. (20)

In the RNS formalism world-sheet supersymmetry requires the world-sheet spinors ψ9

to transform in the same way as the bosonic partners. So

ψ9
L → ψ9

L, ψ9
R → −ψ9

R. (21)

This transformation changes the chirality of the right moving ground state in the R
sector. As a result under T-duality type IIA and type IIB get interchanged. Note that
this teaches us how T-duality acts on the fields. Indeed, under T-duality along the
brane

SDp ∼
∫
Dp

C(p+1) →
∫
D(p−1)

C(p). (22)

Therefore T-duality in the y direction acts on the fields according to

C
(n+1)
i1...iny

→ C
(n)
i1...in

+ . . .

C
(n−1)
i1...in

→ C
(n)
i1...in−1y

+ . . . ,
(23)

where the . . . contain terms of higher order in the fields.
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3.1.4 Low-energy effective actions

The low-energy effective actions can be written in the form

S = SNS + SR + SCS, (24)

using the notation in ref. [1]. These actions are constructed by requiring a local N = 2
supersymmetry in d = 10. Here we note that SNS, the part of the action involving
NS-NS fields only, is determined by the following requirements: it should be

1) written in terms of 2 derivatives

2) invariant under diffeomorphisms

3) invariant under gauge transformations of the B field, i.e. B → B + dΛ,

4) invariant under T-duality. Indeed, note that T-duality exchanges type IIA and
type IIB but the NS-NS sector is the same for the two theories. Therefore if
we compactify, say type IIA on a circle of radius R, T-dualize and work out the
metric in terms of the dual variables we should get the same result.

Imposing these constraints leads to an action which up to total derivatives is

SNS ∼
∫
d10x

√
−ge−2Φ

(
R + 4 | ∇Φ |2 −1

2
| H |2

)
, (25)

as you are asked to verify in a homework problem.

3.2 M-theory

Closely related to type IIA string theory is M-theory, which is the ‘quantum gravity
theory’ whose low-energy limit is 11d SUGRA. The bosonic fields are a metric gMN ,
and an anti-symmetric rank 3 tensor C3.

3.2.1 2-derivative action

To leading order in the derivative expansion the action for the bosonic fields is

2κ211S =

∫
d11x

√
−g
(
R− 1

2
| G4 |2

)
− 1

6

∫
C3 ∧G4 ∧G4. (26)

Compactification of 11d SUGRA on a circle leads to type IIA string theory. To
describe such a circle compactification the 11d metric is assumed to be a S1 fibred over
a 10d base. The most general form of such a metric is

ds2 = e−2Φ/3gµνdx
µdxν + e4Φ/3(dx11 + Aµdx

µ)2, x11 ∼ x11 + 2πR (27)

Here Φ = Φ(x) becomes the type IIA dilaton, A = A(x) the 1-form and gµν is the 10d
metric in the string frame. The 11d C3 field becomes a 3-form C(3) and the NS-NS
2-form Bµν = C

(3)
µν11.

It is a good homework problem to work out the action of type IIA SUGRA starting
with the action of 11d SUGRA and decomposing the fields as just described.
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3.2.2 8-derivative action

In addition to the 2-derivative terms, the M-theory action also contains higher derivative
corrections. An example of such a term which is important for flux backgrounds is

δS = T2

∫
C3 ∧X8, (28)

where X8 is constructed from the curvature 2-form according to

X8 =
1

(2π)4

[
− 1

768
(trR2)2 +

1

192
trR4

]
, (29)

and T2 is the membrane tension. X8 has two properties which we will later use

1) it is conformal invariant, i.e. if g and g′ are two conformally related metrics

X8(g) = X8(g
′). (30)

To show this write X8 in terms of Pontryagin classes according to

X8 =
1

48

(
p2 −

1

4
p21

)
. (31)

It was shown in ref. [4] that Pontryagin classes are conformal invariant.

2) when integrated over a Calabi-Yau 4-fold X8 is proportional to the Euler charac-
teristic χ of the 4-fold ∫

CY4

X8 =
χ

24
. (32)

To prove this2 write the Pontryagin classes in terms of Chern classes according to

p1 = c21 − 2c2,

p2 = c22 − 2c1c3 + 2c4,
(33)

which after using c1 = 0 which holds for Calabi-Yau spaces becomes

X8 =
1

24
c4. (34)

The Gauss-Bonnet theorem for complex manifolds leads to the desired result.

3.3 Type IIB and F-theory

Classically type IIB SUGRA has an SL(2,R) symmetry acting on the fields. Recall the
definition of the special linear group

SL(n,R) = {A ∈ GL(n,R) | detA = 1}, (35)

2See for example ref. [5].
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where GL(n,R) is the general linear group, which is the group of real n× n matrices.
Therefore we can represent any Λ ∈ SL(2,R) as

Λ =

(
a b
c d

)
, detΛ = ad− bc = 1. (36)

The SL(2,R) transformation acts on τ = C(0) + ie−Φ as

τ → aτ + b

cτ + b
, (37)

while the 2-forms transform as a doublet

B =

(
C

(2)
RR

BNS

)
, B → ΛB. (38)

The metric in the Einstein frame gEµν and the 4-form C(4) are invariant. In a quantum
theory charge quantization breaks the SL(2,R) symmetry to an SL(2,Z) subgroup.

τ τ+1

1

Figure 5: Two equivalent tori re-
lated by an SL(2,Z) transforma-
tion.

SL(2,Z) is also the group of modular
transformations of the torus. As seen in
the picture after identifying opposite sides
the tori characterized by the complex
number τ and τ + 1, for example, are the
same. It turns out that the SL(2,Z)
transformation of type IIB can be given a
geometric interpretation as an modular
transformation of a T 2.

In order to geometrize the SL(2,Z) symmetry consider type IIB string theory in
the following background

ds2IIB = eΦ/2

(
−dx20 + · · ·+ dx23 +

9∑
i,j=4

gijdy
idyj.

)
(39)

Lets denote the space described by the metric gij with X. The factor depending on Φ
in front of the metric is included since the bracket is the metric in the Einstein frame.
The type IIB complex coupling τ is assumed to be constant. This restriction is not
really necessary, and we will actually give it up below, but it is sufficient for the present
purpose. For constant τ , X can be a Calabi-Yau 3-fold leading to a solution with N = 2
SUSY in 4d. Lets relabel one of the Minkowski space coordinates as w2 and identify
periodically

x3 → w2 ≃ w2 + 2π. (40)
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Applying the Buscher rules the solution can be T-dualized to a type IIA background.
The type IIA metric, dilaton and RR 1-form are

ds2IIA = eΦ/2
(
−dx20 + dx21 + dx22

)
+ e−Φ/2dw2

2 + eΦ/2gijdy
idyj,

ΦIIA =
3

4
Φ,

C(1) = C(0)dw2.

(41)

Next we lift this solution to M-theory. Since the type IIA background only includes a
metric, dilaton and RR 1-form it lifts to a purely geometric background, with no G4

flux. Recall the relation between the M-theory and type IIA metric

ds2 = e−2ΦIIA/3ds2IIA + e4ΦIIA/3(dw1 + C(1)
w2
dw2)

2. (42)

Here we have denoted the 11 → 10 circle coordinate by w1 and we are imposing the
discrete identifications w1 ≃ w1 + 2π. Using the type IIA data it is easy to verify that
the 11d metric is

ds2 = −dx20 + dx21 + dx22 + gijdy
idyj + e−Φdw2

2 + eΦ(dw1 + C(0)dw2)
2. (43)

Taking the definition of the complex coupling τ = τ1 + iτ2 = C(0) + ie−Φ into account
this metric can be rewritten as

ds2 = −dx20 + dx21 + dx22 + gijdy
idyj +

1

τ2
| dw1 + τdw2 |2 . (44)

w1

w2

w1

w2
~

~

Figure 6: The two sets
of vectors define the same
lattice and are related by
an SL(2,Z) trafo.

The last term in the above expression is
the metric of a torus with complex
parameter τ and unit volume. This metric
is invariant under modular transformations

τ → aτ + b

cτ + d
, (45)

up to the diffeomorphism(
w1

w2

)
→
(
a −b
−c d

)(
w1

w2

)
(46)

which respect the discrete identifications
wi ≃ wi + 2π, i = 1, 2.

Recall that ‘this τ ’ is also the type IIB complex coupling. Therefore the SL(2,Z)
transformation acting on the torus translates into the SL(2,Z) acting on the IIB fields.

The action of SL(2,Z) on tensor fields can be obtained by decomposing the 3-form
into tensors with 9d indices according to

C3 = C(3) +B2dw1 + C2dw2 +B1dw1 ∧ dw2. (47)
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After T-duality in the w2 direction C(3) becomes the type IIB 4-form, B2 the type IIB
NS-NS 2-form, C2 the type IIB R-R 2-form and B1 gives off-diagonal components of
the metric. Since C3 is invariant under diffeomorphisms C2 and B2 have to transform
according to (

C2

B2

)
→
(
a b
c d

)(
C2

B2

)
(48)

under eqn. (46), while C(4) and the metric in the Einstein frame are invariant. This is
precisely how SL(2,Z) acts on the IIB fields.

It turns out that the condition that τ is constant can be relaxed while preserving
SUSY. It is possible to show that an N = 1 SUSY in d = 4 can be preserved if

1) X is a Kähler manifold of complex dimension 3. However, it should not be a
Calabi-Yau 3-fold since it is not Ricci flat.

2) τ is a holomorphic function of the base coordinates

∂̄τ = 0, ∂̄ = dȳi
∂

∂ȳi
. (49)

3) The Ricci form of X is related to τ according to

R = i∂∂̄ log det gij̄ = i∂∂̄ log τ2. (50)

Here we have used that X is Kähler.

Beyond this there is an additional generalization possible since the complex dimen-
sion of X does not have to be 3 and can be any integer n with n = 1, 2, . . . . As long as
the conditions 1), 2) and 3) are satisfied the above background is supersymmetric.

When lifted to M-theory the backgrounds with varying τ become purely geometrical.
Indeed, the lift to M-theory described above does not require constant τ . Lifting a
background with varying τ to M-theory yields the metric

ds2 = −dx20 + dx21 + dx22 + gijdy
idyj +

1

τ2(y)
| dw1 + τ(y)dw2 |2 . (51)

This is a theory with N = 2 SUSY in d = 3, and therefore the metric of X together with
the torus piece is a metric on an elliptically fibred Calabi-Yau 4-fold, in the so-called
semi-flat approximation. This is a good metric away from the singularities of τ . Since
it is not clear what it means to T-dualize along singular fibers the metric is expected
to be a good description away from the singularities of τ . However, τ is a holomorphic
parameter and, in general, it is expected to have singularities unless constant. Close
to the singularities the above metric will not be a good description and the isometries
in the w1 and w2 directions will break down. The case n = 1 is also known as stringy
cosmic string metric and the above expression is an approximation to the metric of K3.
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3.4 Type I

The type IIB string is left-right symmetric. So for example, the massless states in the
NS-NS and R-R sectors are

b̃i−1/2 | 0⟩NS ⊗ bj−1/2 | 0⟩NS, | +⟩R⊗ | +⟩R. (52)

If one state appears in the spectrum also the state obtained by interchanging left- and
right-movers. An operator which exchanges left- and right-movers is the world-sheet
parity

Ω : σ → 2π − σ. (53)

The spectrum of the type I string theory is obtained by keeping Ω invariant states.
In the NS-NS sector only the dilaton and metric are invariant while the NS-NS 2-form
is projected out. Taking Fermi statistics into account it follows that in the R-R sector
only C(2) is invariant, while C(4) and C(0) are projected out.

The type IIB space-time fermions are obtained by taking the direct product of the
states in the NS and R sectors according to

b̃i−1/2 | 0⟩NS⊗ | +⟩R,
| +⟩R ⊗ bj−1/2 | 0⟩NS.

(54)

These are interchanged under Ω. As a result one linear combination is left invariant
and the other is projected out. Accordingly, the type I string has an N = 1 SUSY in
d = 10 as opposed to the type IIB string which has N = 2 SUSY.

It turns out that the theory obtained by keeping only Ω invariant states is not
consistent. The operation of modding out by Ω introduces an O9 plane into the theory.
Such an O9 plane carries −16 units of D9 brane charge. Indeed, the general relation
between the charge carried by an Op plane and a Dp brane is

QOp = −2p−5QDp. (55)

Consistency requires the total D9 brane charge to vanish. Only the combined system
of one O9 plane and 16 D9 branes is consistent. On the world-volume of 16 D9 branes
there is an SO(32) gauge theory (see for example refs. [2] and [3] for more details.).

The massless bosonic fields of the type I string are

gµν , Φ, C
(2), Aµ, (56)

where Aµ is an SO(32) gauge field.

3.5 SO(32) heterotic string

The type I string is not the only supersymmetric string theory with the above field
content in d = 10. The other theory is the SO(32) heterotic string. The low-energy
effective actions of the type I and SO(32) heterotic string are related by the strong-weak
coupling duality

eΦI = e−ΦH ,

gIµν = e−ΦHgHµν ,
(57)
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where gµν is the string frame metric in the corresponding theory. This equivalence can
be explicitly checked at the level of low-energy effective actions. However, note that
the relation between the type I and heterotic dilaton fields implies

gIsg
H
s = 1. (58)

As a result if one theory is weakly coupled the other is strongly coupled. This is the
reason why such a duality is difficult to check and is at most a conjecture. Some tests
have been made and no discrepancy has been found. So for example, it is possible to
show that the tension of the type I D1 string becomes the tension of the heterotic string
at strong coupling.

4 Compactification and moduli

The heterotic string on M4×X, leads to unbroken SUSY in 4d if there are solutions of

δϵ(fermi) = 0. (59)

One solution with unbroken N = 1 SUSY is

H3 = 0, Φ = const., ∇mϵ = 0, (60)

together with some appropriate choices of gauge fields. Here H3 is the field strength
corresponding to the rank 2 anti-symmetric tensor. In this case X is a Calabi-Yau
3-fold. Deformations of X lead to massless scalar fields in 4d, the moduli.

4.1 The torus

Lets consider Calabi-Yau 1-folds, i.e. a T 2 first.

R1

R2

Figure 7: A square torus and ex-
amples of A- and B-cycles.

Lets start with a square torus. It is
obtained by identifying opposite sides of
the parallelogram with sides lengths R1

and R2. There are two ways of deforming
this T 2 so that it remains a T 2. We can
change R1 or R2. We can repackage R1

and R2 into imaginary fields

τ = i
R2

R1

, ρ2 = iR1R2. (61)

τ is an example of complex structure
parameter and ρ of Kähler structure
parameter.
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Note that T-duality exchanges τ and ρ.
It is possible to rewrite τ in a way that later can be generalized to coordinates on

the complex structure moduli space of Calabi-Yau 3-folds. First one introduces the
holomorphic 1-form

Ω = R1dw1 +R2dw2, (62)

and considers the two cycles of the T 2, the A-cycle and the B-cycle as shown in the
figure above. Then

τ =

∮
A
Ω∮

B
Ω
. (63)

In general, τ and ρ are complex. An angle θ, as shown in the figure, is also possible.
Such a torus is characterized by a complex number τ and overall scale ρ2.

τ=τ1+iτ2

θ

1

Figure 8: A torus.

On such a T 2 choose the metric

ds2 =
ρ2
τ2

| dw1 + τdw2 |2 (64)

with wi ∼ wi + 2π, i = 1, 2. Reading off
the metric gives

g =

(
g11 g12
g21 g22

)
=
ρ2
τ2

(
1 τ1
τ1 τ 21 + τ 22 ,

)
(65)

or inverting

τ =
g12
g22

+ i

√
det g

g22
. (66)

This is the complex structure parameter.

In general, the Kähler structure parameter has an imaginary part given by the size
and a real part given by the B-field

ρ = ρ1 + iρ2 = B21 + i
√

det g. (67)

Deformations of the T 2 can be done either by changing τ or by changing ρ. These can
be done independently.

Note that T-duality in one of the directions, say the w2 direction, acts as

τ ↔ ρ, (68)

i.e. it interchanges complex and Kähler structure parameters. This duality generalizes
to Calabi-Yau 3-folds where it becomes mirror symmetry, which then also interchanges
complex and Kähler structure parameters.

When compactifying on a torus τ and ρ appear as massless scalar fields. The kinetic
term has a normalization which is not standard but rather given in terms of the two
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Kähler potentials

Kτ = − log

(
i

∫
Ω ∧ Ω̄

)
Kρ = − logJ ,

(69)

where J = B+ iJ is the complexified Kähler form, and J = igab̄dy
a∧ dyb̄ is the Kähler

form.

4.2 Calabi-Yau 3-folds

Calabi-Yau 3-folds are obviously more involved than a simple torus but some of the
results described above do generalize. For Calabi-Yau 3-folds the number of complex
structure parameters is h1,2, where in general hp,q are the Hodge numbers of the Calabi-
Yau. This results in complex fields in 4d, ti, i = 1, . . . , h1,2. The number of Kähler
structure parameters is h1,1 giving rise to a number of complex fields, Ki, i = 1 . . . , h1,1,
after taking the B field into account.

Mirror symmetry for Calabi-Yau 3-folds exchanges complex structure and Kähler
structure parameters.

Figure 9: Mirror symmetry maps
a BPS state obtained from a D0
brane onX with the state obtained
by wrapping a D3 brane on a su-
persymmetric 3-cycle in X̃.

A proposal to prove mirror symmetry for
Calabi-Yau 3-folds using T-duality is due
to Strominger, Yau and Zaslow (SYZ).
Consider type IIA compactified on a
Calabi-Yau 3-fold X. A BPS state is
obtained by considering a D0 brane on X.
Mirror symmetry states that there is a
mirror Calabi-Yau, lets denote it by X̃,
which leads to the same physics in 4d after
compactifying the type IIB theory on it.
How can the state mirror to the D0 brane
be obtained in type IIB?

The natural guess is to take the Dp branes of type IIB (so p is odd) and wrap them
around cycles of X̃. A Calabi-Yau 3-fold has no 1- or 5-cycles. As a result only D3
branes wrapped on supersymmetric 3-cycles are relevant. As we have learned in the
first lecture 3 T-dualities performed transverse to the brane transform a D0 brane into
a D3 brane. Therefore SYZ conjectured that Calabi-Yau 3-folds which are T 3 fibrations
have a mirror which is obtained by performing 3 T-dualities on the T 3 fibers.

As for the case of the torus, also in the Calabi-Yau 3-fold case deformations of
the internal spaces lead to moduli fields, which are massless scalar fields in 4d. A
potential for these scalar fields can be generated by considering a generic string theory
compactification which besides a metric also includes expectation values for tensor
fields, or fluxes.
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5 M-theory compactified on Calabi-Yau 4-folds

Some of the simplest and ‘cleanest’ examples of flux backgrounds can be constructed
as compactifications of M-theory to 3d. These can be used as a starting point to obtain
many flux backgrounds via duality. Examples include type IIB on M4×X with flux or
compactifications of heterotic strings on torsional geometries.

The equations of motion of 11d SUGRA and the conditions for unbroken SUSY are
solved by

ds2 = −dx20 + dx21 + dx22 + ds2X ,

G4 = 0.
(70)

where X is a Calabi-Yau 4-fold. Variations of the Calabi-Yau metric can be done by
deforming

1) the complex structure, which gives rise to complex fields

Ti, i = 1, . . . , h3,1, (71)

2) or the Kähler structure, which gives rise to real fields

Ki, i = 1, . . . , h1,1. (72)

If G4 vanishes these fields are massless and their expectation values are arbitrary.
However, the flux cannot vanish in general. To see this recall that there is an 8-derivative
correction to the 11d SUGRA action given by

δS = T2

∫
C3 ∧X8, (73)

which modifies the equations of motion of C3

d ⋆ G4 = −1

2
G4 ∧G4 − 2κ211T2X8. (74)

Now we use the fact that in M-theory flux backgrounds exist even if the internal man-
ifold is compact, non-singular and no explicit brane sources are used. Integrating over
the Calabi-Yau 4-fold leads to∫

CY4

G4 ∧G4 = −4κ211T2

∫
CY4

X8 ∼ χ. (75)

So to make sense of compactifications on Calabi-Yau 4-folds with non-vanishing Euler
characteristic, G4 flux has to be taken into account as part of the background.
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5.1 The supersymmetric flux background

A supersymmetric flux background is specified by

1) the space-time metric

ds2 = ∆−1(−dx20 + dx21 + dx22) + ∆1/2ds2X , (76)

where X is a Calabi-Yau 4-fold and ∆ = ∆(y) is the warp factor which is a
function of the Calabi-Yau coordinates.

2) a flux with components on the external space-time

Gm012 = ∂m∆
−3/2, (77)

3) flux with components on X satisfying

G(2,2) ∧ J = 0, (78)

where (p, q) denotes the number of holomorphic and anti-holomorphic indices and
J is the Kähler form. All other components of G4 vanish.

5.2 The warp factor

The conditions 1), 2) and 3) provide one solution of δϵ(fermi) = 0 with an N = 2 SUSY
in 3d. These conditions are satisfied for arbitrary ∆. But the equations of motion are
not solved yet since a solution of the SUSY constraints is, in general, not directly a
solution of the equations of motion. The Bianchi identity also needs to be imposed. We
will impose the Bianchi identity on the 7-form G7 = ⋆G4, which is also the equation
of motion for C3. Taking G7 to have components on X or equivalently G4 to have
components in the 012 directions gives

d ⋆8 d∆
3/2 = −1

2
G4 ∧G4 − 2κ211T2X8, (79)

where ⋆8 is the Hodge star operator on X. Now recall that X8 is conformal invariant.
The overall factor of ∆1/2 in front of the metric of X drops out. The only dependence
on ∆ is on the left hand side of the above equation. This is a Laplace equation for ∆
which on a compact space is solvable if the right hand side is orthogonal to the zero
mode of the Laplacian. A solution can, for example, be explicitly constructed if we
know the Green’s function of X.

Note that, in general, there will be corrections to eqn. (79) to all orders in the
derivative expansion. However, equations like this are solved in perturbation theory,
the expansion parameter being the inverse size of X which is also an expansion in the
Planck length lp. Lets denote the size by L8. The warp factor is expanded as

∆ = ∆(0) +∆(1) + . . . , (80)
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where ∆(0) is O(1) and according to (79) solves

d ⋆8 d∆(0)
3/2 = 0, (81)

and is therefore constant. To next order

d ⋆8 d∆(1)
3/2 = −1

2
G4 ∧G4 − 2κ211T2X8, (82)

where ∆(1) is O(L−6). In this equation all terms are of the same order in L. Corrections
to eqn. (79) arising from, for example, additional higher derivative terms in the M-
theory effective action are sub-leading in the L expansion.

5.3 SUSY breaking solutions

Besides the supersymmetric solutions it is also possible to describe vacua with a van-
ishing cosmological constant and broken SUSY. Indeed, the equations of motion are
solved for any internal flux which is self-dual, i.e.

G4 = ⋆8G4, (83)

if conditions 1) and 2) are satisfied. Besides the SUSY preserving solutions described
above this condition is also solved by SUSY breaking solutions for which G4 ∼ J ∧ J
or G4 ∼ Ω + Ω̄, where Ω is the holomorphic (4,0) form.
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