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1 Heterotic String Orbifolds and Orbifold GUTs

2 Phenomenological guidelines

We use the following guidelines when searching for “realistic” string mod-
els [65,66]. We want to:

1. Preserve gauge coupling unification;

2. Low energy SUSY as solution to the gauge hierarchy problem, i.e. why
is MZ << MG;

3. Put quarks and leptons in 16 of SO(10);

4. Put Higgs in 10, thus quarks and leptons are distinguished from Higgs
by their SO(10) quantum numbers;

5. Preserve GUT relations for 3rd family Yukawa couplings;

6. Use the fact that GUTs accommodate a “Natural” See-Saw scaleO(MG);

7. Use intuition derived from Orbifold GUT constructions, [67,68] and

8. Use local GUTs to enforce family structure [69–71].

It is the last two guidelines which are novel and characterizes our approach.

2.1 E8×E8 10D heterotic string compactified on Z3×Z2

6D orbifold

There are many reviews and books on string theory. I cannot go into great
detail here, so I will confine my discussion to some basic points. We start
with the 10d heterotic string theory, consisting of a 26d left-moving bosonic
string and a 10d right-moving superstring. Modular invariance requires the
momenta of the internal left-moving bosonic degrees of freedom (16 of them)
to lie in a 16d Euclidean even self-dual lattice, we choose to be the E8 × E8

root lattice.1

1For an orthonormal basis, the E8 root lattice consists of following vectors,
(n1, n2, · · · , n8) and (n1 + 1

2 , n2 + 1
2 , · · · , n8 + 1

2 ), where n1, n2, · · ·n8 are integers and∑8
i=1 ni = 0 mod 2.
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Figure 1: G2⊕SU(3)⊕SO(4) lattice. Note, we have taken 5 directions with
string scale length `s and one with length 2πR À `s. This will enable the
analogy of an effective 5d orbifold field theory.

2.1.1 Heterotic string compactified on T 6/Z6

We first compactify the theory on 6d torus defined by the space group action
of translations on a factorizable Lie algebra lattice G2⊕SU(3)⊕SO(4) (see
Fig. 5). Then we mod out by the Z6 action on the three complex compactified
coordinates given by Zi → e2πiri·v6Zi, i = 1, 2, 3, where v6 = 1

6
(1, 2,−3) is

the twist vector, and r1 = (1, 0, 0, 0), r2 = (0, 1, 0, 0), r3 = (0, 0, 1, 0).2

The Z6 orbifold is equivalent to a Z2 × Z3 orbifold, where the two twist
vectors are v2 = 3v6 = 1

2
(1, 0,−1) and v3 = 2v6 = 1

3
(1,−1, 0). The Z2 and

Z3 sub-orbifold twists have the SU(3) and SO(4) planes as their fixed torii. In
Abelian symmetric orbifolds, gauge embeddings of the point group elements
and lattice translations are realized by shifts of the momentum vectors, P,
in the E8×E8 root lattice3 [72], i.e., P → P+kV+ lW, where k, l are some
integers, and V and W are known as the gauge twists and Wilson lines [73].
These embeddings are subject to modular invariance requirements [74, 75].
The Wilson lines are also required to be consistent with the action of the
point group. In the Z6 model, there are at most three consistent Wilson
lines [76], one of degree 3 (W3), along the SU(3) lattice, and two of degree
2 (W2, W′

2), along the SO(4) lattice.

2Together with r4 = (0, 0, 0, 1), they form the set of positive weights of the 8v rep-
resentation of the SO(8), the little group in 10d. ±r4 represent the two uncompactified
dimensions in the light-cone gauge. Their space-time fermionic partners have weights
r = (± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ) with even numbers of positive signs; they are in the 8s representa-

tion of SO(8). In this notation, the fourth component of v6 is zero.
3The E8 root lattice is given by the set of states P = {n1, n2, · · · , n8}, {n1 + 1

2 , n2 +
1
2 , · · · , n8 + 1

2} satisfying ni ∈ Z,
∑8

i=1 ni = 2Z.
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Figure 2: G2 ⊕ SU(3)⊕ SO(4) lattice with Z2 fixed points. The T3 twisted
sector states sit at these fixed points. The fixed point at the origin and the
symmetric linear combination of the red (grey) fixed points in the G2 torus
have γ = 1.

The Z6 model has three untwisted sectors (Ui, i = 1, 2, 3) and five twisted
sectors (Ti, i = 1, 2, · · · , 5). (The Tk and T6−k sectors are CPT conjugates of
each other.) The twisted sectors split further into sub-sectors when discrete
Wilson lines are present. In the SU(3) and SO(4) directions, we can label
these sub-sectors by their winding numbers, n3 = 0, 1, 2 and n2, n′2 = 0, 1,
respectively. In the G2 direction, where both the Z2 and Z3 sub-orbifold
twists act, the situation is more complicated. There are four Z2 fixed points
in the G2 plane. Not all of them are invariant under the Z3 twist, in fact three
of them are transformed into each other. Thus for the T3 twisted-sector states
one needs to find linear combinations of these fixed-point states such that
they have definite eigenvalues, γ = 1 (with multiplicity 2), ei2π/3, or ei4π/3,
under the orbifold twist [76, 77] (see Fig. 6). Similarly, for the T2,4 twisted-
sector states, γ = 1 (with multiplicity 2) and −1 (the fixed points of the T2,4

twisted sectors in the G2 torus are shown in Fig. 7). The T1 twisted-sector
states have only one fixed point in the G2 plane, thus γ = 1 (see Fig. 8). The
eigenvalues γ provide another piece of information to differentiate twisted
sub-sectors.

Massless states in 4d string models consist of those momentum vectors P
and r (r are in the SO(8) weight lattice) which satisfy the following mass-shell
equations [72,74],

α′

2
m2

R = Nk
R +

1

2
|r + kv|2 + ak

R = 0 , (1)

α′

2
m2

L = Nk
L +

1

2
|P + kX|2 + ak

L = 0 , (2)
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SO(4)G2 SU3

Figure 3: G2⊕SU(3)⊕SO(4) lattice with Z3 fixed points for the T2 twisted
sector. The fixed point at the origin and the symmetric linear combination
of the red (grey) fixed points in the G2 torus have γ = 1.

SO(4)G2 SU3

e6

e5

Figure 4: G2 ⊕ SU(3)⊕ SO(4) lattice with Z6 fixed points. The T1 twisted
sector states sit at these fixed points.
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where α′ is the Regge slope, Nk
R and Nk

L are (fractional) numbers of the right-
and left-moving (bosonic) oscillators, X = V + n3W3 + n2W2 + n′2W

′
2, and

ak
R, ak

L are the normal ordering constants,

ak
R = −1

2
+

1

2

3∑
i=1

|k̂vi|
(
1− |k̂vi|

)
,

ak
L = −1 +

1

2

3∑
i=1

|k̂vi|
(
1− |k̂vi|

)
, (3)

with k̂vi = mod(kvi, 1).
These states are subject to a generalized Gliozzi-Scherk-Olive (GSO) pro-

jection P = 1
6

∑5
`=0 ∆` [72]. For the simple case of the k-th twisted sector

(k = 0 for the untwisted sectors) with no Wilson lines (n3 = n2 = n′2 = 0)
we have

∆ = γφ exp

{
iπ

[
(2P + kX) ·X− (2r + kv) · v

]}
, (4)

where φ are phases from bosonic oscillators. However, in the Z6 model, the
GSO projector must be modified for the untwisted-sector and T2,4, T3 twisted-
sector states in the presence of Wilson lines [68]. The Wilson lines split each
twisted sector into sub-sectors and there must be additional projections with
respect to these sub-sectors. This modification in the projector gives the
following projection conditions,

P ·V − ri · v = Z (i = 1, 2, 3), P ·W3, P ·W2, P ·W′
2 = Z, (5)

for the untwisted-sector states, and

T2,4 : P ·W2, P ·W′
2 = Z , T3 : P ·W3 = Z , (6)

for the T2,3,4 sector states (since twists of these sectors have fixed torii). There
is no additional condition for the T1 sector states.

2.1.2 An orbifold GUT – heterotic string dictionary

We first implement the Z3 sub-orbifold twist, which acts only on the G2

and SU(3) lattices. The resulting model is a 6d gauge theory with N = 2
hypermultiplet matter, from the untwisted and T2,4 twisted sectors. This 6d
theory is our starting point to reproduce the orbifold GUT models. The next
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step is to implement the Z2 sub-orbifold twist. The geometry of the extra
dimensions closely resembles that of 6d orbifold GUTs. The SO(4) lattice
has four Z2 fixed points at 0, πR, πR′ and π(R + R′), where R and R′ are
on the e5 and e6 axes, respectively, of the lattice (see Figs. 6 and 8). When
one varies the modulus parameter of the SO(4) lattice such that the length
of one axis (R) is much larger than the other (R′) and the string length scale
(`s), the lattice effectively becomes the S1/Z2 orbi-circle in the 5d orbifold
GUT, and the two fixed points at 0 and πR have degree-2 degeneracies.
Furthermore, one may identify the states in the intermediate Z3 model, i.e.
those of the untwisted and T2,4 twisted sectors, as bulk states in the orbifold
GUT.

Space-time supersymmetry and GUT breaking in string models work ex-
actly as in the orbifold GUT models. First consider supersymmetry breaking.
In the field theory, there are two gravitini in 4d, coming from the 5d (or 6d)
gravitino. Only one linear combination is consistent with the space reversal,
y → −y; this breaks the N = 2 supersymmetry to that of N = 1. In string
theory, the space-time supersymmetry currents are represented by those half-
integral SO(8) momenta.4 The Z3 and Z2 projections remove all but two of
them, r = ±1

2
(1, 1, 1, 1); this gives N = 1 supersymmetry in 4d.

Now consider GUT symmetry breaking. As usual, the Z2 orbifold twist
and the translational symmetry of the SO(4) lattice are realized in the gauge
degrees of freedom by degree-2 gauge twists and Wilson lines respectively. To
mimic the 5d orbifold GUT example, we impose only one degree-2 Wilson
line, W2, along the long direction of the SO(4) lattice, R.5 The gauge
embeddings generally break the 5d/6d (bulk) gauge group further down to
its subgroups, and the symmetry breaking works exactly as in the orbifold
GUT models. This can clearly be seen from the following string theoretical
realizations of the orbifold parities

P = p e2πi [P·V2−r·v2] , P ′ = p e2πi [P·(V2+W2)−r·v2] , (7)

4Together with r4 = (0, 0, 0, 1), they form the set of positive weights of the 8v rep-
resentation of the SO(8), the little group in 10d. ±r4 represent the two uncompactified
dimensions in the light-cone gauge. Their space-time fermionic partners have weights
r = (± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ) with even numbers of positive signs; they are in the 8s representa-

tion of SO(8). In this notation, the fourth component of v6 is zero.
5Wilson lines can be used to reduce the number of chiral families. In all our models,

we find it is sufficient to get three-generation models with two Wilson lines, one of degree
2 and one of degree 3. Note, however, that with two Wilson lines in the SO(4) torus we
can break SO(10) directly to SU(3)×SU(2)×U(1)Y ×U(1)X (see for example, Ref. [78]).
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where V2 = 3V6, and p = γφ can be identified with intrinsic parities in the
field theory language.6 Since 2(P ·V2−r ·v2), 2P ·W2 = Z, by properties of
the E8 × E8 and SO(8) lattices, thus P 2 = P ′2 = 1, and Eq. (136) provides
a representation of the orbifold parities. From the string theory point of
view, P = P ′ = + are nothing but the projection conditions, ∆ = 1, for the
untwisted and T2,4 twisted-sector states (see Eqs. (133), (134) and (135)).

To reaffirm this identification, we compare the masses of KK excitations
derived from string theory with that of orbifold GUTs. The coordinates of the
SO(4) lattice are untwisted under the Z3 action, so their mode expansions are
the same as that of toroidal coordinates. Concentrating on the R direction,
the bosonic coordinate is XL,R = xL,R + pL,R(τ ± σ) + oscillator terms, with
pL, pR given by

pL = m
2R

+
(
1− 1

4
|W2|2

)
n2R
`2s

+ P·W2

2R
,

pR = pL − 2n2R
`2s

, (8)

where m (n2) are KK levels (winding numbers). The Z2 action maps m
to −m, n2 to −n2 and W2 to −W2, so physical states must contain linear
combinations, |m,n2〉±|−m,−n2〉; the eigenvalues ±1 correspond to the first
Z2 parity, P , of orbifold GUT models. The second orbifold parity, P ′, induces
a non-trivial degree-2 Wilson line; it shifts the KK level by m → m+P ·W2.
Since 2W2 is a vector of the (integral) E8 × E8 lattice, the shift must be
an integer or half-integer. When R À R′ ∼ `s, the winding modes and the
KK modes in the smaller dimension of SO(4) decouple. Eq. (137) then gives
four types of KK excitations, reproducing the field theoretical mass formula
in Eq. (112).

2.2 MSSM with R parity

In this section we discuss just one “benchmark” model (Model 1) obtained
via a “mini-landscape” search [65] of the E8×E8 heterotic string compactified

6For gauge and untwisted-sector states, p are trivial. For non-oscillator states in the
T2,4 twisted sectors, p = γ are the eigenvalues of the G2-plane fixed points under the Z2

twist. Note that p = + and − states have multiplicities 2 and 1 respectively since the
corresponding numbers of fixed points in the G2 plane are 2 and 1.
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on the Z6 orbifold [66].7 The model is defined by the shifts and Wilson lines

V =

(
1

3
,−1

2
,−1

2
, 0, 0, 0, 0, 0

) (
1

2
,−1

6
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,
1

2

)
,(9a)

W2 =

(
0,−1

2
,−1

2
,−1

2
,
1

2
, 0, 0, 0

) (
4,−3,−7

2
,−4,−3,−7

2
,−9

2
,
7

2

)
,(9b)

W3 =

(
−1

2
,−1

2
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

) (
1

3
, 0, 0,

2

3
, 0,

5

3
,−2, 0

)
. (9c)

A possible second order 2 Wilson line is set to zero.
The shift V is defined to satisfy two criteria.

• The first criterion is the existence of a local SO(10) GUT 8 at the T1

fixed points at x6 = 0 in the SO(4) torus (Fig. 8).

P · V = Z; P ∈ SO(10) momentum lattice. (10)

Since the T1 twisted sector has no invariant torus and only one Wilson
line along the x6 direction, all states located at these two fixed points
must come in complete SO(10) multiplets.

• The second criterion is that two massless spinor representations of
SO(10) are located at the x6 = 0 fixed points.

Hence, the two complete families on the local SO(10) GUT fixed points
gives us an excellent starting point to find the MSSM. The Higgs doublets
and third family of quarks and leptons must then come from elsewhere.

Let us now discuss the effective 5d orbifold GUT [81]. Consider the
orbifold (T 2)3/Z3 plus the Wilson line W3 in the SU3 torus. The Z3 twist
does not act on the SO4 torus, see Fig. 7. As a consequence of embedding
the Z3 twist as a shift in the E8×E8 group lattice and taking into account the
W3 Wilson line, the first E8 is broken to SU(6). This gives the effective 5d
orbifold gauge multiplet contained in the N = 1 vector field V . In addition
we find the massless states Σ ∈ 35, 20+20c and 9 (6+6c) in the 6d untwisted
sector and T2, T4 twisted sectors. Together these form a complete N = 2
gauge multiplet (V + Σ) and a 20 + 9 (6) dimensional hypermultiplets. In

7For earlier work on MSSM models from Z6 orbifolds of the heterotic string, see [69,70].
8For more discussion on local GUTs, see [69,71]
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fact the massless states in this sector can all be viewed as “bulk” states
moving around in a large 5d space-time.

Now consider the Z2 twist and the Wilson line W2 along the x6 axis in the
SO4 torus. The action of the Z2 twist breaks the gauge group to SU(5), while
W2 breaks SU(5) further to the SM gauge group SU(3)C ×SU(2)L×U(1)Y .

Let us now consider those MSSM states located in the bulk. From two of
the pairs of N = 1 chiral multiplets 6 + 6c, which decompose as

2× (6 + 6c) ⊃
[
(1,2)−−1,1 + (3,1)−+

−2/3,1/3

]
+

[
(1,2)++

−1,−1 + (3,1)−−2/3,−1/3

]

+
[
(1,2)−+

1,1 + (3,1)−−−2/3,1/3

]
+

[
(1,2)+−

−1,−1 + (3,1)++
2/3,−1/3

]
,(11)

we obtain the third family bc and lepton doublet, l. The rest of the third
family comes from the 10+10c of SU(5) contained in the 20+20c of SU(6),
in the untwisted sector.

Now consider the Higgs bosons. The bulk gauge symmetry is SU(6).
Under SU(5)× U(1), the adjoint decomposes as

35 → 240 + 5+1 + 5c
−1 + 10. (12)

Thus the MSSM Higgs sector emerges from the breaking of the SU(6) ad-
joint by the orbifold and the model satisfies the property of “gauge-Higgs
unification.”

In the models with gauge-Higgs unification, the Higgs multiplets come
from the 5d vector multiplet (V, Σ), both in the adjoint representation of
SU(6). V is the 4d gauge multiplet and the 4d chiral multiplet Σ contains
the Higgs doublets. These states transform as follows under the orbifold
parities (P P ′):

V :




(++) (++) (++) (+−) (+−) (−+)
(++) (++) (++) (+−) (+−) (−+)
(++) (++) (++) (+−) (+−) (−+)
(+−) (+−) (+−) (++) (++) (−−)
(+−) (+−) (+−) (++) (++) (−−)
(−+) (−+) (−+) (−−) (−−) (++)




(13)

10



SO(4)

0 πR

G2 SU3

SU(5) branes SM branes

16

16

local SO(10) SU(6) orbifold GUT
in bulk

Figure 5: The two families in the T1 twisted sector.

Φ :




(−−) (−−) (−−) (−+) (−+) (+−)
(−−) (−−) (−−) (−+) (−+) (+−)
(−−) (−−) (−−) (−+) (−+) (+−)
(−+) (−+) (−+) (−−) (−−) (++)
(−+) (−+) (−+) (−−) (−−) (++)
(+−) (+−) (+−) (++) (++) (−−)




. (14)

Hence, we have obtained doublet-triplet splitting via orbifolding.

2.3 D4 Family Symmetry

Consider the Z2 fixed points. We have four fixed points, separated into an
SU(5) and SM invariant pair by the W2 Wilson line (see Fig. 9). We find
two complete families, one on each of the SO10 fixed points and a small set of
vector-like exotics (with fractional electric charge) on the other fixed points.
Since W2 is in the direction orthogonal to the two families, we find a non-
trivial D4 family symmetry. This will affect a possible hierarchy of fermion
masses. We will discuss the family symmetry and the exotics in more detail
next.

The discrete group D4 is a non-abelian discrete subgroup of SU2 of order
8. It is generated by the set of 2× 2 Pauli matrices

D4 = {±1,±σ1,±σ3,∓iσ2}. (15)

In our case, the action of the transformation σ1 =

(
0 1
1 0

)
takes F1 ↔ F2,
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while the action of σ3 =

(
1 0
0 −1

)
takes F2 → −F2. These are symmetries

of the string. The first is an unbroken part of the translation group in
the direction orthogonal to W2 in the SO4 torus and the latter is a stringy
selection rule resulting from Z2 space group invariance. Under D4 the three
families of quarks and leptons transform as a doublet, (F1, F2), and a singlet,
F3. Only the third family can have a tree level Yukawa coupling to the Higgs
(which is also a D4 singlet). In summary:

• Since the top quarks and the Higgs are derived from the SU(6) chiral
adjoint and 20 hypermultiplet in the 5D bulk, they have a tree level
Yukawa interaction given by

g5√
πR

∫ πR

0

dy20c Σ 20 = gG q Hu tc (16)

where g5 (gG) is the 5d (4d) SU(6) gauge coupling constant evaluated
at the string scale.

• The first two families reside at the Z2 fixed points, resulting in a D4

family symmetry. Hence family symmetry breaking may be used to
generate a hierarchy of fermion masses.9

2.4 More details of “Benchmark” Model 1 [66]

Let us now consider the spectrum, exotics, R parity, Yukawa couplings, and
neutrino masses. In Table 9 we list the states of the model. In addition to
the three families of quarks and leptons and one pair of Higgs doublets, we
have vector-like exotics (states which can obtain mass without breaking any
SM symmetry) and SM singlets. The SM singlets enter the superpotential
in several important ways. They can give mass to the vector-like exotics via
effective mass terms of the form

EEcS̃n (17)

where E, Ec (S̃) represent the vector-like exotics and SM singlets respectively.
We have checked that all vector-like exotics obtain mass at supersymmetric

9For a discussion of D4 family symmetry and phenomenology, see Ref. [79]. For a gen-
eral discussion of discrete non-Abelian family symmetries from orbifold compactifications
of the heterotic string, see [80].
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points in moduli space with F = D = 0. The SM singlets also generate
effective Yukawa matrices for quarks and leptons, including neutrinos. In
addition, the SM singlets give Majorana mass to the 16 right-handed neutri-
nos nc

i , 13 conjugate neutrinos ni and Dirac mass mixing the two. We have
checked that the theory has only 3 light left-handed neutrinos.

However, one of the most important constraints in this construction is
the existence of an exact low energy R parity. In this model we identified
a generalized B−L (see Table 9) which is standard for the SM states and
vector-like on the vector-like exotics. This B−L naturally distinguishes the
Higgs and lepton doublets. Moreover we found SM singlet states

S̃ = {hi, χi, s0
i } (18)

which can get vacuum expectation values preserving a matter parity ZM2
subgroup of U(1)B−L. It is this set of SM singlets which give vector-like exotics
mass and effective Yukawa matrices for quarks and leptons. In addition, the
states χi give Majorana mass to neutrinos.

2.5 Gauge Coupling Unification and Proton Decay

We have checked whether the SM gauge couplings unify at the string scale
in the class of models similar to Model 1 above [81]. All of the 15 MSSM-like
models of Ref. [66] have 3 families of quarks and leptons and one or more
pairs of Higgs doublets. They all admit an SU(6) orbifold GUT with gauge-
Higgs unification and the third family in the bulk. They differ, however,
in other bulk and brane exotic states. We show that the KK modes of the
model, including only those of the third family and the gauge sector, are not
consistent with gauge coupling unification at the string scale. Nevertheless,
we show that it is possible to obtain unification if one adjusts the spectrum
of vector-like exotics below the compactification scale. As an example, see
Fig. 10. Note, the compactification scale is less than the 4d GUT scale
and some exotics have mass two orders of magnitude less than Mc, while
all others are taken to have mass at MSTRING. In addition, the value of
the GUT coupling at the string scale, αG(MSTRING) ≡ αstring, satisfies the
weakly coupled heterotic string relation

GN =
1

8
αstring α′ (19)
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# irrep label # irrep label
3 (3,2;1,1)(1/3,1/3) qi 3

(
3,1;1,1

)
(−4/3,−1/3)

uc
i

3 (1,1;1,1)(2,1) ec
i 8 (1,2;1,1)(0,∗) mi

4
(
3,1;1,1

)
(2/3,−1/3)

dc
i 1 (3,1;1,1)(−2/3,1/3) di

4 (1,2;1,1)(−1,−1) `i 1 (1,2;1,1)(1,1) `c
i

1 (1,2;1,1)(−1,0) φi 1 (1,2;1,1)(1,0) φc
i

6
(
3,1;1,1

)
(2/3,2/3)

δc
i 6 (3,1;1,1)(−2/3,−2/3) δi

14 (1,1;1,1)(1,∗) s+
i 14 (1,1;1,1)(−1,∗) s−i

16 (1,1;1,1)(0,1) nc
i 13 (1,1;1,1)(0,−1) ni

5 (1,1;1,2)(0,1) ηc
i 5 (1,1;1,2)(0,−1) ηi

10 (1,1;1,2)(0,0) hi 2 (1,2;1,2)(0,0) yi

6 (1,1;4,1)(0,∗) fi 6
(
1,1;4,1

)
(0,∗) f c

i

2 (1,1;4,1)(−1,−1) f−i 2
(
1,1;4,1

)
(1,1)

f c
i
+

4 (1,1;1,1)(0,±2) χi 32 (1,1;1,1)(0,0) s0
i

2
(
3,1;1,1

)
(−1/3,2/3)

vc
i 2 (3,1;1,1)(1/3,−2/3) vi

Table 1: Spectrum. The quantum numbers under SU(3)× SU(2)× [SU(4)×
SU(2)′] are shown in boldface; hypercharge and B−L charge appear as
subscripts. Note that the states s±i , fi, f̄i and mi have different B − L
charges for different i, which we do not explicitly list [66].

or

α−1
string =

1

8
(

MPl

MSTRING

)2. (20)

In Fig. 11 we plot the distribution of solutions with different choices of
light exotics. On the same plot we give the proton lifetime due to dimension
6 operators. Recall in these models the two light families are located on
the SU(5) branes, thus the proton decay rate is only suppressed by M−2

c .
Note, 90% of the models are already excluded by the Super-Kamiokande
bounds on the proton lifetime. The remaining models may be tested at a
next generation megaton water čerenkov detector.

3 Conclusion

We have discussed an evolution of SUSY GUT model building in these lec-
tures. We saw that 4d SUSY GUTs have many virtues. However there are

14



M
C

M
string

α
string

-1
 ~ 62

M
SUSY

M
EX

M
C

M
string

µ [GeV]

10

20

30

40

50

60

70
α i-1

α
1

-1

α2−1

α 3
−1

M
GUT

Figure 6: An example of the type of gauge coupling evolution we see in these
models, versus the typical behavior in the MSSM. The “tail” is due to the
power law running of the couplings when towers of Kaluza-Klein modes are
involved. Unification in this model occurs at MSTRING ' 5.5 × 1017 GeV,
with a compactification scale of Mc ' 8.2 × 1015 GeV, and an exotic mass
scale of MEX ' 8.2× 1013 GeV.

some problems which suggest that these model may be difficult to derive
from a more fundamental theory, i.e. string theory. We then discussed orb-
ifold GUT field theories which solve two of the most difficult problems of 4d
GUTs, i.e. GUT symmetry breaking and Higgs doublet-triplet splitting. We
then showed how some orbifold GUTs can find an ultra-violet completion
within the context of heterotic string theory.

The flood gates are now wide open. In recent work [66] we have obtained
many models with features like the MSSM: SM gauge group with 3 fami-
lies and vector-like exotics which can, in principle, obtain large mass. The
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Figure 7: Histogram of solutions with MSTRING > Mc & MEX, showing
the models which are excluded by Super-K bounds (darker green) and those
which are potentially accessible in a next generation proton decay experiment
(lighter green). Of 252 total solutions, 48 are not experimentally ruled out by
the current experimental bound, and most of the remaining parameter space
can be eliminated in the next generation of proposed proton decay searches.

models have an exact R-parity and non-trivial Yukawa matrices for quarks
and leptons. In addition, neutrinos obtain mass via the See-Saw mechanism.
We showed that gauge coupling unification can be accommodated [81]. Re-
cently, another MSSM-like model has been obtained with the heterotic string
compactified on a T 6/Z12 orbifold [82].

Of course, this is not the end of the story. It is just the beginning.
We must still obtain predictions for the LHC. This requires stabilizing the
moduli and breaking supersymmetry. In fact, these two conditions are not
independent, since once SUSY is broken, the moduli will be stabilized. The
scary fact is that the moduli have to be stabilized at just the right values to
be consistent with low energy phenomenology.
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