Heterotic Brane world: the Geography of Extra Dimensions

Hans Peter Nilles

Bethe Center for Theoretical Physics

Outline

- MSSM and Grand Unification
- Heterotic string compactifications
- Gauge group geography in extra dimensions
- Local Grand Unification
- A fertile patch of the landscape
- Hidden sector susy breakdown
- The Benchmark model
- Comparison to type II braneworld
- Outlook

Bottom-up input

Experimental findings suggest the existence of two new scales of physics beyond the standard model
$M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$ (and $M_{\text {SUSY }} \sim 10^{3} \mathrm{GeV}$):

Bottom-up input

Experimental findings suggest the existence of two new scales of physics beyond the standard model
$M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$ (and $M_{\text {SUSY }} \sim 10^{3} \mathrm{GeV}$):

- Neutrino-oscillations and "See-Saw Mechanism"

$$
\begin{aligned}
& m_{\nu} \sim M_{W}^{2} / M_{\mathrm{GUT}} \\
& m_{\nu} \sim 10^{-3} \mathrm{eV} \text { for } M_{W} \sim 100 \mathrm{GeV},
\end{aligned}
$$

Bottom-up input

Experimental findings suggest the existence of two new scales of physics beyond the standard model
$M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$ (and $M_{\text {SUSY }} \sim 10^{3} \mathrm{GeV}$):

- Neutrino-oscillations and "See-Saw Mechanism"

$$
\begin{aligned}
& m_{\nu} \sim M_{W}^{2} / M_{\mathrm{GUT}} \\
& m_{\nu} \sim 10^{-3} \mathrm{eV} \text { for } M_{W} \sim 100 \mathrm{GeV}
\end{aligned}
$$

- Evolution of couplings constants of the standard model towards higher energies.

MSSM (supersymmetric)

Standard Model

Grand Unification

has changed our view of the world, but there are also some problematic aspects of the grand unified picture.

Grand Unification

has changed our view of the world, but there are also some problematic aspects of the grand unified picture.

Most notably

- potential instability of the proton
- doublet - triplet splitting
- complicated Higgs sector to break grand unified gauge group spontaneously

Grand Unification

has changed our view of the world, but there are also some problematic aspects of the grand unified picture.

Most notably

- potential instability of the proton
- doublet - triplet splitting
- complicated Higgs sector to break grand unified gauge group spontaneously

Can we avoid these problems in a more complete theory?

String theory candidates

In ten space-time dimensions.....

- Type I SO(32)
- Type II orientifolds (F-theory)
- Heterotic $\mathrm{SO}(32)$
- Heterotic $E_{8} \times E_{8}$
- Intersecting Branes $U(N)^{M}$

String theory candidates

In ten space-time dimensions.....

- Type I SO(32)
- Type II orientifolds (F-theory)
- Heterotic $\mathrm{SO}(32)$
- Heterotic $E_{8} \times E_{8}$
- Intersecting Branes $U(N)^{M}$
....or in eleven
- Horava-Witten heterotic M-theory
- Type IIA on manifolds with G_{2} holonomy

String Theory

What do we get from string theory?

- supersymmetry
- extra spatial dimensions
- large unified gauge groups
- consistent theory of gravity

String Theory

What do we get from string theory?

- supersymmetry
- extra spatial dimensions
- large unified gauge groups
- consistent theory of gravity

These are the building blocks for a unified theory of all the fundamental interactions.
But do they fit together, and if yes how?
We need to understand the mechanism of compactification of the extra spatial dimensions

Calabi Yau Manifold

Orbifold

Orbifolds

Orbifold compactifications combine the

- success of Calabi-Yau compactification
- calculability of torus compactification

Orbifolds

Orbifold compactifications combine the

- success of Calabi-Yau compactification
- calculability of torus compactification

In case of the heterotic string fields can propagate

- in the Bulk ($d=10$ untwisted sector)
- on 3-Branes ($d=4$ twisted sector fixed points)
- on 5-Branes ($d=6$ twisted sector fixed tori)

Torus T_{2}

Torus T_{2}

Orbifolding

Ravioli

Bulk Modes

Winding Modes

Brane Modes

\mathbb{Z}_{3} Example

\mathbb{Z}_{3} Example

- Action of the space group on coordinates

$$
X^{i} \rightarrow\left(\theta^{k} X\right)^{i}+n_{\alpha} e_{\alpha}^{i}, \quad k=0,1,2, \quad i, \alpha=1, \ldots, 6
$$

- Embed twist in gauge degrees of freedom

$$
X^{I} \rightarrow\left(\Theta^{k} X\right)^{I} \quad I=1, \ldots, 16
$$

Classification of \mathbb{Z}_{3} Orbifold

Very few inequivalent models

Classification of \mathbb{Z}_{3} Orbifold

Very few inequivalent models

Case	Shift V	Gauge Group	Gen.
1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)\left(0^{8}\right)$	$\mathrm{E}_{6} \times \mathrm{SU}(3) \times \mathrm{E}_{8}^{\prime}$	36
2	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)$	$\mathrm{E}_{6} \times \mathrm{SU}(3) \times \mathrm{E}_{6}^{\prime} \times \mathrm{SU}(3)^{\prime}$	9
3	$\left(\frac{1}{3}, \frac{1}{3}, 0^{6}\right)\left(\frac{2}{3}, 0^{7}\right)$	$\mathrm{E}_{7} \times \mathrm{U}(1) \times \mathrm{SO}(14)^{\prime} \times \mathrm{U}(1)^{\prime}$	0
4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{3}\right)\left(\frac{2}{3}, 0^{7}\right)$	$\mathrm{SU}(9) \times \mathrm{SO}(14)^{\prime} \times \mathrm{U}(1)^{\prime}$	9

Classification of \mathbb{Z}_{3} Orbifold

Very few inequivalent models

Case	Shift V	Gauge Group	Gen.
1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)\left(0^{8}\right)$	$\mathrm{E}_{6} \times \mathrm{SU}(3) \times \mathrm{E}_{8}^{\prime}$	36
2	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)$	$\mathrm{E}_{6} \times \mathrm{SU}(3) \times \mathrm{E}_{6}^{\prime} \times \mathrm{SU}(3)^{\prime}$	9
3	$\left(\frac{1}{3}, \frac{1}{3}, 0^{6}\right)\left(\frac{2}{3}, 0^{7}\right)$	$\mathrm{E}_{7} \times \mathrm{U}(1) \times \mathrm{SO}(14)^{\prime} \times \mathrm{U}(1)^{\prime}$	0
4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{3}\right)\left(\frac{2}{3}, 0^{7}\right)$	$\mathrm{SU}(9) \times \mathrm{SO}(14)^{\prime} \times \mathrm{U}(1)^{\prime}$	9

as a result of the degeneracy of the matter multiplets at the 27 fixed points

Classification of \mathbb{Z}_{3} Orbifold

Very few inequivalent models

Case	Shift V	Gauge Group	Gen.
1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)\left(0^{8}\right)$	$\mathrm{E}_{6} \times \mathrm{SU}(3) \times \mathrm{E}_{8}^{\prime}$	36
2	$\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{5}\right)$	$\mathrm{E}_{6} \times \mathrm{SU}(3) \times \mathrm{E}_{6}^{\prime} \times \mathrm{SU}(3)^{\prime}$	9
3	$\left(\frac{1}{3}, \frac{1}{3}, 0^{6}\right)\left(\frac{2}{3}, 0^{7}\right)$	$\mathrm{E}_{7} \times \mathrm{U}(1) \times \mathrm{SO}(14)^{\prime} \times \mathrm{U}(1)^{\prime}$	0
4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{2}{3}, 0^{3}\right)\left(\frac{2}{3}, 0^{7}\right)$	$\mathrm{SU}(9) \times \mathrm{SO}(14)^{\prime} \times \mathrm{U}(1)^{\prime}$	9

as a result of the degeneracy of the matter multiplets at the 27 fixed points

We need to lift this degeneracy ...

\mathbb{Z}_{3} Orbifold with Wilson lines

Torus shifts embedded in gauge group as well

$$
X^{I} \rightarrow X^{I}+V^{I}+n_{\alpha} A_{\alpha}^{I}
$$

\mathbb{Z}_{3} Orbifold with Wilson lines

Torus shifts embedded in gauge group as well

$$
X^{I} \rightarrow X^{I}+V^{I}+n_{\alpha} A_{\alpha}^{I}
$$

- further gauge symmetry breakdown
- number of generations reduced

Bottom-up input

- Gauge couplings meet at $10^{16}-10^{17} \mathrm{GeV}$ in the framework of the Minimal Supersymmetric Standard Model (MSSM)

Bottom-up input

- Gauge couplings meet at $10^{16}-10^{17} \mathrm{GeV}$ in the framework of the Minimal Supersymmetric Standard Model (MSSM)
- See-saw mechanism for neutrino sector favours the interpretation of a family of quarks and leptons as a 16 dimensional spinor representation of $\mathrm{SO}(10)$

Bottom-up input

- Gauge couplings meet at $10^{16}-10^{17} \mathrm{GeV}$ in the framework of the Minimal Supersymmetric Standard Model (MSSM)
- See-saw mechanism for neutrino sector favours the interpretation of a family of quarks and leptons as a 16 dimensional spinor representation of $\mathrm{SO}(10)$
- gauge and Higgs bosons appear in "split multiplets"

Bottom-up input

- Gauge couplings meet at $10^{16}-10^{17} \mathrm{GeV}$ in the framework of the Minimal Supersymmetric Standard Model (MSSM)
- See-saw mechanism for neutrino sector favours the interpretation of a family of quarks and leptons as a 16 dimensional spinor representation of $\mathrm{SO}(10)$
- gauge and Higgs bosons appear in "split multiplets"

Can we incorporate this into a string theory description?

Five golden rules

- Family as spinor of $\mathrm{SO}(10)$
- Incomplete multiplets
- $N=1$ superymmetry in $d=4$
- Repetition of families from geometry
- Discrete symmetries of stringy origin

Five golden rules

- Family as spinor of $\mathrm{SO}(10)$
- Incomplete multiplets
- $N=1$ superymmetry in $d=4$
- Repetition of families from geometry
- Discrete symmetries of stringy origin

Such a scheme should

- incorporate the successful structures of $S O(10)$-GUTs
- avoid (some of) the problems

Five golden rules

- Family as spinor of $\mathrm{SO}(10)$
- Incomplete multiplets
- $N=1$ superymmetry in $d=4$
- Repetition of families from geometry
- Discrete symmetries of stringy origin

Such a scheme should

- incorporate the successful structures of $S O(10)$-GUTs
- avoid (some of) the problems

We need more general constructions to identify remnants of $S O(10)$ in string theory

Candidates

In ten space-time dimensions.....

- Type I SO(32)
- Type II orientifolds (F-theory)
- Heterotic $\mathrm{SO}(32)$
- Heterotic $E_{8} \times E_{8}$
- Intersecting Branes $U(N)^{M}$

Candidates

In ten space-time dimensions.....

- Type I SO(32)
- Type II orientifolds (F-theory)
- Heterotic $\mathrm{SO}(32)$
- Heterotic $E_{8} \times E_{8}$
- Intersecting Branes $U(N)^{M}$
....or in eleven
- Horava-Witten heterotic M-theory
- Type IIA on manifolds with G_{2} holonomy

Remnants of $S O(10)$ symmetry

If we insist on the spinor representation of $S O(10)$ we are essentially

- left with heterotic $E_{8} \times E_{8}$ or $S O(32)$
- go beyond the simple example of the Z_{3} orbifold

Remnants of $S O(10)$ symmetry

If we insist on the spinor representation of $S O(10)$ we are essentially

- left with heterotic $E_{8} \times E_{8}$ or $S O(32)$
- go beyond the simple example of the Z_{3} orbifold

The Z_{3} orbifold had fixed points but no fixed tori, leading to difficulties to

- incorporate a correctly normalized $U(1)$-hypercharge
- accomodate satisfactory Yukawa couplings

Remnants of $S O(10)$ symmetry

If we insist on the spinor representation of $S O(10)$ we are essentially

- left with heterotic $E_{8} \times E_{8}$ or $S O(32)$
- go beyond the simple example of the Z_{3} orbifold

The Z_{3} orbifold had fixed points but no fixed tori, leading to difficulties to

- incorporate a correctly normalized $U(1)$-hypercharge
- accomodate satisfactory Yukawa couplings

From this point of view, the $Z_{2 N}$ or $Z_{N} \times Z_{M}$ orbifolds do look more promising

$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ Orbifold Example

$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ Orbifold Example

3 twisted sectors (with 16 fixed tori in each) lead to a geometrical picture of

Intersecting Branes

$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ classification

\(\left.$$
\begin{array}{|c|l|l|c|}\hline \text { Case } & \text { Shifts } & \text { Gauge Group } & \text { Gen. } \\
\hline \hline 1 & \begin{array}{l}\left(\frac{1}{2},-\frac{1}{2}, 0^{6}\right)\left(0^{8}\right) \\
\left(0, \frac{1}{2},-\frac{1}{2}, 0^{5}\right)\left(0^{8}\right)\end{array} & \mathrm{E}_{6} \times \mathrm{U}(1)^{2} \times \mathrm{E}_{8}^{\prime} & 48 \\
\hline 2 & \begin{array}{l}\left(\frac{1}{2},-\frac{1}{2}, 0^{6}\right)\left(0^{8}\right) \\
\left(0, \frac{1}{2},-\frac{1}{2}, 0^{4}, 1\right)\left(1,0^{7}\right)\end{array}
$$ \& \mathrm{E}_{6} \times \mathrm{U}(1)^{2} \times \mathrm{SO}(16)^{\prime}

\hline 3 \& \begin{array}{l}\left(\frac{1}{2}^{2}, 0^{6}\right)\left(0^{8}\right)

\left(\frac{5}{4}, \frac{1}{4}\right)\left(\frac{1}{2}, \frac{1}{2}, 0^{6}\right)\end{array} \& \mathrm{SU}(8) \times \mathrm{U}(1) \times \mathrm{E}_{7}^{\prime} \times \mathrm{SU}(2)^{\prime}\end{array}\right]\)| 16 |
| :---: |
| 4 |
| $\left(\frac{1}{2}{ }^{2}, 0^{5}, 1\right)\left(1,0^{7}\right)$
 $\left(0, \frac{1}{2},-\frac{1}{2}, 0^{5}\right)\left(-\frac{1}{2}, \frac{1}{2}^{3}, 1,0^{3}\right)$ |
| 5 |
| $\left(\frac{1}{2},-\frac{1}{2},-1,0^{5}\right)\left(1,0^{7}\right)$
 $\left(\frac{5}{4}, \frac{1}{4}\right)\left(\frac{1}{2}, \frac{1}{2}, 0^{6}\right)$ |

$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ with Wilson lines

Again, Wilson lines can lift the degeneracy....

Three family $S O(10)$ toy model

$\overline{16}$
Localization of families at various fixed tori

Zoom on first torus ...

Interpretation as 6-dim. model with 3 families on branes

second torus ...

... 2 families on branes, one in (6d) bulk ...

Three family $S O(10)$ toy model

$\overline{16}$
Localization of families at various fixed tori

third torus

... 1 family on brane, two in (6d) bulk.

Geography

Many properties of the models depend on the geography of extra dimensions, such as

- the location of quarks and leptons,
- the relative location of Higgs bosons,

Geography

Many properties of the models depend on the geography of extra dimensions, such as

- the location of quarks and leptons,
- the relative location of Higgs bosons,
but there is also a "localization" of gauge fields
- $E_{8} \times E_{8}$ in the bulk
- smaller gauge groups on various branes

Observed 4-dimensional gauge group is common subroup of the various localized gauge groups!

Calabi Yau Manifold

Orbifold

Localized gauge symmetries

Standard Model Gauge Group

Model building

We can easily find

- models with gauge group $S U(3) \times S U(2) \times U(1)$
- 3 families of quarks and leptons
- doublet-triplet splitting
- $N=1$ supersymmetry

Model building

We can easily find

- models with gauge group $S U(3) \times S U(2) \times U(1)$
- 3 families of quarks and leptons
- doublet-triplet splitting
- $N=1$ supersymmetry

But explicit model building is tedious:

- removal of exotic states
- R parity
- "correct" hypercharge

Model building (II)

We do not yet have a complete understanding of the origin of these specific problems.

Model building (II)

We do not yet have a complete understanding of the origin of these specific problems.

Key properties of the models depend on geometry:

- family symmetries
- texture of Yukawa couplings
- number of families
- local gauge groups on branes
- electroweak symmetry breakdown

Model building (II)

We do not yet have a complete understanding of the origin of these specific problems.

Key properties of the models depend on geometry:

- family symmetries
- texture of Yukawa couplings
- number of families
- local gauge groups on branes
- electroweak symmetry breakdown

We need to exploit these geometric properties......

Localized gauge symmetries

Standard Model Gauge Group

Local Grand Unification

In fact string theory gives us a variant of GUTs

- complete multiplets for fermion families
- split multiplets for gauge- and Higgs-bosons
- partial Yukawa unification

Local Grand Unification

In fact string theory gives us a variant of GUTs

- complete multiplets for fermion families
- split multiplets for gauge- and Higgs-bosons
- partial Yukawa unification

Key properties of the theory depend on the geography of the fields in extra dimensions.

This geometrical set-up called local GUTs, can be realized in the framework of the "heterotic braneworld".
(Buchmüller, Hamaguchi, Lebedev, Ratz, 2004; Förste, HPN, Vaudrevange, Wingerter, 2004)

Remnants of $\mathbf{S O}(10)$

- $S O(10)$ is realized in the higher dimensional theory
- broken in $d=4$
- incomplete multiplets

Remnants of $\mathbf{S O}(10)$

- $S O(10)$ is realized in the higher dimensional theory
- broken in $d=4$
- incomplete multiplets

There could still be remnants of $S O(10)$ symmetry

- 16 of $\mathrm{SO}(10)$ at some branes
- correct hypercharge normalization
- R-parity
- family symmetries
that are very useful for realistic model building ...

Proton decay

- R-parity from $\mathrm{SO}(10)$ memory could avoid dangerous dimension-4 operators

Proton decay

- R-parity from $\mathrm{SO}(10)$ memory could avoid dangerous dimension-4 operators
- Proton decay rate via dimension-5 operators reduced because of doublet-triplet splitting

Proton decay

- R-parity from $\mathrm{SO}(10)$ memory could avoid dangerous dimension-4 operators
- Proton decay rate via dimension-5 operators reduced because of doublet-triplet splitting
- Avoid $\mathrm{SO}(10)$ brane for first family: suppressed p-decay via dimension-6 operators

Proton decay

- R-parity from $\mathrm{SO}(10)$ memory could avoid dangerous dimension-4 operators
- Proton decay rate via dimension-5 operators reduced because of doublet-triplet splitting
- Avoid $\mathrm{SO}(10)$ brane for first family: suppressed p-decay via dimension-6 operators

There are lots of opportunities,
but there is a strong model dependence

Unification

- $\mathrm{SO}(10)$ memory provides a reasonable value of $\sin ^{2} \theta_{W}$ and a unified definition of hypercharge

Unification

- $\mathrm{SO}(10)$ memory provides a reasonable value of $\sin ^{2} \theta_{W}$ and a unified definition of hypercharge
- presence of fixed tori allows for sizable threshold corrections at the high scale to match string and unification scale

Unification

- $\mathrm{SO}(10)$ memory provides a reasonable value of $\sin ^{2} \theta_{W}$ and a unified definition of hypercharge
- presence of fixed tori allows for sizable threshold corrections at the high scale to match string and unification scale
- Yukawa unification from $\mathrm{SO}(10)$ memory for third family (on an $\mathrm{SO}(10)$ brane)

Unification

- $\mathrm{SO}(10)$ memory provides a reasonable value of $\sin ^{2} \theta_{W}$ and a unified definition of hypercharge
- presence of fixed tori allows for sizable threshold corrections at the high scale to match string and unification scale
- Yukawa unification from $\mathrm{SO}(10)$ memory for third family (on an $\mathrm{SO}(10)$ brane)
- no Yukawa unification for first and second family required

Yukawa textures and family symmetries

- Yukawa couplings depend on location of Higgs and matter fields

Yukawa textures and family symmetries

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane

Yukawa textures and family symmetries

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane
- Exponential suppression if fields at distant branes

Yukawa textures and family symmetries

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane
- Exponential suppression if fields at distant branes
- family symmetries might also arise if there is a symmetry between various fixed point locations

Yukawa textures and family symmetries

- Yukawa couplings depend on location of Higgs and matter fields
- family symmetries arise if different fields live on the same brane
- Exponential suppression if fields at distant branes
- family symmetries might also arise if there is a symmetry between various fixed point locations
- GUT relations could be partially present, depending on the nature of the brane (e.g. SO(10) brane)

It's a long way to go

Full classification seems to be too difficult (at the moment). Work in progress:

It's a long way to go

Full classification seems to be too difficult (at the moment). Work in progress:

- $S O(32)$ classification (with $S O(10)$ spinors)
(Choi, Groot Nibbelink, Trapletti, 2004)
(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)

It's a long way to go

Full classification seems to be too difficult (at the moment). Work in progress:

- $S O(32)$ classification (with $S O(10)$ spinors)
(Choi, Groot Nibbelink, Trapletti, 2004)
(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)
- $Z_{2} \times Z_{3}$ Pati-Salam model
(Kobyashi, Raby, Zhang, 2004)

It's a long way to go

Full classification seems to be too difficult (at the moment). Work in progress:

- $S O(32)$ classification (with $S O(10)$ spinors)
(Choi, Groot Nibbelink, Trapletti, 2004)
(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)
- $Z_{2} \times Z_{3}$ Pati-Salam model
(Kobyashi, Raby, Zhang, 2004)
- $Z_{2} \times Z_{3}$ standard model
(Buchmüller, Hamaguchi, Lebedev, Ratz, 2005)

The Higgs-mechanism in string theory...

...can be achieved via continuous Wilson lines. The aim is:

- electroweak symmetry breakdown
- breakdown of Trinification or Pati-Salam group to the Standard Model gauge group
- rank reduction

Continuous Wilson lines require specific embeddings of twist in the gauge group

- difficult to implement in the Z_{3} case
- more promising for Z_{2} twists

An example

We consider a model that has E_{6} gauge group in the bulk of a " $6 d$ orbifold". The breakdown pattern is

- $E_{6} \rightarrow S O(10)$ via a Z_{2} twist
- $S O(10) \rightarrow S U(4) \times S U(2) \times S U(2) \times U(1)$ via a discrete (quantized) Wilson line
- $S U(4) \times S U(2) \times S U(2) \rightarrow S U(3) \times S U(2) \times U(1)$ via a continuous Wilson line
(Förste, HPN, Wingerter, 2005)
Such 6d models can be embedded in 10d string theory orbifolds. Models with consistent electroweak symmetry breakdown have been constructed.
(Förste, HPN, Wingerter, 2006)

Pati-Salam breakdown

A "fertile patch": Z_{6} II orbifold

(Kobayashi, Raby, Zhang, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz, 2004)

A "fertile patch": Z_{6} II orbifold

(Kobayashi, Raby, Zhang, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz, 2004)

- provides fixed points and fixed tori
- allows for 61 different shifts out of which 2 lead to $S O(10)$ gauge group
- allows for localized 16-plets for 2 families
- $S O(10)$ broken via Wilson lines
- nontrivial hidden sector gauge group

Selection Strategy

criterion	$V^{\mathrm{SO}(10), 1}$	$V^{\mathrm{SO}(10), 2}$
models with 2 Wilson lines	22,000	7,800
SM gauge group $\subset \mathrm{SO}(10)$	3563	1163
3 net $(\mathbf{3 , 2})$	1170	492
non-anomalous $\mathrm{U}(1)_{Y} \subset \mathrm{SU}(5)$	528	234
3 generations + vector-like	128	90

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006A)

Decoupling of exotics

requires extensive technical work:

- analysis of Yukawa couplings $S^{n} E \bar{E}$
- vevs of S break additional $U(1)$ symmetries
- our analysis includes $n \leq 6$

Decoupling of exotics

requires extensive technical work:

- analysis of Yukawa couplings $S^{n} E \bar{E}$
- vevs of S break additional $U(1)$ symmetries
- our analysis includes $n \leq 6$

Requirement of D-flatness

- vevs of S should not break supersymmetry
- anomalous U(1) and Fayet-Iliopoulos terms
- checking D-flatness with method of gauge invariant monomials

MSSM candidates

criterion	$V^{\mathrm{SO}(10), 1}$	$V^{\mathrm{SO}(10), 2}$
SM gauge group $\subset \mathrm{SO}(10)$	3563	1163
3 net $(\mathbf{3 , 2})$	1170	492
non-anomalous $\mathrm{U}(1)_{Y} \subset \mathrm{SU}(5)$	528	234
3 generations + vector-like	128	90
exotics decouple	106	85
D-flat solutions	105	85

The road to the MSSM

The benchmark scenario leads to

- 200 models with the exact spectrum of the MSSM (absence of chiral exotics)
- local grand unification (by construction)
- gauge- and (partial) Yukawa unification
(Raby, Wingerter, 2007)
- examples of neutrino see-saw mechanism
(Buchmüller, Hamguchi, Lebedev, Ramos-Sanchez, Ratz, 2007)
- models with R-parity + solution to the μ-problem
(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)
- hidden sector gaugino condensation

A Benchmark Model

At the orbifold point the gauge group is

$$
S U(3) \times S U(2) \times U(1)^{9} \times S U(4) \times S U(2)
$$

- one $U(1)$ is anomalous
- there are singlets and vectorlike exotics
- decoupling of exotics and breakdown of gauge group has been verified
- remaining gauge group

$$
S U(3) \times S U(2) \times U(1)_{Y} \times S U(4)_{\text {hidden }}
$$

- for discussion of neutrinos and R-parity we keep also the $U(1)_{B-L}$ charges

Spectrum

\#	irrep	label	\#	irrep	label
3	$(3, \mathbf{2 ; ~ 1 , ~ 1})_{(1 / 6,1 / 3)}$	q_{i}	3	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(-2 / 3,-1 / 3)}$	\bar{u}_{i}
3	$(1,1 ; \mathbf{1}, \mathbf{1})_{(1,1)}$	\bar{e}_{i}	8	$(1,2 ; \mathbf{1}, \mathbf{1})_{(0, *)}$	m_{i}
$3+1$	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(1 / 3,-1 / 3)}$	\bar{d}_{i}	1	$(\mathbf{3}, \mathbf{1} \mathbf{1}, \mathbf{1})_{(-1 / 3,1 / 3)}$	d_{i}
$3+1$	$(\mathbf{1}, \mathbf{2 ; ~ 1 , 1})_{(-1 / 2,-1)}$	ℓ_{i}	1	$(\mathbf{1}, \mathbf{2} \mathbf{1}, \mathbf{1})_{(1 / 2,1)}$	$\bar{\ell}_{i}$
1	$(1,2 ; \mathbf{1}, \mathbf{1})_{(-1 / 2,0)}$	h_{d}	1	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1})_{(1 / 2,0)}$	h_{u}
6	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(1 / 3,2 / 3)}$	$\bar{\delta}_{i}$	6	$(3, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(-1 / 3,-2 / 3)}$	δ_{i}
14	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(1 / 2, *)}$	s_{i}^{+}	14	$(1,1 ; \mathbf{1}, \mathbf{1})_{(-1 / 2, *)}$	s_{i}^{-}
16	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0,1)}$	\bar{n}_{i}	13	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0,-1)}$	n_{i}
5	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{(0,1)}$	$\bar{\eta}_{i}$	5	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{(0,-1)}$	η_{i}
10	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{(0,0)}$	h_{i}	2	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{2})_{(0,0)}$	y_{i}
6	$(\mathbf{1}, \mathbf{1} ; \mathbf{4}, \mathbf{1})_{(0, *)}$	f_{i}	6	$(1,1 ; \overline{4}, \mathbf{1})_{(0, *)}$	\bar{f}_{i}
2	$(\mathbf{1}, \mathbf{1} ; \mathbf{4}, \mathbf{1})_{(-1 / 2,-1)}$	f_{i}^{-}	2	$(\mathbf{1}, \mathbf{1} ; \overline{\mathbf{4}}, \mathbf{1})_{(1 / 2,1)}$	\bar{f}_{i}^{+}
4	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0, \pm 2)}$	χ_{i}	32	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0,0)}$	s_{i}^{0}
2	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(-1 / 6,2 / 3)}$	\bar{v}_{i}	2	$(3,1 ; \mathbf{1}, \mathbf{1})_{(1 / 6,-2 / 3)}$	v_{i}

Unification

- Higgs doublets are in untwisted (U3) sector
- trilinear coupling to the top-quark allowed

- threshold corrections ("on third torus") allow unification at correct scale around $10^{16} \mathrm{GeV}$

Hidden Sector Susy Breakdown

Gravitino mass $m_{3 / 2}=\Lambda^{3} / M_{\text {Planck }}^{2}$ is in the TeV range for the hidden sector gauge group $S U(4)$
(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)

See-saw neutrino masses

The see-saw mechanism requires

- right handed neutrinos ($Y=0$ and $B-L= \pm 1$),
- heavy Majorana neutrino masses $M_{\text {Majorana }}$,
- Dirac neutrino masses $M_{\text {Dirac }}$.

The benchmark model has 49 right handed neutrinos:

- the left handed neutrino mass is $m_{\nu} \sim M_{\text {Dirac }}^{2} / M_{\text {eff }}$
- with $M_{\text {eff }}<M_{\text {Majorana }}$ and depends on the number of right handed neutrinos.
(Buchmüller, Hamguchi, Lebedev, Ramos-Sanchez, Ratz, 2007;
Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

Spectrum

\#	irrep	label	\#	irrep	label
3	$(3, \mathbf{2 ; ~ 1 , ~ 1})_{(1 / 6,1 / 3)}$	q_{i}	3	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(-2 / 3,-1 / 3)}$	\bar{u}_{i}
3	$(1,1 ; \mathbf{1}, \mathbf{1})_{(1,1)}$	\bar{e}_{i}	8	$(1,2 ; \mathbf{1}, \mathbf{1})_{(0, *)}$	m_{i}
$3+1$	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(1 / 3,-1 / 3)}$	\bar{d}_{i}	1	$(\mathbf{3}, \mathbf{1} \mathbf{1}, \mathbf{1})_{(-1 / 3,1 / 3)}$	d_{i}
$3+1$	$(\mathbf{1}, \mathbf{2 ; ~ 1 , 1})_{(-1 / 2,-1)}$	ℓ_{i}	1	$(\mathbf{1}, \mathbf{2} \mathbf{1}, \mathbf{1})_{(1 / 2,1)}$	$\bar{\ell}_{i}$
1	$(1,2 ; \mathbf{1}, \mathbf{1})_{(-1 / 2,0)}$	h_{d}	1	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1})_{(1 / 2,0)}$	h_{u}
6	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(1 / 3,2 / 3)}$	$\bar{\delta}_{i}$	6	$(3, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(-1 / 3,-2 / 3)}$	δ_{i}
14	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(1 / 2, *)}$	s_{i}^{+}	14	$(1,1 ; \mathbf{1}, \mathbf{1})_{(-1 / 2, *)}$	s_{i}^{-}
16	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0,1)}$	\bar{n}_{i}	13	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0,-1)}$	n_{i}
5	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{(0,1)}$	$\bar{\eta}_{i}$	5	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{(0,-1)}$	η_{i}
10	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2})_{(0,0)}$	h_{i}	2	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{2})_{(0,0)}$	y_{i}
6	$(\mathbf{1}, \mathbf{1} ; \mathbf{4}, \mathbf{1})_{(0, *)}$	f_{i}	6	$(1,1 ; \overline{4}, \mathbf{1})_{(0, *)}$	\bar{f}_{i}
2	$(\mathbf{1}, \mathbf{1} ; \mathbf{4}, \mathbf{1})_{(-1 / 2,-1)}$	f_{i}^{-}	2	$(\mathbf{1}, \mathbf{1} ; \overline{\mathbf{4}}, \mathbf{1})_{(1 / 2,1)}$	\bar{f}_{i}^{+}
4	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0, \pm 2)}$	χ_{i}	32	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(0,0)}$	s_{i}^{0}
2	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1})_{(-1 / 6,2 / 3)}$	\bar{v}_{i}	2	$(3,1 ; \mathbf{1}, \mathbf{1})_{(1 / 6,-2 / 3)}$	v_{i}

R-parity

- R-parity allows the distinction between Higgs bosons and sleptons
- $S O(10)$ contains R-parity as a discrete subgroup of $U(1)_{B-L}$.
- in conventional "field theory GUTs" one needs large representations to break $U(1)_{B-L}$ (>126 dimensional)
- in heterotic string models one has more candidates for R-parity (and generalizations thereof)
- one just needs singlets with an even $B-L$ charge that break $U(1)_{B-L}$ down to R-parity

Discrete Symmetries

There are numerous discrete symmetries

- from geometry
- and from stringy selection rules,
- both of abelian and nonabelian nature.
(Kobayashi, HPN, Plöger, Raby, Ratz, 2006)
Possible applications:
- (nonabelian) family symmetries
- Yukawa textures
- approximate global $U(1)$ for a QCD axion
(Choi, Kim, Kim, 2006; Choi, HPN, Ramos-Sanchez, Vaudrevange, 2008)

The μ problem

In general we have to worry about

- doublet-triplet splitting
- mass term for additional doublets
- the appearance of "naturally" light doublets

In the benchmark model we have

- only 2 doublets
- which are neutral under all selection rules
- if $M\left(s_{i}\right)$ allowed in superpotential
- then $M\left(s_{i}\right) H_{u} H_{d}$ is allowed as well

The μ problem II

We have verified that (up to order 6 in the singlets)

- $F_{i}=0$ implies automatically
- $M\left(s_{i}\right)=0$ for all allowed terms $M\left(s_{i}\right)$ in the superpotential W

Therefore

- $W=0$ in the supersymmetric (Minkowski) vacuum
- as well as $\mu=\partial^{2} W / \partial H_{u} \partial H_{d}=0$, while all the vectorlike exotics decouple
- with broken supersymmetry $\mu \sim m_{3 / 2} \sim<W>$

This solves the μ-problem

Comparison to TypeII braneworld

- strategy based on geometrical intuition is successful
- properties of models can trace back the geometry of extra dimensions
- heterotic versus Type II braneworld
- bulk gauge group
- complete chiral multiplets
- chiral exotics
- R-parity (B-L and seesaw mechanism)
- localization of fields at various "corners" of Calabi-Yau manifold
- remnants of Grand Unification indicate that we live in a special place of the compactified extra dimensions!

Conclusion

String theory provides us with new ideas for particle physics model building, leading to concepts such as

- Local Grand Unification
- realistic MSSM candidates

Geography of extra dimensions plays a crucial role:

- localization of fields on branes,
- sequestered sectors and mirage mediation

LHC might help us to verify some of these ideas!

Gaugino Condensation

Gravitino mass $m_{3 / 2}=\Lambda^{3} / M_{\text {Planck }}^{2}$ and $\Lambda \sim \exp (-S)$ We need to fix the dilaton!
(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)

Run-away potential

Corrections to Kähler potential

(Casas, 1996; Barreiro, de Carlos, Copeland, 1998)

Dilaton Domination?

This is known as the dilaton domination scenario,

- but there are problems to remove the vacuum energy.

One needs a "downlifting" mechanism:

- the analogue to the F-term "uplifting" in the type IIB Case (Gomez-Reino, Scrucca, 2006; Lebedev, HPN, Ratz, 2006)
- "downlifting" mechanism fixes S as well (no need for nonperturbative corrections to the Kähler potential)
(Löwen, HPN,2008)
- mirage mediation for gaugino masses

Sequestered sector "uplifting"

(Lebedev, HPN, Ratz, 2006; Löwen, HPN, 2008)

Metastable "Minkowski" vacuum

(Löwen, HPN, 2008)

Evolution of couplings

The Mirage Scale

Constraints on the mixing parameter

(Löwen, HPN, 2008)

Constraints on the mixing parameter

(Löwen, HPN, 2008)

Conclusion

String theory provides us with new ideas for particle physics model building, leading to concepts such as

- Local Grand Unification
- realistic MSSM candidates

Geography of extra dimensions plays a crucial role:

- localization of fields on branes,
- sequestered sectors and mirage mediation

LHC might help us to verify some of these ideas!

