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Bottom-up input

Experimental findings suggest the existence of two new
scales of physics beyond the standard model

MGUT ∼ 1016GeV (and MSUSY ∼ 103GeV):
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Bottom-up input

Experimental findings suggest the existence of two new
scales of physics beyond the standard model

MGUT ∼ 1016GeV (and MSUSY ∼ 103GeV):

Neutrino-oscillations and “See-Saw Mechanism”

mν ∼ M2
W /MGUT

mν ∼ 10−3eV for MW ∼ 100GeV,

Evolution of couplings constants of the standard model
towards higher energies.
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MSSM (supersymmetric)

Princeton, July 08 – p.4/80



Standard Model

Princeton, July 08 – p.5/80



Grand Unification

has changed our view of the world,
but there are also some problematic aspects of the grand
unified picture.
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has changed our view of the world,
but there are also some problematic aspects of the grand
unified picture.

Most notably

potential instability of the proton

doublet - triplet splitting

complicated Higgs sector to break grand unified gauge
group spontaneously
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Grand Unification

has changed our view of the world,
but there are also some problematic aspects of the grand
unified picture.

Most notably

potential instability of the proton

doublet - triplet splitting

complicated Higgs sector to break grand unified gauge
group spontaneously

Can we avoid these problems in a more complete theory?
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String theory candidates

In ten space-time dimensions.....

Type I SO(32)

Type II orientifolds (F-theory)

Heterotic SO(32)

Heterotic E8 × E8

Intersecting Branes U(N)M
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String theory candidates

In ten space-time dimensions.....

Type I SO(32)

Type II orientifolds (F-theory)

Heterotic SO(32)

Heterotic E8 × E8

Intersecting Branes U(N)M

....or in eleven

Horava-Witten heterotic M-theory

Type IIA on manifolds with G2 holonomy
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String Theory

What do we get from string theory?

supersymmetry

extra spatial dimensions

large unified gauge groups

consistent theory of gravity
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String Theory

What do we get from string theory?

supersymmetry

extra spatial dimensions

large unified gauge groups

consistent theory of gravity

These are the building blocks for a unified theory of all the
fundamental interactions.
But do they fit together, and if yes how?

We need to understand the mechanism of compactification
of the extra spatial dimensions
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Calabi Yau Manifold
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Orbifold

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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Orbifolds

Orbifold compactifications combine the

success of Calabi-Yau compactification

calculability of torus compactification
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Orbifolds

Orbifold compactifications combine the

success of Calabi-Yau compactification

calculability of torus compactification

In case of the heterotic string fields can propagate

in the Bulk (d = 10 untwisted sector)

on 3-Branes (d = 4 twisted sector fixed points)

on 5-Branes (d = 6 twisted sector fixed tori)
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Torus T2
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Torus T2

e2

e1
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Orbifolding
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Ravioli
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Bulk Modes
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Winding Modes
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Brane Modes
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Z3 Example
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Z3 Example

Action of the space group on coordinates

Xi
→ (θkX)i + nαei

α, k = 0, 1, 2, i, α = 1, . . . , 6

Embed twist in gauge degrees of freedom

XI
→ (ΘkX)I I = 1, . . . , 16
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Classification ofZ3 Orbifold

Very few inequivalent models
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Classification ofZ3 Orbifold

Very few inequivalent models

Case Shift V Gauge Group Gen.

1
`

1
3
, 1

3
, 2

3
, 05

´ `

08
´

E6 × SU(3) × E′
8 36

2
`

1
3
, 1

3
, 2

3
, 05

´ `

1
3
, 1

3
, 2

3
, 05

´

E6 × SU(3) × E′
6 × SU(3)′ 9

3
`

1
3
, 1

3
, 06

´ `

2
3
, 07

´

E7 × U(1) × SO(14)′ × U(1)′ 0

4
`

1
3
, 1

3
, 1

3
, 1

3
, 2

3
, 03

´ `

2
3
, 07

´

SU(9) × SO(14)′ × U(1)′ 9
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Classification ofZ3 Orbifold

Very few inequivalent models

Case Shift V Gauge Group Gen.

1
`

1
3
, 1

3
, 2

3
, 05

´ `

08
´

E6 × SU(3) × E′
8 36

2
`

1
3
, 1

3
, 2

3
, 05

´ `

1
3
, 1

3
, 2

3
, 05

´

E6 × SU(3) × E′
6 × SU(3)′ 9

3
`

1
3
, 1

3
, 06

´ `

2
3
, 07

´

E7 × U(1) × SO(14)′ × U(1)′ 0

4
`

1
3
, 1

3
, 1

3
, 1

3
, 2

3
, 03

´ `

2
3
, 07

´

SU(9) × SO(14)′ × U(1)′ 9

as a result of the degeneracy of the matter multiplets at the
27 fixed points
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Classification ofZ3 Orbifold

Very few inequivalent models

Case Shift V Gauge Group Gen.

1
`

1
3
, 1

3
, 2

3
, 05

´ `

08
´

E6 × SU(3) × E′
8 36

2
`

1
3
, 1

3
, 2

3
, 05

´ `

1
3
, 1

3
, 2

3
, 05

´

E6 × SU(3) × E′
6 × SU(3)′ 9

3
`

1
3
, 1

3
, 06

´ `

2
3
, 07

´

E7 × U(1) × SO(14)′ × U(1)′ 0

4
`

1
3
, 1

3
, 1

3
, 1

3
, 2

3
, 03

´ `

2
3
, 07

´

SU(9) × SO(14)′ × U(1)′ 9

as a result of the degeneracy of the matter multiplets at the
27 fixed points

We need to lift this degeneracy ...
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Z3 Orbifold with Wilson lines

Torus shifts embedded in gauge group as well

XI
→ XI + V I + nαAI

α
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Z3 Orbifold with Wilson lines

Torus shifts embedded in gauge group as well

XI
→ XI + V I + nαAI

α

further gauge symmetry breakdown

number of generations reduced
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Bottom-up input

Gauge couplings meet at 1016 − 1017 GeV in the
framework of the Minimal Supersymmetric Standard
Model (MSSM)
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Bottom-up input

Gauge couplings meet at 1016 − 1017 GeV in the
framework of the Minimal Supersymmetric Standard
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See-saw mechanism for neutrino sector favours the
interpretation of a family of quarks and leptons as a
16 dimensional spinor representation of SO(10)

Princeton, July 08 – p.22/80



Bottom-up input

Gauge couplings meet at 1016 − 1017 GeV in the
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Bottom-up input

Gauge couplings meet at 1016 − 1017 GeV in the
framework of the Minimal Supersymmetric Standard
Model (MSSM)

See-saw mechanism for neutrino sector favours the
interpretation of a family of quarks and leptons as a
16 dimensional spinor representation of SO(10)

gauge and Higgs bosons appear in “split multiplets”

Can we incorporate this into a string theory description?
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Five golden rules

Family as spinor of SO(10)

Incomplete multiplets

N = 1 superymmetry in d = 4

Repetition of families from geometry

Discrete symmetries of stringy origin (HPN, 2004)
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Five golden rules

Family as spinor of SO(10)

Incomplete multiplets

N = 1 superymmetry in d = 4

Repetition of families from geometry

Discrete symmetries of stringy origin (HPN, 2004)

Such a scheme should

incorporate the successful structures of SO(10)-GUTs

avoid (some of) the problems
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Five golden rules

Family as spinor of SO(10)

Incomplete multiplets

N = 1 superymmetry in d = 4

Repetition of families from geometry

Discrete symmetries of stringy origin (HPN, 2004)

Such a scheme should

incorporate the successful structures of SO(10)-GUTs

avoid (some of) the problems

We need more general constructions to identify
remnants of SO(10) in string theory .....
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Candidates

In ten space-time dimensions.....

Type I SO(32)

Type II orientifolds (F-theory)

Heterotic SO(32)

Heterotic E8 × E8

Intersecting Branes U(N)M
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Candidates

In ten space-time dimensions.....

Type I SO(32)

Type II orientifolds (F-theory)

Heterotic SO(32)

Heterotic E8 × E8

Intersecting Branes U(N)M

....or in eleven

Horava-Witten heterotic M-theory

Type IIA on manifolds with G2 holonomy
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Remnants ofSO(10) symmetry

If we insist on the spinor representation of SO(10) we are
essentially

left with heterotic E8 × E8 or SO(32)

go beyond the simple example of the Z3 orbifold
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Remnants ofSO(10) symmetry

If we insist on the spinor representation of SO(10) we are
essentially

left with heterotic E8 × E8 or SO(32)

go beyond the simple example of the Z3 orbifold

The Z3 orbifold had fixed points but no fixed tori, leading to
difficulties to

incorporate a correctly normalized U(1)-hypercharge

accomodate satisfactory Yukawa couplings
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Remnants ofSO(10) symmetry

If we insist on the spinor representation of SO(10) we are
essentially

left with heterotic E8 × E8 or SO(32)

go beyond the simple example of the Z3 orbifold

The Z3 orbifold had fixed points but no fixed tori, leading to
difficulties to

incorporate a correctly normalized U(1)-hypercharge

accomodate satisfactory Yukawa couplings

From this point of view, the Z2N or ZN × ZM orbifolds do
look more promising

Princeton, July 08 – p.25/80



Z2 × Z2 Orbifold Example

1θ

θ3

2θ
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Z2 × Z2 Orbifold Example

1θ

θ3

2θ

3 twisted sectors (with 16 fixed tori in each) lead to a

geometrical picture of ....
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Intersecting Branes
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Z2 × Z2 classification

Case Shifts Gauge Group Gen.

1

`

1
2
,− 1

2
, 06

´ `

08
´

`

0, 1
2
,− 1

2
, 05

´ `

08
´ E6 × U(1)2 × E′

8 48

2

`

1
2
,− 1

2
, 06

´ `

08
´

`

0, 1
2
,− 1

2
, 04, 1

´ `

1, 07
´ E6 × U(1)2 × SO(16)′ 16

3

“

1
2

2
, 06

”

`

08
´

“

5
4
, 1

4

7
”

`

1
2
, 1

2
, 06

´

SU(8) × U(1) × E′
7 × SU(2)′ 16

4

“

1
2

2
, 05, 1

”

`

1, 07
´

`

0, 1
2
,− 1

2
, 05

´

“

−
1
2
, 1
2

3
, 1, 03

”
E6 × U(1)2 × SO(8)′2 0

5

`

1
2
,− 1

2
,−1, 05

´ `

1, 07
´

“

5
4
, 1

4

7
”

`

1
2
, 1

2
, 06

´

SU(8) × U(1) × SO(12)′ × SU(2)′2 0
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Z2 × Z2 with Wilson lines

1θ

θ3

2θ

A3

A3

Again, Wilson lines can lift the degeneracy....

Princeton, July 08 – p.29/80



Three family SO(10) toy model

1θ

θ3

2θ

A3

A3

16

16

16

A

A

A

A A

A

A

AA

A

1

2 4

4

5

6

6

1

2

5

Localization of families at various fixed tori
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Zoom on first torus ...

1θ

θ3

2θ

1

2

1

2

e

e

e

e

e

e

2

1

Interpretation as 6-dim. model with 3 families on branes

Princeton, July 08 – p.31/80



second torus ...

1θ

θ3

2θ

e

e

4

3

e3

e4

e4

e3

... 2 families on branes, one in (6d) bulk ...
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Three family SO(10) toy model

1θ

θ3

2θ

A3

A3

16

16

16

A

A

A

A A

A

A

AA

A

1

2 4

4

5

6

6

1

2

5

Localization of families at various fixed tori
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third torus

θ2

θ1

θ3

e

e

e6

e5e

e

6

5

6

5

... 1 family on brane, two in (6d) bulk.
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Geography

Many properties of the models depend on the geography of
extra dimensions, such as

the location of quarks and leptons,

the relative location of Higgs bosons,
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Geography

Many properties of the models depend on the geography of
extra dimensions, such as

the location of quarks and leptons,

the relative location of Higgs bosons,

but there is also a “localization” of gauge fields

E8 × E8 in the bulk

smaller gauge groups on various branes

Observed 4-dimensional gauge group is common subroup
of the various localized gauge groups!
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Calabi Yau Manifold
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Orbifold

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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Localized gauge symmetries

SU(6)×SU(2)

SU(6)×SU(2)

SO(10)

SU(4)2

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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Standard Model Gauge Group

SU(6)×SU(2)

SU(6)×SU(2)
SU

(3) 2

SU(5)

SU(4)×
SU(2)2

SO(10)

SU(4)2

S
U

(4
)×

S
U

(2
)2

SU(5)
S

U
(3) 2

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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Model building

We can easily find

models with gauge group SU(3) × SU(2) × U(1)

3 families of quarks and leptons

doublet-triplet splitting

N = 1 supersymmetry (Förste, HPN, Vaudrevange, Wingerter, 2004)

(Kobyashi, Raby, Zhang, 2004)

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2004, 2005)
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Model building

We can easily find

models with gauge group SU(3) × SU(2) × U(1)

3 families of quarks and leptons

doublet-triplet splitting

N = 1 supersymmetry (Förste, HPN, Vaudrevange, Wingerter, 2004)

(Kobyashi, Raby, Zhang, 2004)

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2004, 2005)

But explicit model building is tedious:

removal of exotic states

R parity

“correct” hypercharge
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Model building (II)

We do not yet have a complete understanding of the origin
of these specific problems.
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Model building (II)

We do not yet have a complete understanding of the origin
of these specific problems.

Key properties of the models depend on geometry:

family symmetries

texture of Yukawa couplings

number of families

local gauge groups on branes

electroweak symmetry breakdown
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Model building (II)

We do not yet have a complete understanding of the origin
of these specific problems.

Key properties of the models depend on geometry:

family symmetries

texture of Yukawa couplings

number of families

local gauge groups on branes

electroweak symmetry breakdown

We need to exploit these geometric properties......
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Localized gauge symmetries

SU(6)×SU(2)

SU(6)×SU(2)

SO(10)

SU(4)2

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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Standard Model Gauge Group

SU(6)×SU(2)

SU(6)×SU(2)
SU

(3) 2

SU(5)

SU(4)×
SU(2)2

SO(10)

SU(4)2

S
U

(4
)×

S
U

(2
)2

SU(5)
S

U
(3) 2

(Förste, HPN, Vaudrevange, Wingerter, 2004)
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Local Grand Unification

In fact string theory gives us a variant of GUTs

complete multiplets for fermion families

split multiplets for gauge- and Higgs-bosons

partial Yukawa unification
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Local Grand Unification

In fact string theory gives us a variant of GUTs

complete multiplets for fermion families

split multiplets for gauge- and Higgs-bosons

partial Yukawa unification

Key properties of the theory depend on the geography of
the fields in extra dimensions.

This geometrical set-up called local GUTs, can be
realized in the framework of the “heterotic braneworld”.

(Buchmüller, Hamaguchi, Lebedev, Ratz, 2004; Förste, HPN, Vaudrevange, Wingerter, 2004)
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Remnants of SO(10)

SO(10) is realized in the higher dimensional theory

broken in d = 4

incomplete multiplets
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Remnants of SO(10)

SO(10) is realized in the higher dimensional theory

broken in d = 4

incomplete multiplets

There could still be remnants of SO(10) symmetry

16 of SO(10) at some branes

correct hypercharge normalization

R-parity

family symmetries

that are very useful for realistic model building ...

Princeton, July 08 – p.45/80



Proton decay

R-parity from SO(10) memory could avoid
dangerous dimension-4 operators
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Proton decay

R-parity from SO(10) memory could avoid
dangerous dimension-4 operators

Proton decay rate via dimension-5 operators
reduced because of doublet-triplet splitting
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Proton decay

R-parity from SO(10) memory could avoid
dangerous dimension-4 operators

Proton decay rate via dimension-5 operators
reduced because of doublet-triplet splitting

Avoid SO(10) brane for first family:
suppressed p-decay via dimension-6 operators
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Proton decay

R-parity from SO(10) memory could avoid
dangerous dimension-4 operators

Proton decay rate via dimension-5 operators
reduced because of doublet-triplet splitting

Avoid SO(10) brane for first family:
suppressed p-decay via dimension-6 operators

There are lots of opportunities,

but there is a strong model dependence
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Unification

SO(10) memory provides a reasonable value of
sin2 θW and a unified definition of hypercharge
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Unification

SO(10) memory provides a reasonable value of
sin2 θW and a unified definition of hypercharge

presence of fixed tori allows for sizable threshold
corrections at the high scale to match
string and unification scale
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Unification

SO(10) memory provides a reasonable value of
sin2 θW and a unified definition of hypercharge

presence of fixed tori allows for sizable threshold
corrections at the high scale to match
string and unification scale

Yukawa unification from SO(10) memory
for third family (on an SO(10) brane)
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Unification

SO(10) memory provides a reasonable value of
sin2 θW and a unified definition of hypercharge

presence of fixed tori allows for sizable threshold
corrections at the high scale to match
string and unification scale

Yukawa unification from SO(10) memory
for third family (on an SO(10) brane)

no Yukawa unification for first and second
family required
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Yukawa textures and family symmetries

Yukawa couplings depend on location of
Higgs and matter fields
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Yukawa textures and family symmetries

Yukawa couplings depend on location of
Higgs and matter fields

family symmetries arise if different fields live
on the same brane
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Yukawa textures and family symmetries

Yukawa couplings depend on location of
Higgs and matter fields

family symmetries arise if different fields live
on the same brane

Exponential suppression if fields at distant branes
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Yukawa textures and family symmetries

Yukawa couplings depend on location of
Higgs and matter fields

family symmetries arise if different fields live
on the same brane

Exponential suppression if fields at distant branes

family symmetries might also arise if there is a
symmetry between various fixed point locations
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Yukawa textures and family symmetries

Yukawa couplings depend on location of
Higgs and matter fields

family symmetries arise if different fields live
on the same brane

Exponential suppression if fields at distant branes

family symmetries might also arise if there is a
symmetry between various fixed point locations

GUT relations could be partially present,
depending on the nature of the brane
(e.g. SO(10) brane)
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It’s a long way to go

Full classification seems to be too difficult (at the moment).
Work in progress:
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It’s a long way to go

Full classification seems to be too difficult (at the moment).
Work in progress:

SO(32) classification (with SO(10) spinors)
(Choi, Groot Nibbelink, Trapletti, 2004)

(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)
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(Choi, Groot Nibbelink, Trapletti, 2004)

(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)

Z2 × Z3 Pati-Salam model
(Kobyashi, Raby, Zhang, 2004)
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It’s a long way to go

Full classification seems to be too difficult (at the moment).
Work in progress:

SO(32) classification (with SO(10) spinors)
(Choi, Groot Nibbelink, Trapletti, 2004)

(Ramos-Sanchez, Vaudrevange, Wingerter, 2006)

Z2 × Z3 Pati-Salam model
(Kobyashi, Raby, Zhang, 2004)

Z2 × Z3 standard model
(Buchmüller, Hamaguchi, Lebedev, Ratz, 2005)
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The Higgs-mechanism in string theory...

...can be achieved via continuous Wilson lines. The aim is:

electroweak symmetry breakdown

breakdown of Trinification or Pati-Salam group to the
Standard Model gauge group

rank reduction

Continuous Wilson lines require specific embeddings of
twist in the gauge group

(Ibanez, HPN, Quevedo, 1987)

difficult to implement in the Z3 case

more promising for Z2 twists
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An example

We consider a model that has E6 gauge group in the bulk of
a “6d orbifold”. The breakdown pattern is

E6 → SO(10) via a Z2 twist

SO(10) → SU(4) × SU(2) × SU(2) × U(1) via a discrete
(quantized) Wilson line

SU(4) × SU(2) × SU(2) → SU(3) × SU(2) × U(1) via a
continuous Wilson line (Förste, HPN, Wingerter, 2005)

Such 6d models can be embedded in 10d string theory
orbifolds. Models with consistent electroweak symmetry
breakdown have been constructed.

(Förste, HPN, Wingerter, 2006)
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Pati-Salam breakdown
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A “fertile patch”: Z6 II orbifold

(Kobayashi, Raby, Zhang, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz, 2004)
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A “fertile patch”: Z6 II orbifold

(Kobayashi, Raby, Zhang, 2004; Buchmüller, Hamaguchi, Lebedev, Ratz, 2004)

provides fixed points and fixed tori

allows for 61 different shifts out of which 2 lead
to SO(10) gauge group

allows for localized 16-plets for 2 families

SO(10) broken via Wilson lines

nontrivial hidden sector gauge group
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Selection Strategy

criterion V SO(10),1 V SO(10),2

models with 2 Wilson lines 22, 000 7, 800

SM gauge group ⊂ SO(10) 3563 1163

3 net (3,2) 1170 492

non–anomalous U(1)Y ⊂ SU(5) 528 234

3 generations + vector-like 128 90

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006A)
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Decoupling of exotics

requires extensive technical work:

analysis of Yukawa couplings SnEĒ

vevs of S break additional U(1) symmetries

our analysis includes n ≤ 6
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Decoupling of exotics

requires extensive technical work:

analysis of Yukawa couplings SnEĒ

vevs of S break additional U(1) symmetries

our analysis includes n ≤ 6

Requirement of D-flatness

vevs of S should not break supersymmetry

anomalous U(1) and Fayet-Iliopoulos terms

checking D-flatness with method of gauge invariant
monomials
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MSSM candidates

criterion V SO(10),1 V SO(10),2

SM gauge group ⊂ SO(10) 3563 1163

3 net (3,2) 1170 492

non–anomalous U(1)Y ⊂ SU(5) 528 234

3 generations + vector-like 128 90

exotics decouple 106 85

D-flat solutions 105 85

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)
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The road to the MSSM

The benchmark scenario leads to

200 models with the exact spectrum of the MSSM
(absence of chiral exotics)

local grand unification (by construction)

gauge- and (partial) Yukawa unification
(Raby, Wingerter, 2007)

examples of neutrino see-saw mechanism
(Buchmüller, Hamguchi, Lebedev, Ramos-Sanchez, Ratz, 2007)

models with R-parity + solution to the µ-problem
(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)

hidden sector gaugino condensation
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A Benchmark Model

At the orbifold point the gauge group is

SU(3) × SU(2) × U(1)9 × SU(4) × SU(2)

one U(1) is anomalous

there are singlets and vectorlike exotics

decoupling of exotics and breakdown of gauge group
has been verified

remaining gauge group

SU(3) × SU(2) × U(1)Y × SU(4)hidden

for discussion of neutrinos and R-parity we keep also
the U(1)B−L charges
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Spectrum

# irrep label # irrep label

3 (3,2;1,1)(1/6,1/3) qi 3
`

3,1;1,1
´

(−2/3,−1/3)
ūi

3 (1,1;1,1)(1,1) ēi 8 (1,2;1,1)(0,∗) mi

3 + 1
`

3,1;1, 1
´

(1/3,−1/3)
d̄i 1 (3,1;1,1)(−1/3,1/3) di

3 + 1 (1,2;1,1)(−1/2,−1) ℓi 1 (1,2;1,1)(1/2,1) ℓ̄i

1 (1,2;1,1)(−1/2,0) hd 1 (1,2;1,1)(1/2,0) hu

6
`

3,1;1, 1
´

(1/3,2/3)
δ̄i 6 (3,1;1,1)(−1/3,−2/3) δi

14 (1,1;1,1)(1/2,∗) s+
i 14 (1,1;1,1)(−1/2,∗) s−i

16 (1,1;1,1)(0,1) n̄i 13 (1,1;1,1)(0,−1) ni

5 (1,1;1,2)(0,1) η̄i 5 (1,1;1,2)(0,−1) ηi

10 (1,1;1,2)(0,0) hi 2 (1,2;1,2)(0,0) yi

6 (1,1;4,1)(0,∗) fi 6
`

1,1;4,1
´

(0,∗)
f̄i

2 (1,1;4,1)(−1/2,−1) f−

i 2
`

1,1;4,1
´

(1/2,1)
f̄+

i

4 (1,1;1,1)(0,±2) χi 32 (1,1;1,1)(0,0) s0
i

2
`

3,1;1, 1
´

(−1/6,2/3)
v̄i 2 (3,1;1,1)(1/6,−2/3) vi
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Unification

Higgs doublets are in
untwisted (U3) sector

trilinear coupling to
the top-quark allowed

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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threshold corrections (“on third torus”) allow unification
at correct scale around 1016 GeV
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Hidden Sector Susy Breakdown
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Gravitino mass m3/2 = Λ3/M2
Planck is in the TeV range

for the hidden sector gauge group SU(4)

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)
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See-saw neutrino masses

The see-saw mechanism requires

right handed neutrinos (Y = 0 and B − L = ±1),

heavy Majorana neutrino masses MMajorana,

Dirac neutrino masses MDirac.

The benchmark model has 49 right handed neutrinos:

the left handed neutrino mass is mν ∼ M2
Dirac/Meff

with Meff < MMajorana and depends on the number of
right handed neutrinos.

(Buchmüller, Hamguchi, Lebedev, Ramos-Sanchez, Ratz, 2007;

Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)
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Spectrum

# irrep label # irrep label

3 (3,2;1,1)(1/6,1/3) qi 3
`

3,1;1,1
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(−2/3,−1/3)
ūi

3 (1,1;1,1)(1,1) ēi 8 (1,2;1,1)(0,∗) mi

3 + 1
`

3,1;1, 1
´

(1/3,−1/3)
d̄i 1 (3,1;1,1)(−1/3,1/3) di

3 + 1 (1,2;1,1)(−1/2,−1) ℓi 1 (1,2;1,1)(1/2,1) ℓ̄i

1 (1,2;1,1)(−1/2,0) hd 1 (1,2;1,1)(1/2,0) hu

6
`

3,1;1, 1
´

(1/3,2/3)
δ̄i 6 (3,1;1,1)(−1/3,−2/3) δi

14 (1,1;1,1)(1/2,∗) s+
i 14 (1,1;1,1)(−1/2,∗) s−i

16 (1,1;1,1)(0,1) n̄i 13 (1,1;1,1)(0,−1) ni

5 (1,1;1,2)(0,1) η̄i 5 (1,1;1,2)(0,−1) ηi

10 (1,1;1,2)(0,0) hi 2 (1,2;1,2)(0,0) yi

6 (1,1;4,1)(0,∗) fi 6
`

1,1;4,1
´

(0,∗)
f̄i

2 (1,1;4,1)(−1/2,−1) f−

i 2
`

1,1;4,1
´

(1/2,1)
f̄+

i

4 (1,1;1,1)(0,±2) χi 32 (1,1;1,1)(0,0) s0
i

2
`

3,1;1, 1
´

(−1/6,2/3)
v̄i 2 (3,1;1,1)(1/6,−2/3) vi
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R-parity

R-parity allows the distinction between Higgs bosons
and sleptons

SO(10) contains R-parity as a discrete subgroup of
U(1)B−L.

in conventional “field theory GUTs” one needs large
representations to break U(1)B−L (>126 dimensional)

in heterotic string models one has more candidates for
R-parity (and generalizations thereof)

one just needs singlets with an even B − L charge that
break U(1)B−L down to R-parity

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2007)
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Discrete Symmetries

There are numerous discrete symmetries

from geometry

and from stringy selection rules,

both of abelian and nonabelian nature.
(Kobayashi, HPN, Plöger, Raby, Ratz, 2006)

Possible applications:

(nonabelian) family symmetries

Yukawa textures

approximate global U(1) for a QCD axion
(Choi, Kim, Kim, 2006; Choi, HPN, Ramos-Sanchez, Vaudrevange, 2008)
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The µ problem

In general we have to worry about

doublet-triplet splitting

mass term for additional doublets

the appearance of “naturally” light doublets

In the benchmark model we have

only 2 doublets

which are neutral under all selection rules

if M(si) allowed in superpotential

then M(si)HuHd is allowed as well
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The µ problem II

We have verified that (up to order 6 in the singlets)

Fi = 0 implies automatically

M(si) = 0 for all allowed terms M(si) in the
superpotential W

Therefore

W = 0 in the supersymmetric (Minkowski) vacuum

as well as µ = ∂2W/∂Hu∂Hd = 0, while all the vectorlike
exotics decouple

with broken supersymmetry µ ∼ m3/2 ∼< W >

This solves the µ-problem (Casas, Munoz, 1993)
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Comparison to TypeII braneworld

strategy based on geometrical intuition is successful

properties of models can trace back the geometry of
extra dimensions

heterotic versus Type II braneworld

bulk gauge group
complete chiral multiplets
chiral exotics
R-parity (B-L and seesaw mechanism)

localization of fields at various “corners” of
Calabi-Yau manifold

remnants of Grand Unification indicate that we live in a
special place of the compactified extra dimensions!
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Conclusion

String theory provides us with new ideas for particle physics
model building, leading to concepts such as

Local Grand Unification

realistic MSSM candidates

Geography of extra dimensions plays a crucial role:

localization of fields on branes,

sequestered sectors and mirage mediation

LHC might help us to verify some of these ideas!
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Gaugino Condensation
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Gravitino mass m3/2 = Λ3/M2
Planck and Λ ∼ exp(−S)

We need to fix the dilaton!

(Lebedev, HPN, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter, 2006)
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Run-away potential
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Corrections to Kähler potential
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(Casas, 1996; Barreiro, de Carlos, Copeland, 1998)
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Dilaton Domination?

This is known as the dilaton domination scenario,

but there are problems to remove the vacuum energy.

One needs a “downlifting” mechanism:

the analogue to the F-term “uplifting” in the type IIB
case (Gomez-Reino, Scrucca, 2006; Lebedev, HPN, Ratz, 2006)

“downlifting” mechanism fixes S as well (no need for
nonperturbative corrections to the Kähler potential)

(Löwen, HPN,2008)

mirage mediation for gaugino masses
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Sequestered sector “uplifting”
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(Lebedev, HPN, Ratz, 2006; Löwen, HPN, 2008)
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Metastable “Minkowski” vacuum
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Evolution of couplings
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The Mirage Scale
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Constraints on the mixing parameter
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(Löwen, HPN, 2008)
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Constraints on the mixing parameter
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Conclusion

String theory provides us with new ideas for particle physics
model building, leading to concepts such as

Local Grand Unification

realistic MSSM candidates

Geography of extra dimensions plays a crucial role:

localization of fields on branes,

sequestered sectors and mirage mediation

LHC might help us to verify some of these ideas!
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