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I was asked by the organizers to cover
inflation in string theory.  Since there

are O(1000) papers on this subject spread
over a 20 year time span, my coverage will

necessarily be both idiosyncratic and 
sporadic.

My goal is to make and illustrate three
different points:



1.  Inflation is sufficiently sensitive to UV
physics that one needs a UV complete theory
(like string theory) to do satisfactory model 

building.

2.  Within string theory, there are many non-
trivial constraints on building successful 

inflationary models.  This particular UV 
completion does not seem to make it obvious 

that “anything goes.”

3.  Several of the most interesting ideas 
proposed in recent years involve novel 
dynamical mechanisms and (correlated) 
interesting observational signatures.



It is an idea going back to Guth that to 
explain the horizon and flatness problems 

of cosmology, a period of early universe 
inflation

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), a(t) ∼ eHt

is a good idea.

Since we must eventually exit inflation,
this expansion should be driven by a 

dynamical scalar field (not a false vacuum
energy which is relaxed by a first order

transition).



I.  UV sensitivity in inflationary model 
building

The potentials which 
support slow-roll 

inflation are a little
bit strange:

Figure stolen from A. Linde



The slow-roll conditions which ensure
accelerated expansion of sufficient 

duration:

are sensitive to dimension six, Planck 
suppressed corrections to the potential.
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How do we mock up this rapid expansion, as 

would be caused by a very large 

cosmological constant, without actually 

having a large cosmological constant (which 

we know isn’t present today)?

A simple idea suggests itself.  Add a scalar field with a 
rather flat potential:

! Scalar field " with a potential. V(") ~ 1016 GeV

! Potential drives acceleration.

! Acceleration is prolonged if V(") is rather flat: 

"

V(")

1
2

( )V!

!" " "# $ $ %!

A.Linde,1982.

A. Albrecht and P.Steinhardt,1982.

! Scalar field " with a potential. V(") ~ 1016 GeV

! Potential drives acceleration.

! Acceleration is prolonged if V(") is rather flat: 

"

V(")

1
2

( )V!

!" " "# $ $ %!

A.Linde,1982.

A. Albrecht and P.Steinhardt,1982.

Suppose there is a potential that sources 

gravity, and depends on a variable: a scalar 

field.



Therefore, one can only construct robust 
models of inflation in a theoretical 

framework that can determine the potential 
at least this accurately.

This degree of
sensitivity to high

scale physics is
rare in model 

building.  Even 
proton decay in GUTs 

only depends on 
dimension six, GUT
scale suppressed

operators:



In fact, in the models of most interest for
the next generation of experiments designed

to measure B-mode polarization, the 
situation is much more interesting.

E.g. the proposed CMBPol experiment can 
perhaps reach a primordial gravity wave

signal down to r ∼ .01
There is a famous bound which arises just
from the definition of r as ratio of power
in tensor modes to power in scalar modes:

r ∼ .14 Pg

( δρ
ρ )2



This “Lyth bound” correlates the tensor 
mode signal with the distance the inflaton 
traversed in field space, during slow roll.
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 even in the handful of e-foldings closest
to our present horizon, the total field 

excursion was roughly:

∆Φ
MP

∼ O(1) ∗ ( r
.05 )1/2

So basically, a CMBPol detection of r
would imply that the inflaton traversed
a super-Planckian distance in field space 

during inflation.



Why does this matter?

The candidate scalar inflatons in e.g. string 
theory typically arise as “moduli fields” 
parametrizing the size and shape of the 

extra dimensions, or the positions of branes 
within the extra dimensions.

As one changes the shape, typically the 
quantities in the low-energy effective field 
theory also vary.  E.g., masses and couplings 
of other particles depend on the modulus.



In a patch of string scale size in field space, 
special points with extra light particles or 

enhanced symmetries often arise:

Candelas, De la ossa,
Green, Parkes



But if one wants a flat potential over a 
super-Planckian distance for the inflaton, 

even couplings to other super-massive modes 
(e.g. Kaluza-Klein modes):

V (φ, ψ) = Vinf (φ) + M2
KKψ2 + αφ2ψ2 + ...

will be dangerous.  Integrating out psi
loops will produce a potential for the

inflaton that typically has O(1) variation 
over distances of order             in field spaceMKK



The best idea to evade such corrections is to 
use a Nambu-Goldstone boson or an axion as 
the inflaton.  The subleties and successes 
of this idea in the string context will be 

discussed in a later part of my talk.



A second potential observable that would 
indicate novel UV physics is Non-Gaussianity 

in the spectrum of scalar perturbations.

In a model of single field inflation where 
the inflaton itself generates the density 

perturbations:  

* Slow-roll  -->  negligible non-Gaussianity

fNL ∼ O(.01) Acquaviva, Bartolono,
Matarrese, Riotto;

Maldacena



More general inflaton Lagrangians with 
higher derivatives

L =
1
2

∫
d4x

√
−g

(
M2

P R + 2P (X, φ)
)

X = −1
2
gµν∂µφ∂νφ

can produce significant non-Gaussian 
fluctuations if the speed of sound

a few basic shapes, governed by 5 parameters in the most general model. We evaluate our
results for the three special examples in §5, and present the different qualitative shapes of
the non-Gaussianities that may occur. In §6, the effects of putting the inflaton in a vacuum
other than the Bunch-Davies vacuum are described. We conclude in §7. The reader who
is interested only in the class of Lagrangians studied and the general structure of the non-
Gaussianity for this class, can confine her attention to sections §2 and §4 (which are more
or less self-contained).

2 Inflation models with a general Lagrangian

To set up our notation, let us first review the formalism in [37] where a general Lagrangian
for the inflaton field is considered. The Lagrangian is of the general form

S =
1

2

∫

d4x
√
−g

[

M2
plR + 2P (X, φ)

]

, (2.1)

where φ is the inflaton field and X = −1
2g

µν∂µφ∂νφ. The reduced Planck mass is Mpl =

(8πG)−
1
2 and the signature of the metric is (−1, 1, 1, 1). The energy of the inflaton field is

E = 2XP,X − P , (2.2)

where P,X denote the derivative with respect to X. Suppose the universe is homogeneous
with a Friedmann-Robertson-Walker metric

ds2 = −dt2 + a2(t)dx2
3 . (2.3)

Here a(t) is the scale factor and H = ȧ
a is the Hubble parameter of the universe. The

equations of motion of the gravitational dynamics are the Friedmann equation and the
continuity equation

3M2
plH

2 = E , (2.4)

Ė = −3H(E + P ) . (2.5)

It is useful to define the “speed of sound” cs as

c2
s =

dP

dE
=

P,X

P,X + 2XP,XX
(2.6)

and some “slow variation parameters” as in standard slow roll inflation

ε = −
Ḣ

H2
=

XP,X

M2
plH

2
,

η =
ε̇

εH
,

s =
ċs

csH
. (2.7)

4

is small.   In any such models, higher 
derivative terms play a crucial role, so the

UV completion is important by definition.

Creminelli;
Alishahiha, Silverstein, 

Tong; Arkani-Hamed, Cheng, 
Mukohyama, Zaldarriaga; 

Chen, Huang,
S.K., Shiu



So our punch lines so far are:

1.  To make any inflation model, one must 
control all terms which can impart a mass of 

order hubble to the inflaton, which 
includes dimension six, Planck-suppressed 

corrections to the Lagrangian.

2.  To make a model which gives measurable 
B-modes or Non-Gaussianity, one has to have 
an even better understanding, controlling 

the inflaton potential over super-Planckian 
distances in field space (i.e., to all orders in 

a polynomial expansion).  This requires 
knowledge of all couplings to even very 
massive fields (at a given point in field 

space).



Of course there are other important issues 
that are UV sensitive in early cosmology:

Inflation is not past eternal.  What came 
before?  How do we resolve the original 

singularities?  Etc.

“Patch problem”:  what gave rise to the 
relatively smooth Hubble-sized patch of 

space-time with homogeneous inflaton, that 
could inflate?  For low-energy models, this 
is a particularly sharp question.  But, tied 

up with measure issues.

We will IGNORE these issues and just talk 
about model building.  Perhaps justified, 

perhaps not.



II.  Building inflation with D-branes

Dvali, Tye

One well studied class of scenarios 
postulates that the inflaton is the modulus 
controlling a brane / anti-brane separation.  
Its potential arises from Coulomb attraction 

between the oppositely charged branes:

Burgess,
 Martineau,
 Quevedo, 

Rajesh, Zhang



In its earliest form, this idea suffers from 
the following problem.  The Coulomb 

potential for branes separated by a distance 
d is

V (r) = 2T3

(
1− 1

2π3
T3

M8
10d4

)

Or in terms of a canonically normalized 
field:

V (φ) = 2T3

(
1− 1

2π3
T 3

3
M8

10φ4

)



Then using the standard definition of the 
slow-roll parameters, we see that if the 

radius of the compactification manifold is l
(this enters in determining the 4d Planck 

mass from the 10d one):

η = O(1)(L/d)6

So you run out of space in the extra 
dimensions, before you can separate enough 

to inflate!



A second problem, which is more serious, is 
that even if one did find a model where eta 

has no (very ) negative eigenvalue, the 
Einstein-frame potential energy is basically

V ∼ 2T3
L12

This sources rapid runaway to large l, not 
slow roll of the brane separation mode.  A 

similar problem typically occurs with other 
compactification “moduli” (e.g. the dilaton).



So we learn a general lesson:

If one wishes to inflate at some hubble 
scale H in string theory, it is important to 

give dangerous moduli a mass which is 
larger than H.

In particular, high scale inflation (which 
can generate observable b-modes) requires
moduli stabilization at a very high scale.



In any scenario where the SUSY-breaking 
scale and the moduli potential are simply 

correlated:

4

and the low-energy theory is pure N = 1 supersymmet-
ric SU(Nc) gauge theory. This theory undergoes gluino
condensation, which results in a nonperturbative super-
potential

Wgauge = Λ3
Nc

= Ae
2πiρ
Nc (10)

where ΛNc is the dynamical scale of the gauge theory,
and the coefficient A is determined by the energy scale
below which the the SQCD theory is valid (There are also
threshold corrections in general, these contribute sub-
leading effects.) We see that this leads to an exponential
superpotential for ρ similar to the one above (but with a
fractional multiple of ρ in the exponent, since the gaug-
ino condensate looks like a fractional instanton effect in
W ).

So effects 1) and 2) have rather similar consequences
for our analysis; we will simply assume that there is
an exponential superpotential for ρ at large volume. In
our companion paper [14], we investigate some interest-
ing possibilities for cosmology if there are multiple non-
Abelian gauge factors. Using the fourfolds in [27], it is
easy to construct examples (with h1,1(X) = 2) which
could yield gauge groups of total rank up to ∼ 30. The
results of [39] suggest that much larger ranks should be
possible.

One important comment is in order before we proceed.
Besides corrections to the superpotential of the kind dis-
cussed above, there are also corrections to the Kähler
potential (see e.g. [40] for a calculation of some lead-
ing corrections). In our analysis we will ensure that the
volume modulus is stabilized at values which are para-
metrically large compared to the string scale. This makes
our neglect of Kähler corrections self consistent.

C. Supersymmetric AdS Vacua

Here, we show that the corrections to the superpoten-
tial considered above can stabilize the volume modulus,
leading to a susy preserving AdS minimum. We perform
an analysis of the vacuum structure just keeping the tree-
level Kähler potential

K = −3 ln[−i(ρ − ρ)] (11)

and a superpotential

W = W0 + Aeiaρ . (12)

W0 is a tree level contribution which arises from the
fluxes. The exponential term arises from either of the
two sources above, and the coefficient a can be deter-
mined accordingly. In keeping with the fact that the
complex structure moduli and the dilaton have received a
mass (5), we have set them equal to their VEVs and con-
sider only the low-energy theory of the volume modulus.
To avoid the need to worry about additional open-string
moduli, we assume the tadpole condition (1) has been

solved by turning on only flux, i.e. with no additional
D3 branes.

At a supersymmetric vacuum DρW = 0. We simplify
things by setting the axion in the ρ modulus to zero, and
letting ρ = iσ. In addition we take A, a and W0 to be all
real and W0 negative. The minimum then lies at

DW = 0 → W0 = −Ae−a σcr (1 +
2

3
a σcr) (13)

The potential, V = eK
(

GρρDρWDρW − 3|W |2
)

, at
the minimum is negative and equal to

VAdS = (−3eKW 2)AdS = −
a2A2e−2 a σcr

6 σcr
(14)

We see that we have stabilized the volume modulus while
preserving supersymmetry. It is important to note that
the AdS minimum is quite generic. Any corrections to
the Kähler potential will still result in a susy minimum
which solves (13).

A few comments are in order before we proceed. A
controlled calculation requires that σ $ 1, this ensures
that the supergravity approximation is valid and the α′

corrections to the Kähler potential are under control. It
also requires that a σ > 1 so that the contribution to
the superpotential from a single (fractional) instanton is
reliable. Generically, if the fluxes break supersymmetry,
W0 ∼ O(1), and these conditions will not be met. How-
ever it is reasonable to expect that by tuning fluxes one
can arrange so that W0 % 1. In these circumstances we
see from (13) that a σ > 1. Taking a < 1, one can then
ensure that σ $ 1, as required.

As an illustrative example we consider W0 = −10−4,
A = 1, a = 0.1. This results in a minimum at σcr ∼ 113.
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FIG. 1: Potential (multiplied by 1015) for the case of expo-
nential superpotential with W0 = −10−4, A = 1, a = 0.1.
There is an AdS minimum.

Another possibility to get a minimum at large vol-
ume is to consider a situation where the fluxes preserve
susy, and the superpotential involves multiple exponen-
tial terms, i.e. “racetrack potentials” for the stabilization
of ρ [41]. Such a superpotential could arise from multiple
stacks of seven branes wrapping four cycles which cannot
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FIG. 2: Potential (multiplied by 1015) for the case of ex-
ponential superpotential and including a D

σ3 correction with

D = 3 × 10−9 which uplifts the AdS minimum to a dS mini-
mum.

It is important to mention that the value of the volume
modulus shifts only slightly in going from the AdS mini-
mum to the new dS minimum. This means if the volume
was large in the AdS minimum to begin with, it will con-
tinue to be large in the new dS minimum, guaranteeing
that our approximations are valid.

If one wants to use this potential to describe the
present stage of acceleration of the universe, one needs
to fine-tune the value of the potential in dS minimum to
be V0 ∼ 10−120 in units of Planck density. In principle,
one could achieve it, e.g., by fine tuning D. However,
the tuning we can really do by varying the fluxes etc. in
the microscopic string theory is limited, though it may
be possible to tune quite well if there are enough three-
cycles in M .

IV. HOW STABLE IS THE DS VACUUM?

The radial modulus σ = Im ρ has a kinetic term
3

4σ2 (∂σ)2 which follows from the Kähler potential (3).
For cosmological purposes it is convenient to switch to

the canonical variable ϕ =
√

3
2 lnσ =

√

3
2 ln(Im ρ),

which has a kinetic term 1
2 (∂ϕ)2. In what follows we

will use the field ϕ and it should not be confused with
the dilaton, φ.

A. General theory

The dS vacuum state ϕ0 corresponding to the local
minimum of the potential with V0 > 0 is metastable.
Therefore it may decay, and then the universe will roll to-
wards large values of the field ϕ and decompactify. Here
we would like to address two important questions:

1) Do our dS vacua survive for a large number of
Planck times? For instance, if we fine tune to get a small
cosmological constant, is the dS vacuum sufficiently sta-

ble to survive during the 1010 years of the cosmologi-
cal evolution? If the answer is positive, one can use the
dS minimum for the phenomenological description of the
current stage of acceleration (late-time inflation) of the
universe.

2) Is the typical decay time of the dS vacuum longer
or shorter than the recurrence time tr ∼ eS0 , where
S0 = 24π2

V0
is the dS entropy [43]? If the decay time

is longer than tr ∼ eS0 , one may need to address the
issues about the consistency of the stringy description of
dS space raised in [2, 5, 8].

We will argue that the lifetime of the dS vacuum in our
models is not too short and not too long: it is extremely
large in Planck times (in particular, one can easily make
models which live longer than the cosmological timescale
∼ 1010 years), and it is much shorter than the recurrence
time tr ∼ eS0 .

In order to analyse this issue we will remember, fol-
lowing Coleman and De Luccia [44], basic features of the
tunneling theory taking into account gravitational effects.

To describe tunneling from a local minimum at ϕ = ϕ0

one should consider an O(4)-invariant Euclidean space-
time with the metric

ds2 = dτ2 + b2(τ)(dψ2 + sin2 ψ dΩ2
2) . (17)

The scalar field ϕ and the Euclidean scale factor (three-
sphere radius) b(τ) obey the equations of motion

ϕ′′ + 3
b′

b
ϕ′ = V,ϕ, b′′ = −

b

3
(ϕ′2 + V ) , (18)

where primes denote derivatives with respect to τ . (We
use the system of units Mp = 1.)

These equations have several instanton solutions
(ϕ(τ), b(τ)). The simplest of them are the O(5) invari-
ant four-spheres one obtains when the field ϕ sits at one
of the extrema of its potential, and b(τ) = H−1 sin Hτ .
Here H2 = V

3 , and V (ϕ) corresponds to one of the ex-
trema. In our case, there are two trivial solutions of this
type. One of them describes time-independent field cor-
responding to the minimum of the effective potential at
ϕ = ϕ0, with V0 = V (ϕ0). Another one is related to the
maximum of the potential at ϕ = ϕ1, with V1 = V (ϕ1).

Coleman-De Luccia (CDL) instantons are more com-
plicated. They describe the field ϕ(τ) beginning in a
vicinity of the false vacuum ϕ0 at τ = 0, and reaching
some constant value ϕf > ϕ1 at τ = τf , where b(τf ) = 0.
It is tempting to interpret CDL instantons as the tunnel-
ing trajectories interpolating between the different vacua
of the theory. However, one should be careful with this
interpretation because the trajectories ϕ(τ) for CDL in-
stantons do not begin exactly in the metastable minimum
ϕ0 and do not end exactly in the absolute minimum of
the effective potential. We will discuss this issue later.

According to [44], the tunneling probability is given by

P (ϕ) = e−S(ϕ)+S0, (19)

KKLT

SUSY minimum Potential after SUSY breaking

this could lead to a bound relating the 
scale of inflation to the scale of SUSY 
breaking (so that high scale inflation 
requires higher scale SUSY breaking).

Kallosh, Linde



Various ways to solve the problems of the 
Brane/Anti-brane inflation model have been 

discovered.

In one variant, one places the branes in a 
warped compactification geometry with 

approximate metric:

If on the resolved side one started with N D3 branes
and M D5 branes wrapping the small two-sphere, the
resulting near-horizon geometry is instead a deformed 
conifold with 3-form fluxes through the three-sphere

and its dual cycle:

It is useful to think of this modified solution as being related 
to the  “deformed” conifold geometry:

x2 + y2 + z2 + w2 = ε2

This geometry has two 3-cycles, a so-called A-cycle
which is the three-cycle generated by real choices
of x,y,z,w, and a B-cycle which is swept out by the

2-sphere and the radial directon of the cone.

For N = KM, we can think of this geometry being sourced
by fluxes: ∫

A
FRR

3 = M

∫

B
HNS

3 = −K

with KM = N.  Far out along the cone (far from the tip),
the gravity solution takes the form:

i.  Placing N D3 branes at the tip of the cone :

one finds a near horizon geometry AdS5 × T 1,1 .

The metric and five-form in the gravity solution are :

ds2 = h−1/2ηµνdxµdxν + h1/2(dr2 + r2ds2
T 1,1)

h(r) =
27π

4
1
r4

(α′)2gsN

(F5)rtx1x2x3 = ∂rh
−1

where:

Klebanov, Tseytlin;
Klebanov, Strassler;

Vafa

If on the resolved side one started with N D3 branes
and M D5 branes wrapping the small two-sphere, the
resulting near-horizon geometry is instead a deformed 
conifold with 3-form fluxes through the three-sphere

and its dual cycle:

It is useful to think of this modified solution as being related 
to the  “deformed” conifold geometry:

x2 + y2 + z2 + w2 = ε2

This geometry has two 3-cycles, a so-called A-cycle
which is the three-cycle generated by real choices
of x,y,z,w, and a B-cycle which is swept out by the

2-sphere and the radial directon of the cone.

For N = KM, we can think of this geometry being sourced
by fluxes: ∫

A
FRR

3 = M

∫

B
HNS

3 = −K

with KM = N.  Far out along the cone (far from the tip),
the gravity solution takes the form:

i.  Placing N D3 branes at the tip of the cone :

one finds a near horizon geometry AdS5 × T 1,1 .

The metric and five-form in the gravity solution are :

ds2 = h−1/2ηµνdxµdxν + h1/2(dr2 + r2ds2
T 1,1)

h(r) =
27π

4
1
r4

(α′)2gsN

(F5)rtx1x2x3 = ∂rh
−1

where:

Klebanov, Tseytlin;
Klebanov, Strassler;

Vafa

KKLMMT



The picture you should have in mind for the 
extra dimensions is a cone with 5d base 

(compactified at some large value of the 
radial coordinate):

In many simple cases, one can explicitly see what the 
flux backreaction does to the geometry of the extra 
dimensions.  For instance, in the simplest nontrivial 

noncompact Calabi-Yau space, the conifold:

x2 + y2 + z2 + w2 = 0

turning on garden variety three-form fluxes produces a 
space-time with a highly warped metric:

14

The tip is actually smoothed out in a way 
that will not be important for us.  



This geometry arises in a canonical example 
of the AdS/CFT correspondence.  It is called 
the (warped) conifold; the dual field theory 

is an N=1 supersymmetric conformally 
invariant gauge theory.

Klebanov,
Witten;

Klebanov,
Strassler

The warping arises from backreaction of 
background gauge fluxes threading the 

extra dimensions.  These help to stabilize 
the problematic moduli fields.

Gukov, Vafa, Witten;
Dasgupta, Rajesh, Sethi;

Giddings, S.K., Polchinski

W =
∫

M (F − τH) ∧ Ω)



V = 2T3
r4
0

R

(
1− 1

N
r4
0

r4
1

)
.

The Coulomb attraction between a brane and 
an anti-brane in this warped geometry takes 

the form:

where: 

r0 is the anti-D location

r1 is the D brane location

and the warped geometry naturally allows 
r0 to be exponentially small.



This class of models then offers promise of 
evading the most basic problems outlined 

earlier:

* The fluxes together with other effects 
(e.g. non-perturbative dynamics to fix the 

volume modulus) allow one to fix the fast-
rolling moduli.

* The warping softens the Coulomb 
potential enough so that at attainable brane 

separations, one can achieve slow roll.



Subtleties from inflaton/modulus mixing

Unfortunately, new more refined problems
arise as old problems are solved.  

Suppose we call the chiral multiplet 
containing the volume modulus  

ρ ∼ L4.

Dimensional reduction on the compact
Calabi-Yau manifold shows that the 4d
effective theory has Kahler potential:

The small warp factor and the consequent exponential flatness are the heart of our

proposal, so an alternative explanation of the origin of these small numbers may be helpful.

Recall that there is a holographic dual gauge theory which describes the geometry of the

KS model. This gauge theory is approximately scale invariant in the deep ultraviolet, with

slowly running gauge couplings. It undergoes K duality cascades before leading in the

infrared to a confining gauge theory with a mass gap. Then the smallness of the redshift

factor,
(r0

R

)4
= e−

8πK
3gsM (4.10)

can be ascribed to the exponential smallness of the confinement scale in such a gauge

theory.

In summary, we have seen that one can construct concrete examples of string com-

pactifications which lead to the general behavior described in §3. One of their virtues is

that they automatically lead to very flat inflaton potentials, without the need for large

brane separation or excessive fine-tuning of initial conditions. The primary source of this

flatness is the redshift suppression (4.7) which is exponentially sensitive to the (integer)

choice of fluxes K and M . However, all of these virtues must be re-examined in the light

of concrete ideas about how to stabilize the closed string moduli. In this general class of

flux compactifications, the fluxes stabilize many moduli but not e.g. the overall volume.

We now turn to the discussion of volume stabilization.

5. Volume Stabilization: New Difficulties for D-brane Inflation

The results of §3,4 indicate that warped geometries provide a promising setting for

making models of inflation with naturally small ε and η. However, as emphasized in §2,

one must ensure that the compactification volume is stabilized in order to avoid rapid

decompactification instead of inflation. We will now demonstrate that in the concrete

models of [5] this is far from a trivial constraint.

In these models the four-dimensional N = 1 supergravity at low energies is of the

no-scale type. The Kähler potential for the volume modulus ρ and the D-brane fields φ

takes the form [6]7

K(ρ, ρ̄, φ, φ̄) = −3 log
(

ρ + ρ̄ − k(φ, φ̄)
)

(5.1)

7 The variable ρ is called −iρ in [7].
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A stabilization mechanism that fixes ρ
(or any combination of fields other than the 

one appearing in the argument of the log)
then generically imparts a mass to the d-

brane position modes!

You can see this because the resulting 
supergravity potential has the form:

5.1. Scenario I: Superpotential Stabilization

Perhaps the most straightforward method of stabilizing the volume involves a nonper-

turbative contribution to the superpotential. Various sources of nonperturbative superpo-

tentials for the ρ modulus are known; one instructive example described in [7] involves a

superpotential

W (ρ) = W0 + Ae−aρ (5.8)

where A and a are constants and W0 is the contribution (5.4) of the three-form flux. For

the remainder of this section we will consider W = W (ρ) to be a general holomorphic

function of ρ.

In the presence of D3-branes the superpotential must in addition develop some de-

pendence on φ, as it should be invariant under (5.7). For instance, as argued in [24], the

superpotential due to Euclidean brane instantons or gauge dynamics on D7-branes has

to vanish when a D3-brane hits the relevant cycle. This can be understood directly by

examining and integrating out the massive D3-D7 strings in the latter case. This subtlety

must be accounted for to get a globally well-defined W , and we will see in a moment that

this actually changes the inflaton mass term. Nevertheless, we will first study the simpler

case W = W (ρ), both because it reflects the essential features of the problem and because

the full dependence of W on φ is not known.

Let us start by presenting a general argument which highlights a problem faced by

any inflationary model involving a moving D3-brane in the models of [7]. The main point

is that one will choose some configuration with a positive energy V . When the compact

manifold is large then this energy will go to zero rather quickly, as a power of the volume

modulus r:

V (r, φ) =
X(ρ)

rα
=

X(ρ)

(ρ − φφ̄/2)α
(5.9)

where α is a number of order one and the form of X(ρ) depends on the source of energy.

This follows because in existing proposals the inflationary energy arises either from brane

tensions or from fluxes, and all known brane and flux energies vanish as some power of r.

On the other hand the stabilization mechanism would fix ρ (or else some combination of

ρ and φ) rather than r. This implies that as the brane moves and φ changes there will be

a change in the potential,

V = V0

(

1 + α
φφ̄

2r
+ ...

)

. (5.10)
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This is a Hubble-scale mass for the would-be 
inflaton.   The problem here is very 

analogous to the SUGRA eta problem.

bulk CY

warped throat

D7

r

D3

D3

r0 μ

Figure 1: Cartoon of an embedded stack of D7-branes wrapping a four-cycle Σ4, and a mobile

D3-brane, in a warped throat region of a compact Calabi-Yau. The D3-brane feels a force
from the D7-branes and from an anti-D3-brane at the tip of the throat.

under consideration. Hence, for our purposes the D7-brane moduli are massive enough to

be ignored. Next, the stabilized value of rµ is determined by the fluxes in the bulk of the
fourfold. In a generic compactification the number of choices of such fluxes is vast, so we
expect that for a given compactification and for any desired value r!

µ, there exist choices of

flux that fix the D7-brane to a location rµ ≈ r!
µ.

2.2 D3-brane potential from moduli stabilization

The effect of moduli stabilization on the D3-brane is captured by the F-term potential of
N = 1 supergravity,

VF = eκ2K
[
DΣWKΣΩDΩW − 3κ2WW

]
, κ2 = M−2

P ≡ 8πG , (2.8)

where {ZΣ} ≡ {ρ, zα; α = 1, 2, 3} and DΣW = ∂ΣW + κ2(∂ΣK)W . The combined Kähler

potential for the volume modulus, ρ, and the three open string moduli (D3-brane positions),
zα, is of the form postulated by DeWolfe and Giddings [29]5

κ2K(ρ, ρ, zα, zα) = −3 log[ρ + ρ̄ − γk(zα, zα)] ≡ −3 log U , (2.9)

5In [30] it was suggested that this result may receive corrections in strongly-warped scenarios. However,
the proposed corrections do not affect the metric on the Kähler moduli space, and thus are irrelevant for
most of the considerations presented here. However, a truly thorough search for possible effects of such
corrections on our analysis must await a more complete understanding of the structure of corrections to the
Kähler potential.

7

Options for solving it:

* Include additional brane dynamics in 
throat (e.g. D7s with Non-perturbative W):

Baumann, Dymarsky,
Klebanov, McAllister,

Steinhardt;
Krause, Pajer;

Burgess, Cline, 
Dasgupta, Firouzjahi

Copeland, Liddle, Lyth,
Stewart, Wands



2.18

2.16

2.14

2.12

 0.2 0.4 0.6 0.8  1.0

φ/φ
μ

V(φ) x 10
12

Figure 2: Inflaton potential V(φ).
Compactification data: n = 8, ωF = 10, N = 32, Qµ = 1.2, B6 = 1.5, B4 = 9, s = 1.1, which

implies φµ = 0.25, W0 = −3.432 × 10−4, D + Dother = 1.2 × 10−8, ω0 ≈ 10.1.

at some distance from the tip. We are confident that this is a minimum and not a saddle

point, because we have explicitly shown in the Appendices that the curvature of the potential
in the angular directions is non-negative. (The curvature is zero along directions protected

by the unbroken SO(3) symmetry of the background, and positive in the other directions.)
Moreover, we have shown that the potential is stable with respect to changes in the Kähler
modulus.

Next, we notice that as we vary s, the metastable minimum grows more shallow, and the

two zeroes of V ′, the local maximum and the local minimum, approach each other. A zero
of V ′′ is trapped in the shrinking range between these two zeroes of V ′. For a critical value

of s, the zero of V ′′ and the two zeroes of V ′ coincide, and the potential has an inflection
point. As s changes further, the potential becomes strictly monotonic.

We therefore find that there exists a range of s for which both the first and second

derivatives of the potential approximately vanish. This is an approximate inflection point.
In the next section we discuss a phenomenological model that captures the essential features
of (3.23) in the vicinity of this inflection point.

anti-D3-brane as well, which is well-known to accomplish the uplifting by itself [16]. If this antibrane is
removed, the structure of the potential changes, and it is not clear from our results so far that a remaining
D3-brane would suffice to uplift to a de Sitter vacuum. We leave this as a promising direction for future
work.
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Then, for suitable D7 embedding and initial 
D3 location, one can find a very flat 

potential:

* Quite plausibly, perturbing the throat 
geometry by the equivalent of slightly 
irrelevant operators in the dual field 

theory, one can tune the inflaton 
potential. Baumann, Dymarsky, SK, Klebanov, 

Mcallister (random discussions)



One can prove that all D3-brane inflation 
models based on such local throat 
geometries are small-field models.

Proof:  By definition, one has

M2
P = M8

10V
w
6

V w
6 =

∫
d6y
√

gh

ds2
10 = h−1/2(y)gµνdxµdxν + h1/2(y)gij(y)dyidyj

V w
6 = (V w

6 )bulk + (V w
6 )throat

where:

We can break this into bulk & throat 
contributions: 

Baumann,
 McAllister



(V w
6 )throat = V ol(X5)

∫ rUV

0 dr r5 h(r)
= 2π4gsN(α′)2r2

UV

The throat contribution is easily computed 
for Sasaki-Einstein cone metrics:

By neglecting the bulk contribution, we 
only decrease our estimate of the 4d Planck 

scale:

M2
P > M8

10(V w
6 )throat



Now, it is easy to derive a bound.  the 
canonical field corresponding to the 

D3 position is:  

φ2 = T3r2

T3 = 1
(2π)3

1
gs(α′)2

For a throat inflation model:

∆r ≤ rUV

So: (
∆φ
MP

)2
< T3

r2
UV

M2
P

< T3
r2

UV

M8
10(V

w
6 )throat



And inserting our estimate for the throat 
volume, we find:

(
∆φ
MP

)2
< 4

N

r ≤ 4
N × .01

which implies:

This is not good for a B-mode signal, since 
large N is required in these models to begin 

with.



Plausibly, by using wrapped higher p-branes 
instead of D3 branes, one can increase the 
B-mode signal to the verge of detectability.

Becker, Leblond,
Shandera

POSSIBLE SIGNATURES OF BRANE MODELS:

1.  The end of brane inflation occurs when a 
brane and an anti-brane annihilate.  This 

involves an abelian higgs model (the 
tachyon which condenses to end inflation), 
and so cosmic string can form by the Kibble 

mechanism. Sarangi, Tye;
Copeland, Myers, Polchinski



Because of the warped geometry, these 
cosmic D-strings or superstrings are 

naturally quite light:

10−12 ≤ GNµ ≤ 10−8

They may be distinguishable from standard 
field theory strings, due to (p,q) flavor 

structure or differences in recombination 
probability (they can miss each other in 

extra dimensions!). Jackson, Jones,
Polchinski



2.  Non-Gaussian density fluctuations

The kinetic structure of the D-brane action 
is actually a natural generalization of the 

relativistic point-particle:

√
1− ẋ2 →

3.2 DBI inflation

DBI inflation [13–16] is motivated by brane inflationary models [21, 40–43] in warped com-
pactifications [44–49]. In particular, strongly warped regions or “warped throats” with ex-
ponential warp factors, can arise when there are fluxes supported on cycles localized in small
regions of the compactified space. A prototypical example of such a strongly warped throat
is the warped deformed conifold [50, 51]. The effective field theory of compact models con-
taining such throats [48,49] has been explored in detail in [52]. In the slow-roll paradigm, in-
flation can happen when a brane is approaching anti-branes in a throat if the potential is flat
enough. However, this is non-generic [21]. Both the degree of tuning involved, and various
possible ways of engineering flat potentials, have been discussed in the literature [21,53–59].

Perhaps the most interesting idea, which relies upon dynamics distinct from the usual
slow-roll paradigm, arises in the DBI model. In this model, the warped space slows down the
rolling of the inflaton on even a steep potential. (This “slowing down” can also be understood
as arising due to interactions between the inflaton and the strongly coupled large-N dual
field theory). This scenario can naturally arise in warped string compactifications [15]. The
inflaton φ is the position of a D-brane moving in a warped throat. In the region where the
back-reaction [14,16,60] and stringy physics [16,17] can be ignored, the effective action has
the following form

S =
M2

pl

2

∫

d4x
√
−gR−

∫

d4x
√
−g [f(φ)−1

√

1 + f(φ)gµν∂µφ∂νφ−f(φ)−1 +V (φ)] . (3.10)

The above expression applies for D3-branes in a warped background where f(φ) is the
warping factor. We will first express the results in terms of a general f(φ). For an AdS-like
throat, f(φ) # λ

φ4 (where λ in specific string constructions is a parameter which depends on

the flux numbers).2 Two situations have been considered in the literature:

• In the UV model [13,14], the inflaton moves from the UV side of the warped space to
the IR side under the potential

V (φ) #
1

2
m2φ2 , m $ Mpl/

√
λ . (3.11)

In this case the inflaton starts far away from the origin and rolls relativistically to the
minimum of potential at the origin.

• In the IR model [15, 16], the inflaton moves from the IR side of the warped space to
the UV side under the potential

V (φ) # V0 −
1

2
m2φ2 , m ∼ H . (3.12)

The inflaton starts near the origin and rolls relativistically away from it.

The evolution of the inflaton in both cases was studied and the resulting power spectra
were computed in [13–16]. Stages of DBI and slow-roll inflation can also be smoothly
connected to each other [15, 62].

2This is a good approximation if we assume that the last 60 e-foldings of inflation occur far from the tip
of the throat. Otherwise, inflationary observables may depend on the details of the warp factor [61].
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where f is determined by the warp factor in 
the metric.



Expanding this out gives an action with a 
very nontrivial structure of higher 

derivative terms.  In DBI inflation, one finds 
a solution for an inflaton trajectory where 
all terms are equally important -- this is a 

potentially UV completable D-brane example 
of K-inflation.

Silverstein, Tong

In these models, the brane has a large gamma
factor

γ ∼ 1√
1−f φ̇2



These theories generate a large non-
Gaussianity, with:

and a characteristic shape in k-space peaked 
on equilateral triangles.

While it seems difficult to get compactified 
throats of the precise sort I’ve described 

that can support DBI inflation (very large N 
would be needed), it seems very likely that 

generalized throats which would support it 
do exist.  Seeing a bispectrum with the 
appropriate shape would certainly be 

suggestive.

fNL ∼ γ2



III.  Stringy inflation with shift 
symmetries: LARGE field models

An obviously good idea for making slow roll 
inflation, is to use a field with a softly 

broken shift symmetry.
c.f. “natural inflation” of 

freese, frieman, olinto

* symmetry under  a→ a + c forbids
radiative corrections of the form

A reasonable idea is to try and use a pseudo Nambu-
Goldstone boson, e.g. an axion. c.f.  “Natural inflation” of

Freese, Frieman, Olinto

-- shift symmetry under a to a + c,  forbids radiative 
corrections of the form 

because the spurion of shift symmetry breaking must 
appear.  So, a major worry about the eta problem is gone.

δV ∼ V
M2

P
a2

In general, the potential for an axion takes the form:



(because the spurion of shift symmetry 
breaking must appear).  So a major worry 

(the eta problem) is basically gone.

In many simple cases, the potential for an 
axion takes the form:

        f  = “axion decay constant”
= dynamical scale

V (a) = Λ4 (1− cos(a/fa))

Λ

E.g. in the heterotic string, there is a two-form B-field
potential in 10 dimensions.  KK reduction on a Calabi-Yau

M results in 

N = h2(M6)

axions in the 4d effective theory, one associated to each
homology class of curves C in M.

with:  f = “axion decay constant”

= “dynamical scale”Λ



In e.g. heterotic string theory, there is a 
two-form B-field potential in 10 dimensions.
KK reduction on a Calabi-Yau M results in

an axion

ai =
∫

Ci
B

for each generator          of Ci H2(M) .

This in general results in many axions in the 
4d low-energy effective field theory.



The potential for these axions is in general 
generated entirely by “worldsheet 

instantons,” string worldsheets that wrap 
C.  As a result:

The potential is entirely generated by  “worldsheet
instantons” which wrap C.  As a result:

Question:  Can V(a) give us a good inflation candidate
that has                    and could explain a detection of r?

Λ = Mstring Exp(−Area(C))

∆a > MP

Clearly, with the cosine potential, generic initial values
of the axion produce slow roll parameters:

ε ∼ (MP
fa

)2, η ∼ (MP
fa

)2 .

First question:  Can one of these axions give 
us a good inflaton candidate that has

The potential is entirely generated by  “worldsheet
instantons” which wrap C.  As a result:

Question:  Can V(a) give us a good inflation candidate
that has                    and could explain a detection of r?

Λ = Mstring Exp(−Area(C))

∆a > MP

Clearly, with the cosine potential, generic initial values
of the axion produce slow roll parameters:

ε ∼ (MP
fa

)2, η ∼ (MP
fa

)2 .

and could explain a detection of 

gravity waves?

With the generic cos potential, one finds:

The potential is entirely generated by  “worldsheet
instantons” which wrap C.  As a result:

Question:  Can V(a) give us a good inflation candidate
that has                    and could explain a detection of r?

Λ = Mstring Exp(−Area(C))

∆a > MP

Clearly, with the cosine potential, generic initial values
of the axion produce slow roll parameters:

ε ∼ (MP
fa

)2, η ∼ (MP
fa

)2 .



So to achieve robust slow-roll inflation, 
one would want to have:

f >> MP

On the other hand in string theory, the 
axions we just discussed in the heterotic 

string have:

So to achieve robust inflation, one would want f > M_P.

BUT, in string theory:

f2

M2
P
∼ (α′)2

Vol(M) ×Area(C)

And, very generic string axions have:

fa ! MP
Sinst

where             both for control, and to give a reasonable
scale of inflation. 

Sinst > 1

Svrcek, Witten

and more generally, string axions have:

So to achieve robust inflation, one would want f > M_P.

BUT, in string theory:

f2

M2
P
∼ (α′)2

Vol(M) ×Area(C)

And, very generic string axions have:

fa ! MP
Sinst

where             both for control, and to give a reasonable
scale of inflation. 

Sinst > 1

Svrcek, WittenSvrcek, Witten



Does this mean that one cannot use shift 
symmetries to realize large-field inflation 

in string theory?  NO.

1.  A very reasonable idea which seems fairly 
generic, is the following.   We will explain 

it in a fairly roundabout way, but the 
connection to the idea of shift-symmetry 

will become clear.

Generically, in Calabi-Yau moduli space, 
there exist singular points around which 
submanifolds A,B undergo “monodromy” 
transformations.  Around the generic 

conifold point in moduli space, for instance:

Silverstein,
Westphal;

+ McAllister



A→ A

B → B + A

where A is a vanishing cycle at the conifold, 
and B is its homology dual.

Now, suppose one has a brane wrapping B 
(and filling space-time).  As one goes around 

the conifold point, traversing a path of 
length f in field space, one adds to it a 

brane wrapping A, which costs extremely 
small energy near the conifold point, as A is 

a vanishing cycle.



-1 1

M

M1
M
-1

P

Fig. 1: The u plane with monodromies around 1, −1, and ∞. Note the
choice of base point in the definition of the monodromies.

Hence, M−1 can arise from a massless particle, just like M1. (5.15) would also hold if A is

replaced by AM1
r for any integer r.

What kind of particle should become massless to generate this singularity? If one

arranges the charges as a row vector q = (nm, ne), then the massless particle that produces

a monodromy M has qM = q. For instance, monodromy M1 arises from a massless

monopole of charge vector q1 = (1, 0), and using the known form of M1, one has q1M1 = q1.

Duality symmetry implies that this must be so not just for the particular monodromy M1

but for any monodromy coming from a massless particle. Upon setting q−1 = (1,−1), we

get q−1M−1 = q−1, and hence the monodromy M−1 arises from vanishing mass of a dyon

of charges (1,−1).

It seems that we are seeing massless particles of charges (1, 0) or (1,−1). However,

there is in fact a complete democracy among dyons. The BPS-saturated dyons that exist

semiclassically have charges (1, n) (or (−1,−n)) for arbitrary integer n. The monodromy

at infinity brings about a shift (1, n) → (1, n−2). If one carries out this shift n times before

proceeding to the singularity at u = 1 or u = −1, the massless particles producing those

singularities would have charges (1,−2n) and (1,−1 − 2n), respectively. This amounts to

28

In this figure for instance, the conifold 
point in moduli space can be identified with 

-1, and the path is to be identified with 
M−1



*  Clearly, in this process,

∆V ∼ T Vol(A),
∆Φ ∼ F

while V itself is given by

V ∼ T Vol(B)
Imagine an encircling path close to the 
singular point in moduli space (so A is 

small), but far enough away to keep f fixed 
and reasonable.  Then one can get small 
slow-roll parameters on a path enacting 

the monodromy transformation many times.



Since A is a vanishing cycle, the energy cost 
of encircling A (and adding the brane 

wrapping a) is quite small, and the path 
around the singular point is almost one 

which enjoys a shift symmetry -- there is a 
softly broken shift symmetry.  So, this 

“monodromy mechanism” is an example of 
inflation using a Nambu-Goldstone boson or 

axion.

Although F itself is sub-Planckian, the many 
traversals of the path lead to a super-

Planckian field range.  So one can construct 
inflationary models which give measurable 

gravitational waves by this mechanism.



In a specific example involving 
compactification on the “nilmanifold,” one 

finds

V (φ) ∼ φ2/3

for the potential in a suitable field range.



2.  A more brute-force idea, is to simply 
utilize many axions each of which enjoys the 

smaller field range.

Typical Calabi-Yau spaces have large betti 
numbers, so they do give rise to a large 

number of axions.

Suppose:

L =
∑N

i=1

(
1
2 (∂ai)2 − Λ4(1− cos(ai/f))

)

Dimopoulos, SK,
McGreevy, Wacker;

Easther, McAllister



Since there are N independent shift 
symmetries, there will be no correction to 

the potential of the form:

∆V (ai) ∼ V
M2

P
a2

i

Instead, any symmetry breaking term 
involving two distinct axions must scale like

∼ Λ4
i Λ4

j

M4

and so such terms are negligibly small.



 Now naively, since the equations of motion 
are

äi + 3Hȧi = − ∂V
∂ai

and V is basically the sum of N independent 
terms, one has:

ε ∼ (MP
f )2 1

N2 , η ∼ (MP
f ) 1

N



This is an example of “assisted inflation”; it 
is radiatively stable only because of the N 
independent shift symmetries (otherwise, 
having the multiple fields doesn’t help).

Liddle, Mazumdar, Schunk;
Kaloper et al.

At large N, it looks like generic initial 
condtions lead to:

(∆a)2total =
∑

(∆ai)2 ∼ Nf2



So if one can realize large N at the same 
time as the other assumptions that go into 
writing down the stringy axion potential 

(large volume, fixed decay constants, etc.), 
one can make large-field inflation models 

this way.

Conceptual Problem:

These assumptions seem hard to realize 
concretely at large volume, and may require 

a Calabi-Yau with e.g. many conifolds.
Grimm;

Kallosh, Sivanandam,
Soroush

There are N dependent radiative 
corrections in quantum gravity.



δM2
P ∼ ± N

16π2 Λ2
UV

Then there is an uncertainty in inflationary 
parameters:

η ∼ 1
N (MP

f )2
(
1± NΛ2

UV

16π2M2
P

)

This implies that just for self-consistency, 
one can trust the most naive analysis only 

up to a maximal value of N

Nmax ! 16π2 M2
P

Λ2
UV



and a consequent maximal value of the 
number of e-foldings:

Ne ! N( f
MP

)2 ≤ 16π2( f
MP

)2 M2
P

Λ2
UV

The real number is sensitive to the UV 
cutoff.  In string theory, actually, the 

leading N-dependent correction is an alpha’ 
correction:

L10D = M8
10

(
R10 + ζ(3)(α′)3R4

10 + ...
)



Using

∫
M R ∧R ∧R = χ(M)

(2π)3

we can find an N-dependent correction to 
the 4D Einstein term, and hence estimate the 

stringy answer:

δM2
P = NΛ2

UV
16π2 = χ(M)

8π3 ζ(3) (α′)3

V6
M2

P

Then we find:

Ne ≤ 2π3

ζ(3)
N

|χ(M)|



So one can, for a Calabi-Yau with a suitable 
topology that gives a cancellation in the 

Euler character, possibly get a sufficient 
number of e-foldins.

Of course, this “N-flation” model is only 
string motivated, not derived in any 

particular compactification.  (The large 
number of fields involved make that seem 

very difficult in practice if not in 
principle).



Figure 4: Red: 5-year WMAP+BAO+SN [9] combined joint 68 % and 95 % error contours
on (ns, r). Green: General prediction of the potential VR(φ) (2.14) as one formally varies β

to interpolate between m2φ2 (black hollow circles) and µ10/3φ2/3 (green solid circles). Only
the latter regime is viable in our setup as discussed in the text, so the solid green circles (for
N = 50, 60 efolds before the end of inflation) denote our prediction.

plus in general corrections which are at most of order 0.01 from e.g. the shifts in the moduli
induced by the inflaton potential (2.46).

Before taking into account moduli stabilization, the value of β formally determines in

which of these regimes of the full potential the last 60 efolds of inflation fall, so we can
numerically derive r as a function of ns parametrized by their dependence on β. This

prediction is shown by the green curve in Fig. 4 together with the 68% and 95% joint error
contours of the 5-year WMAP data [9] in the (ns, r)-plane.

We see that the m2φ2-endpoint (the upper left end of the green curve) matches with

the open circle denoting the pure m2φ2-potential. Of course, the m2φ2-regime in the string
construction here is not viable for the reason explained above that it destabilizes the moduli
if we require the necessary 60 efolds of slow-roll inflation. Thus, the observationally viable

part of the green line consists of its lower right part whose endpoint (the solid green circle)
is to good approximation the pure µ10/3φ2/3-potential.
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String models now appear on the plots in 
papers like WMAP 5!  



Summary:

* Many, many classes of models have been 
proposed.

* Some are approaching “rigorous” 
construction (by model-building standards).

* Most interesting development:  possible 
experimental signatures!  Cosmic strings, 

Non-Gaussianity, Tensor modes,...

* Imminent Planck launch together with the 
inherent UV sensitivity of the subject, 
promise to keep this area vibrant in the 

forseeable future!


