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1 Minor Issues.

1.1 Normalization.

SU(N) generators are defined such that

Tr (TATB) =
1

2
δAB. (1)

We’ll always normalize the gauge kinetic term such that we’re tracing over SU(N) gener-
ators when we’re talking about non-Abelian symmetries. So, for example,

S = − 1

2g2

∫
d4xTr F 2. (2)

1.2 Notation.

Small Greek indices starting with µ will denote an index in four dimensional space-time,
while big Latin indices starting with M denote five dimensional space-time.

1.3 References.

For convenience, all references will also include the search string from SPIRES, to make
things easier to find. For most group theory applications, Slansky’s textbook1 is a must
have.

2 Lecture 1: SU(5) basics.

2.1 SU(5) Representations.

In the lecture, it was argued that a complete Standard Model generation can be fit in to
the 5̄ + 10(+1) representations of SU(5). In general, an element of the group SU(5) can
be written as

U = eiεATA = 1+ iεATA +O(ε2). (3)

The fundamental representation of SU(5) transforms as follows:

5′α = Uα
β5

β =
{

δα
β + iεA(TA)α

β +O(ε2)
}

5β. (4)

Using this, show how the two index anti-symmetric tensor (10αβ) transforms under in-
finitesimal gauge transformations. Also, show how the 5∗(≡ 5̄) (four index, totally anti-
symmetric tensor) transforms.

1R. Slansky, Physics Reports 79, 1-128 (1981). Find on SPIRES by with “FIND J PRPLC,79,1”.
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2.2 Proton Decay at Dimension 6.

In this exercise, we’ll derive the current that couples to the X gauge bosons (transforming
as (3̄, 2, +5/3) under the SM), which mediate proton decay at dimension 6. Qualitatively
this is exactly the same as the Fermi theory. Starting with the terms in the Lagrangian
which involve X gauge bosons, derive the current which is responsible for proton decay (at
dimension 6). Integrate out the X bosons to get an effective (dimension 6) operator.

2.3 Higgsing SU(5).

In order to break SU(5) to the MSSM, we need to introduce some scalar GUT Higgs
multiplets, which must transform in the adjoint (24) representation, and a scalar potential.
(Why won’t smaller representations work for this job?) Given that the Higgs scalar Σ has
the following covariant derivative:

DµΣ = ∂µΣ + ig
[
V A

µ TA, Σ
]
, (5)

show that the X gauge bosons obtain mass

m2
X =

25

4
g2V 2. (6)

Hint: Take 〈Σ〉 = V diag(1, 1, 1,−3/2,−3/2), where V ∼ MG.

2.4 Flipped SU(5)

It turns out that there is another way to get an SU(5) theory out of SO(10), called flipped
SU(5).2 In this model, we take

5̄ =




uc

uc

uc

−e−

ν




, 1 = e+. (7)

The gauge group must be larger than SU(5), it should be SU(5)×U(1)X—why? Given the
following X quantum numbers of the 5̄ (X = −3) and 10 (X = 1), how do the fermions
fit into the 10? If Ỹ is the U(1) ∈ SU(5), find the SM hypercharge Y in terms of Ỹ and
X. How could symmetry breaking work in this model?

3 Lecture 2: Orbifold GUTs.

In the following exercises, we’ll focus on the example of a 5-d orbifold GUT living on
S1/Z2×Z2. The theory that we will work with is a U(1) gauge theory, whose photon lives
in the bulk. Most of the physics can be understood in this example, and the extension to
the non-Abelian case is straightforward.

2S. Barr, Physics Letters B112, 219 (1982). FIND J PHLTA,B112,219
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3.1 Kaluza-Klein Decomposition.

This is really just a fancy way to say “separation of variables”, but to ensure that we get
the proper expansions, we have to examine the way that the parity operations act on the
various components of the gauge bosons. Recall that there are two operations which define
our orbifold: a parity P : y → −y and a translation T : y → y + 2πR. Given these two
operations, we define P and T (the representation of the two operations on the fields) with
P ′ ≡ PT . We demand that the action be invariant under P and P ′.

First, start with the action for a U(1) gauge theory in five dimensions:

S =
−1

4g2

∫
d5xFMNFMN . (8)

Now decompose this action into it’s pieces:

FMNFMN = FµνF
µν + . . . (9)

Using the transformation properties of ∂5, and the fact that the action is invariant under
P and P ′, deduce the transformation properties of A5. Is there a requirement on the
transformation properties of Aµ?

Take the following ansatz for the mode decomposition:

Aµ(x, y) =
∞∑

n=0

An
µ(x)an(y), (10)

and

A5(x, y) =
∞∑

n=0

An
µ(x)bn(y). (11)

Using the various boundary conditions that we just derived, derive expressions for a(y)
and b(y) in all of the relevant cases.

3.2 Massive Kaluza-Klein Gauge Bosons.

In this exercise, we want to evaluate the Lagrangian for the massive Kaluza-Klein gauge
bosons. As you might expect, there is STILL no gauge invariant way to write down a
mass term (even in five dimensions) for a gauge boson. But in order to get realistic
phenomenology, the Kaluza-Klein modes must decouple from the spectrum somehow.

We just derived the exact form of Aµ and A5. Now let Aµ(x, y) have (++) boundary
conditions, and take the appropriate boundary conditions for A5(x, y)), and plug it into
the gauge kinetic term in Equation (8). Find the low energy effective action by integrating
over the fifth direction.

Find the mass of the KK modes. Where does the third helicity mode of the massive
KK gauge bosons come from? Finally, put the theory in the unitary gauge, containing
only physical degrees of freedom, i.e. show that the scalar degrees of freedom A5 decouple
with the appropriate choice of gauge.
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3.3 A New Contribution to the Beta Functions

Between the compactification scale and the cutoff (where the UV completion takes over),
new states enter the theory in loops. Consider the case of our simple U(1) theory3, in
which the photon couples to a tower of KK fermions. For simplicity, we’ll just compactify
on a circle—this means that the masses of the KK modes are given by mn = n/R.

Show that the vacuum polarization is

Πµν(p
2) =

∞∑
n=0

−e2

∫
d4k

(2π)4
Tr

{
γµ (k · γ + mn) γν ((k + p) · γ + mn)

(k2 −m2
n)

(
(k + p)2 −m2

n

)
}

. (12)

Now use Ward identities and a Feynman x to get (in Euclidean space)

Π(p2) =
−8e2

3p2

∞∑
n=0

∫ 1

0

dx

∫
d4`

(2π)4

`2 − x(1− x)p2 + 2m2
n

[`2 + p2x(1− x) + m2
n]2

. (13)

Introduce a Schwinger parameter

1

x2
=

∫ ∞

0

dt te−xt, (14)

and show that after some integrations, show that we’re left with

Π(p2) =
e2

2π2

∞∑
n=0

∫ 1

0

dx x(1− x)

∫ ∞

0

dt

t
e−t{p2x(1−x)+m2

n}, (15)

⇒ Π(0) =
e2

12π2

∞∑
n=0

∫ ∞

0

dt

t
e−tm2

n . (16)

Given the definition of the Jacobi theta function

θ3(t) ≡
∑

n

eiπn2t, (17)

show that Equation (15) can be written as

Π(0) =
e2

12π2

∫ Mc
−2

M−2
s

dt

t
θ3

(
it

πR2

)
, (18)

where Ms is the UV cutoff. Note that the theta functions can be approximated in the limit
where t/R2 << 1:

θ3

(
it

πR2

)
∼=

√
π

t
R. (19)

Use this to show that the beta functions get a power-law correction ∼ Ms

Mc
.

3See the appendices in K. Dienes, E. Dudas, and T. Gherghetta, Nuclear Physics B537, 47-108 (1999).
FIND EPRINT HEP-PH/9806292
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4 Lecture 3: Stringy Orbifold GUTs

4.1 A Terrible Prediction for Newton’s Constant.

It is well known that grand unification doesn’t seem to work in the simplest cases with the
heterotic string—specifically, if we want unification, then the low energy data seems to be
inconsistent with the relationship coming from the (weakly coupled) heterotic string. To
derive this relationship4, start with the (ten dimensional) effective action:

S = −
∫

d10xe−2φ

{
4

α′4
R+

1

α′3
Tr F 2 + . . .

}
. (20)

Now compactify the theory on some six dimensional manifold (or orbifold) with volume
V6. Show that the relationship (up to threshold corrections) is given by

1

8
α′αgut = GN . (21)

If we accept the typical running of the coupling constants (that is, no new states contribute
to the beta functions), show that the value of the Planck mass is wrong by two-three orders
of magnitude (depending on how you define α′ in terms of Ms).

4.2 A 6d Orbifold GUT.

In this exercise, we want to calculate the massless spectrum in the untwisted sector of the
5d (or 6d) orbifold GUT described in Lecture 3, and defined by the mass equation, P2 = 2,
and GSO projection conditions, P · V3 − ri · v = Z (i = 1, 2, 3, 4), with V3 = 2V
and P · W3 = Z (which defines the massless states in the U1, U2, U3 and gauge sectors,
respectively). Show that the six dimensional spectrum is that of an SU(6) orbifold GUT,
with N = 2 SUSY. The N = 2 SUSY chiral/vector multiplets in four dimensions fit in to
N = 1 hyper/vector multiplets in six dimensions. For concreteness, a 6d gauge boson has 4
transverse degrees of freedom, two of which turn into one complex scalar upon dimensional
reduction from six to four dimensions. Likewise, the hypermultiplets in six dimensions
contain two four dimensional chiral multiplets.

To complete this exercise, you should:

1. calculate how the SO(8) vectors/spinors transform— remember you’re in six dimen-
sions. This will let you know how to make states.

2. calculate the 6d gauge group. Which E8 weights survive the projection conditions?
You should find a total of 35 SU(6) gauge bosons.

4A very good example of this calculation can be found in E. Witten, Nuclear Physics B471, 135-158
(1996). FIND EPRINT HEP-TH/9602070
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3. Are there any matter reps living in the untwisted sector? Given the representations
of SU(6) (see Slansky), can you make an educated guess as to how these states
transform?

4. BONUS: Can you see why you can’t get a representation LARGER than the adjoint
(at least in the untwisted sector) in these orbifold constructions?

Hint: find the E8 weights satisfying the mass and GSO projection conditions. First
do this for the gauge sector and determine the gauge group by identifying the simple
roots and their Cartan matrix. However it is usually easy enough to just identify the
roots in the Cartan-Weyl basis. Once the gauge group is identified one can determine the
representation content of the other states using the highest weight and a table of highest
weights a la Dynkin, eg. see Slansky. However, again it is sometimes easier to just identify
the weights in the Cartan-Weyl basis.

4.3 Local GUTs in Orbifold Compactifications

As you’ve heard in the previous lectures, it is possible for the GUT at an orbifold fixed
point to be larger than the MSSM gauge group, yet smaller than E8. This is called a local
GUT, and is a common feature in model building.

In the class of string models discussed in the Lecture (defined by Equations (9) in
lecture 3), show that the local GUT at the T1 fixed points at x6 = 0 contains SO(10).
Identify the roots of SO(10) as a subset of the E8 roots. In addition, show that there is at
least one spinor rep localized at that position. Use the mass equations given in lecture 3,
equations (1) and (2).
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