Macroscopic Supersymmetry

Scott Thomas

Lecture 1

(Supplementary Material)

The Standard Model

$$SU(3)_{C} \quad SU(2)_{L} \quad U(1)_{Y}$$

$$Q_{i}^{\alpha} \qquad \mathbf{3} \qquad \mathbf{2} \qquad 1/3 \qquad i = 1, 2, 3$$

$$\overline{u}_{i}^{\alpha} \qquad \overline{\mathbf{3}} \qquad \mathbf{1} \qquad -4/3$$

$$\overline{d}_{i}^{\alpha} \qquad \overline{\mathbf{3}} \qquad \mathbf{1} \qquad 2/3$$

$$L_{i}^{\alpha} \qquad \mathbf{1} \qquad \mathbf{2} \qquad -1$$

$$\overline{e}_{i}^{\alpha} \qquad \mathbf{1} \qquad \mathbf{1} \qquad \mathbf{2}$$

$$H \qquad \mathbf{1} \qquad \mathbf{2} \qquad \mathbf{1}$$

$$G_{\mu\nu} \qquad \mathbf{8} \qquad \mathbf{1} \qquad \mathbf{0}$$

$$W_{\mu\nu} \qquad \mathbf{1} \qquad \mathbf{3} \qquad \mathbf{0}$$

$$B_{\mu\nu} \qquad \mathbf{1} \qquad \mathbf{1} \qquad \mathbf{0}$$

Lagrangian

$$-\frac{1}{4g'^2}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4g^2}W^a_{\mu\nu}W^{a\mu\nu} - \frac{1}{4g^2}G^a_{\mu\nu}G^{a\mu\nu}$$
$$+ \psi_i^* i \not\!\!D \psi_i + \lambda_u^{ij}Q_iH\overline{u}_j + \lambda_d^{ij}Q_iH^c\overline{d}_j + \lambda_e^{ij}L_iH^c\overline{e}_j$$
$$+ (D_\mu H)^\dagger D^\mu H + m^2 H^\dagger H + \lambda (H^\dagger H)^2$$

$$H^{c} = i\sigma^{2}H^{*}$$

$$D_{\mu} = \partial_{\mu} + i\frac{1}{2}YB_{\mu} + iT^{a}W_{\mu}^{a} + iT^{a}G_{\mu}^{a}$$

$$\operatorname{Tr} (T^{a}T^{b}) = \frac{1}{2}\delta^{ab}$$

$$Q = T_{3} + \frac{1}{2}Y$$

The Minimal Supersymmetric Standard Model (MSSM)

$$SU(3)_C \ SU(2)_L \ U(1)_Y$$

$$Q_i \quad \mathbf{3} \quad \mathbf{2} \quad 1/3 \quad i = 1, 2, 3$$

$$\overline{u}_i \quad \overline{\mathbf{3}} \quad \mathbf{1} \quad -4/3$$

$$\overline{d}_i \quad \overline{\mathbf{3}} \quad \mathbf{1} \quad 2/3$$

$$L_i \quad \mathbf{1} \quad \mathbf{2} \quad -1$$

$$\overline{e}_i \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{2}$$

$$H_u \quad \mathbf{1} \quad \mathbf{2} \quad \mathbf{1}$$

$$H_d \quad \mathbf{1} \quad \mathbf{2} \quad -1$$

$$G_{\alpha} \quad \mathbf{8} \quad \mathbf{1} \quad \mathbf{0}$$

$$W_{\alpha} \quad \mathbf{1} \quad \mathbf{3} \quad \mathbf{0}$$

$$B_{\alpha} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0}$$

Lagrangian

$$\int d^2\theta \left(-\frac{1}{4g'^2} B^\alpha B_\alpha - \frac{1}{4g^2} W^{a\alpha} W_\alpha^a - \frac{1}{4g_s^2} G^{a\alpha} G_\alpha^a \right) + \text{h.c.}$$

$$+ \int d^4\theta \left(\Phi_i^\dagger e^V \Phi_i + H_u^\dagger e^V H_u + H_d^\dagger e^V H_d \right)$$

$$V = \frac{1}{2} Y V_B + T^a V_W^a + T^a V_G^a$$

$$+ \int d^2\theta \left(\lambda_u^{ij} Q_i H_u \overline{u}_j + \lambda_d^{ij} Q_i H_d \overline{d}_j + \lambda_e^{ij} L_i H_d \overline{e}_j + \mu H_u H_d \right) + \text{h.c.}$$

Most General MSSM Renormalizable Lagrangian

$$\begin{split} &\int d^2\theta \left(-\frac{1}{4g'^2} B^\alpha B_\alpha - \frac{1}{4g^2} W^{a\alpha} W_\alpha^a - \frac{1}{4g_s^2} G^{a\alpha} G_\alpha^a \right) + \text{h.c.} \\ &+ \int d^4\theta \left(\Phi_i^\dagger e^V \Phi_i + H_u^\dagger e^V H_u + H_d^\dagger e^V H_d \right) \\ &+ \int d^2\theta \left(\lambda_u^{ij} Q_i H_u \overline{u}_j + \lambda_d^{ij} Q_i H_d \overline{d}_j + \lambda_e^{ij} L_i H_d \overline{e}_j + \mu H_u H_d \right) + \text{h.c.} \\ &+ \int d^2\theta \left(\lambda'^{[ij]k} L_i L_j \overline{e}_k + \lambda''^{ijk} Q_i L_j \overline{d}_k + \lambda'''^{i[jk]} \overline{u}_i \overline{d}_j \overline{d}_k + \mu^i L_i H_u \right) + \text{h.c.} \end{split}$$

Flavor Symmetry of the (MS)SM

$$\lambda^u \neq 0, \lambda^d \neq 0, \lambda^e \neq 0 \quad : \quad U(3)^5 \to U(1)_B \times U(1)_{L_i}$$

U(1)_R Symmetry Charges

	$U(1)_R$	
ϕ	R	Scalar
ψ	R-1	Fermion
F	R-2	Auxillary
θ	+1	Grassman Coordinate
$\int d heta$	-1	Integral Quarter Superspace
$\int d^2 heta$	-2	Integral Half Superspace
$\int d^4 heta$	0	Integral All Superspace
W	2	Superpotential
λ^{lpha}	+1	Gaugino
A^{μ}	0	Gauge Field
D	0	Auxillary

Discrete Symmetry Charges

	Z_2 R —parity					$Z_5 X$
Q	-1	-1	-1	0	+1	3
\overline{u}	+1	-1	-1	0	-1	3
\overline{d}	+1	-1	-1	0	-1	- 1
L	-1	-1	0	-1	+1	- 1
\overline{e}	+1	-1	0	-1	-1	3
H_u	0	0	0	0	0	2
H_d	0	0	0	0	0	-2
$LL\overline{e}$	-1	-1	0	-1	+1	1
$QL\overline{d}$	-1	-1	0	-1	+1	1
$\overline{u}\overline{d}\overline{d}$	+1	-1	-1	0	-1	1
$QH_u\overline{u}$	0	0	-1	0	0	0
$QH_d\overline{d}$	0	0	-1	0	0	0
$LH_d\overline{e}$	0	0	-1	0	0	0
$\operatorname{Tr}(X)$						0
$2\operatorname{Tr}(XSU(2)_L^2)$	0	-1	-1	-1	0	0
$2\operatorname{Tr}(XSU(3)_C^2)$	0	0	0	0	0	0
					†	†

Discrete Generator Z_k : $e^{2\pi i X/k}$ (X only defined mod k) Accidental Z_2 R-parity

Exercises: Lecture 1

- 1. Work out the form of the component field interactions in the renormalizable MSSM with R-parity conservation in the supersymmetric limit. [Hint: Don't forget any cross terms from auxillary components of the superpotential].
- 2. Write the most general dimension five interactions in the MSSM in the supersymmetric limit. Do any of these interactions violate R-parity? Do any of these interactions cause proton decay? If so determine the proton decay modes which can arise from these interactions.
- 3. Suppose that one of the sneutrinos in the renormalizable MSSM with general soft supersymmetry breaking terms and R-parity conservation is tachyonic and gains an expectation value. Show that there is a massless Goldstone boson associated with this spontaneous breaking. Estimate the neutrino mass for the partner of the tachyonic sneutrino. What MSSM particle(s) play the role of right handed neutrino.
- 4. Dimensional regularization of a local quantum field theory has no divergences worse than logarithmic. Explain why this does not imply that all mass scales in a local quantum field theory are technically natural, and does not solve hierarchy problems.