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1. Introduction

This is a shortened version of K. Intriligator and N. Seiberg, “Lectures on Super-

symmetry Breaking,” arXiv:hep-ph/0702069. Throughout these talks we will not give

references. References can be found there.

Hierarchy of solutions to the hierarchy problem:

1. In MSSM: explicit (soft) SUSY breaking

2. Since SUSY is gauged (SUGRA), need spontaneous SUSY breaking

3. More elegant and aesthetically natural – dynamical SUSY breaking (DSB)

The purpose of these talks is to describe models which break supersymmetry. They

should be used as modules with the various messenger schemes which were described here

by others.

Since m3/2 ¿ MP , can use global SUSY – field theory.

2. Spontaneous SUSY Breaking

L =
∫

d4θK(Φ,Φ†) +
∫

d2θW (Φ) +
∫

d2θ W (Φ†)

SUSY is unbroken iff E = 0 ⇔ ∂W = 0.

2.1. Simplest example

K = X†X ; W = M2X

V = |M |4.

Spectrum: massless fermion (Goldstone fermion) and a massless complex scalar X.

Flat direction: X. We refer to this space as pseudo-moduli space because unlike more

common flat directions (see also below) they are not stable.

The spectrum looks SUSY even though SUSY is broken.
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2.2. Second simplest example

K = K(X†, X) ; W = M2X.

K includes higher dimension operators. This is a non-renormalizable theory. It is an

effective theory obtained by integrating out heavy fields.

V =
|M |4

∂X∂X†K
.

This lifts the flat direction and the spectrum is in general not SUSY.

2.3. Renormalizable model - O’Raifeartaigh model

K = X†X + Φ†1Φ2 + Φ†2Φ2 ; W =
h

2
XΦ2

1 + mΦ1Φ2 + fX

V = |h
2
Φ2

1 + f |2 + |mΦ1|2 + |hXΦ1 + mΦ2|2.

We cannot set all the terms to zero and hence SUSY is broken.

Flat direction, Φ2 = −hXΦ1
m . This is a pseudo-moduli space of vacua.

For y = |hf/m2| < 1 the global minimum as at Φ1 = Φ2 = 0 with arbitrary X and

Vmin = |f |2. Classically, the effective theory along this flat direction is like our simplest

example.

Radiative corrections lift the degeneracy. The one loop effective potential (Coleman-

Weinberg potential) is
1

64π2
STr

(
M4 log

M2

M2
cutoff

)
,

where STr is a supertrace (sum over bosons minus sum over fermions), M is the mass

matrix.

Note:

1. The equal number of bosons and fermions leads to the absence of a quarticly divergent

constant.

2. In any renormalizable SUSY Lagrangian STrM2 = 0 (prove in the problem set).

Hence there is no quadratically divergent term.

3. The logarithmically divergent term ∼ STrM4 can be absorbed in renormalization of

the coupling constants.
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4. In general, the expression above cannot be written in terms of a SUSY effective La-

grangian with a renormalized Kahler potential. An appropriate SUSY effective La-

grangian exists but it includes terms with arbitrarily many covariant derivatives.

In the case of the O’Raifeartaigh model this effective potential leads to a minimum at

the origin X = 0. Work it out in the problem set.

For y ¿ 1 or for |X| → ∞ we can describe the potential with an effective Kahler

potential as in our second example. However, for larger y and small X we need also terms

with covariant derivatives.

2.4. Criteria for SUSY breaking

With a generic superpotential W (Φi), i = 1, ..., n, and smooth Kahler potential K we

need to solve

∂iW = 0 ; i = 1, ..., n.

These are n equations with n unknowns so there are isolated solutions (recall W is generic).

Therefore, SUSY is unbroken.

If there is a U(1)R symmetry under which Φi has charge ri, then

W = (Φ1)
2

r1 f

(
za =

Φa

(Φ1)
ra
r1

)
; a = 2, ..., n.

If the U(1)R symmetry is spontaneously broken, we can take Φ1 6= 0, and then the condi-

tions for unbroken SUSY are

f = ∂af = 0 ; a = 2, ..., n

i.e. n equations for the n− 1 unknowns za. Therefore, SUSY is broken.

More generally, with generic ri the change of variables is singular at the point Φ1 = 0

and this triggers SUSY breaking. There are however notable exceptions; e.g. W = X(Φ2−
1).

We conclude: With generic Lagrangian SUSY is broken if and only if the theory has

a U(1)R symmetry.

Consider the effect of small explicit breaking of U(1)R:

W = W0 + εW1.
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For ε = 0 SUSY is broken with a stable minimum at some 〈Φ〉 = Φ0. For nonzero ε ¿ 1 the

effect of the perturbation around Φ0 is negligible and therefore it remains a local minimum.

However, SUSY is restored at some 〈Φ〉 such that

lim
ε→0

〈Φ〉 → ∞.

We conclude: Approximate U(1)R symmetry leads to a metastable SUSY breaking

minimum.

This is important for model building. We want to break SUSY. Hence we need U(1)R.

For gaugino masses we need to break it. If the breaking is only spontaneous, there is a

massless Goldstone boson. Hence U(1)R must be explicitly broken and hence we must live

in a metastable state!

Exceptions: nongeneric W , use gravitational effects.

2.5. Homework

1. Consider

K = X†X − 1
µ2

(X†X)2 +O(|X|4) ; W = M2X

around X = 0. Find the minimum of the potential and the spectrum of bosons and

fermions. What are the symmetries of this system? What are the spontaneously

broken symmetries?

2. Prove that for any renormalizable Kahler potential and superpotential STrM2 = 0.

3. Use the one loop Coleman-Weinberg potential to show that for y < 1 the only mini-

mum of the effective potential of the O’Raifeartaigh model is at the origin.

4. Generalize the O’Raifeartaigh model to

W =
h

2
XΦ2

1 + mΦ1Φ2 + fX +
ε

2
mΦ2

2

with ε ¿ 1. Find the classical minima of the potential. Note that for ε = 0 (the

O’Raifeartaigh model) the theory has a U(1)R symmetry. For nonzero ε ¿ 1 this

symmetry is approximate.

5. Combine the two previous problems. Find metastable SUSY breaking minima in the

quantum version of the generalized O’Raifeartaigh model of problem 4. It is enough

to solve the problem to leading order in ε, h ¿ 1.
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3. Dynamical SUSY breaking (DSB)

Models of SUSY breaking similar to those we discussed can solve the technical hier-

archy problem, but not the aesthetic problem of why MW ¿ MP .

Witten suggested to solve this problem with dynamical SUSY breaking. The tree

level theory has only dimensionless parameters and does not break SUSY. Because of the

nonrenormalization theorems SUSY remains unbroken to all orders in perturbation theory.

Nonperturbatively, because of dimensional transmutation, a low scale

Λ = MP e−c/g2(MP ) ¿ MP

is generated. SUSY breaking at that scale solves the hierarchy problem. This is similar in

spirit to the idea behind technicolor.

In most known examples the low energy effective theory below Λ is similar to the

previous examples in which SUSY is broken at tree level.

In order to understand DSB we need to understand the nonperturbative dynamics of

gauge theories. This is a huge field, and we cannot do justice to it in one hour. So we’ll

be brief, trying to convey only the main ideas.

3.1. Use gaugino condensation

Consider an SU(Nc) gauge theory with no matter fields. It has Nc vacua with gaugino

condensation
1

32π2
〈Trλλ〉 = Λ3e

2πin
Nc ; n = 1, ..., Nc

where

Λ = Mcutoffe
− 8π2

3Ncg(cutoff)2 ¿ Mcutoff

is the dynamically generated scale of the theory.

Now, take a theory which classically breaks SUSY. Add to it an almost decoupled

SU(Nc) gauge theory and replace the parameters of dimensions 1 and 2 by W 2
α/M2

cutoff

and W 2
α/Mcutoff where Wα is the field strength, and Mcutoff is some heavy scale. Then,

all the dimensionful coefficients in the classical theory are in front of higher dimension/non-

renormalizable/irrelevant operators. They are suppressed by powers of 1/Mcutoff .

Ignoring the nonperturbative dynamics SUSY is unbroken. This is true classically

and to all orders in perturbation theory. Non-perturbatively, gaugino condensation in the

gauged SU(Nc) theory generates low scales and triggers spontaneous SUSY breaking.
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For example,

∫
d2θ

(
− 8π2

g2(cutoff)
+

1
Mcutoff

X

)
S ; S = − 1

32π2
Tr WαWα

leads to

W = NcΛ3 exp
(

X

NcMcutoff

)
= NcΛ3 +

Λ3

Mcutoff
X +O(X2).

This is our first example. The full expression typically leads to runaway but with appro-

priate K there can be a metastable SUSY breaking state at X = 0.

Similarly, the O’Raifeartaigh theory can be obtained by using

∫
d2θ

[
h

2
XΦ2

1 +

(
− 8π2

g2(cutoff)
+

1
Mcutoff

X +
1

M2
cutoff

Φ1Φ2

)
S

]
.

It is important that in all the theories which are constructed this way the SUSY

breaking minimum is metastable.

3.2. SQCD for Nf < Nc and SUSY breaking

We would like to use SUSY QCD with matter to dynamically break SUSY. We first

discuss the classical theory and then the nonperturbative dynamics.

Consider an SU(Nc) gauge theory with Nf flavors of quarks Q in Nc and anti-quarks

Q̃ in Nc.

The classical potential is

V ∼
∑

a

(Da)2 =
∑

a

(
Tr(QT aQ† − Q̃∗T aQ̃T )

)2

.

The equations determining the ground states – the zeros of this potential – have a

large space of solutions. These are true moduli – because of unbroken SUSY the accidental

vacuum degeneracy is not broken to all orders in perturbation theory. The specific form

of these spaces depends on Nc and Nf .

For Nf < Nc it is (up to global and gauge symmetries)

Q = Q̃ =




v1

v2

v3

.
vNf


 .
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This moduli space of vacua can be parameterized by the meson operator

M = Q̃QT ; M ã
a = Q̃ã

i Qi
a

where i = 1, ..., Nc is a color index and a, ã = 1, ..., Nf are flavor indices.

Nonperturbative effects generate a superpotential along the moduli space of vacua

Wdynamical = (Nc −Nf )
(

Λ3Nc−Nf

detM

) 1
Nc−Nf

.

Note that this term is proportional to a positive power of

Λ = Mcutoff exp
(
− 8π2

(3Nc −Nf )g(Mcutoff )2

)

and hence it is nonperturbative. It leads to a potential which slopes to zero at infinity and

the system does not have a ground state.

Now, use this physics. Consider a theory based on the gauge group SU(3) × SU(2)

with chiral superfields: Q in (3,2), ũ in (3,1), d̃ in (3,1), L in (1,2).

The classical flat directions are characterized by

X = Qd̃L , Y = QũL , Z = QQũd̃.

As a first approximation we neglect the SU(2) dynamics and then, as with Nf = 2 < Nc =

3 above the SU(3) dynamics generates a superpotential

Wdynamical =
Λ7

3

Z

where Λ3 is the dynamically generated scale of the SU(3) gauge theory. With this super-

potential the theory does not have a ground state.

We add to the model a tree level superpotential

Wtree = λQd̃L = λX.

The combined model with Wdynamical and Wtree breaks SUSY. The vacuum energy, vevs

and the spectrum can be calculated at leading order in λ ¿ 1.
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3.3. Nonperturbative dynamics for Nf = Nc and SUSY breaking

The classical moduli space of vacua for Nf ≥ Nc is (up to global and gauge symme-

tries)

Q =




v1

v2

v3

.
vNc




; Q̃ =




ṽ1

ṽ2

ṽ3

.
ṽNc




|vi|2 − |ṽi|2 independent of i.

The SU(Nc) gauge symmetry is completely broken. The moduli space of vacua can be

parameterized by M ã
a = Q̃ã

i Qi
a as well as

Ba1,a2,...,aNc
= εi1,i2,...iNc

Qi1
a1

Qi2
a2

. . . Q
iNc
aNc

B̃ã1 ,̃a2,...,̃aNc = εi1,i2,...iNc Q̃ã1
i1

Qã2
i2

. . . Q
ãNc
iNc

These fields are not independent. For example, for Nf = Nc there is only one B = det Q

and one B̃ = det Q̃ and they satisfy

detM −BB̃ = 0.

This constraint is true at every point in the moduli space; i.e.

M = {M, B, B̃|det M −BB̃ = 0}.

In the quantum theory this classical moduli space of vacua is deformed and the moduli

space of quantum vacua is

Mquantum = {M, B, B̃| detM −BB̃ = Λ2Nc}.

We can describe it by adding a Lagrange multiplier field X and the superpotential

W = X(det M −BB̃ − Λ2Nc).

This description is analogous to the linear sigma model as opposed to the nonlinear model

for pions.
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Now use this physics to break SUSY. Consider the SU(Nc) theory with Nf = Nc and

add fields Sa

ã
, b and b̃ and a superpotential

Wtree = Sa

ã
Q̃ã

i Qi
a + b det Q̃ + b̃det Q.

Classically Q = Q̃ = 0 and SUSY is unbroken.

In the quantum theory we get the effective superpotential

Weffective = Sa

ã
M ã

a + bB̃ + b̃B + X(detM −BB̃ − Λ2Nc)

which breaks SUSY.

Note, we can describe the classical theory by this superpotential but with Λ = 0. The

only effect of the quantum dynamics is to generate −XΛ2Nc in the superpotential and thus

break SUSY.

3.4. Nonperturbative dynamics for Nc < Nf < 3Nc/2 and SUSY breaking

In this range of Nf and Nc the theory is dual to another gauge theory. It has gauge

group SU(Nf −Nc), Nf flavors of quarks q and q̃, and N2
f gauge singlets M with super-

potential

W =
1
µ

Tr q̃T Mq + TrmM,

where m is an Nf ×Nf matrix representing the masses of the fundamental quarks. This

M is identified with the meson operator of the original theory. It has dimension 2 and

hence the dimensionful factor 1
µ which can be absorbed in the normalization of M . This

theory has Nc SUSY vacua with nonzero 〈M〉.
Looking for supersymmetric vacua we need to solve

1
µ

qq̃T + m = 0.

These are Nf × Nf dimensional matrices. However, the first term has rank Nc, and

the second has rank Nf . Therefore these equations cannot be solved and SUSY is broken.

The actual minimum after taking the radiative corrections into account is, up to symmetry

transformations, at

〈M〉 = 0 , 〈q〉 = 〈q̃〉 =
(

i
√

m0µ
0

)
,
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where for simplicity we have taken m = m0INf
proportional to the unit matrix and the

upper block of 〈q〉 = 〈q̃〉 is (Nf −Nc)× (Nf −Nc) dimensional.

Comments:

1. Nonperturbatively in this dual gauge theory SUSY is restored with some nonzero 〈M〉.
2. For Nf = Nc + 1 there is another term ∼ detM in the superpotential. It does not

affect our conclusions. This term is crucial for finding the SUSY vacua.

3. The tunneling from the metastable minimum to the stable SUSY preserving minimum

is suppressed.

4. All the approximations here can be justified for m0 ¿ Λ.

3.5. Conclusion

Dynamical SUSY breaking in four dimensions is possible and in fact generic.

3.6. Homework

Use DSB to construct a viable predictive SUSY model. Publish your results.
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