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3.  How can we use LHC observations to constrain the spectrum 
        of SUSY particles in a way that is as model-independent 
        as possible ? 



Once we have observed excesses above the levels predicted for 
the Standard Model, we can use this information to estimate the 
masses of the new particles and to determine their properties.

It is only at this stage that we can ask the question, 

     Is it really SUSY, or another model with heavy particles and 
             dark matter ?

In this lecture, I will review some methods for such analyses.  I 
will discuss

    determination of the overall mass scale of SUSY

    specific kinematic observables that determine SUSY particle 
        masses and mass differences

    diagnostics of the properties of SUSY particles



A warning about these methods:

    Do not use them on data that has not been correctly 
          background-subtracted.



There are significant difficulties in trying to measure new particle 
masses at the LHC from resonances or features in kinematic 
distributions.

  Any given process involves one quark or gluon colliding with 
another.  We do not know the momenta of these individual 
particles.   So we do not know the momentum of the initial state.

The final state might contain two dark matter particles.  We do not 
observe these particles or measure their momentum.   So we have 
incomplete information about the final state.



Our goal is to determine the masses of the particles and to 
measure their quantum numbers.

In SUSY, there are 
many new particles 
and their spectrum is
complex.

The particles with 
large QCD production
cross sections are 
typically the heaviest
particles in the 
spectrum.

Our first goal should 
to estimate the masses
of these particles.



As a start, consider the overall transverse energy deposition in the 
detector.  To remove noise from the underlying event, we might 
alternatively sum the ET of the hardest jets.

Hinchliffe, Paige, Shapiro,
Soderqvist and Yao
proposed the observable

and showed that, in a 
variety of ‘mSUGRA’
models, it correlates 
well with the smallest of 
the squark and gluino 
masses.
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In models with small mass differences between the squarks and 
the charginos and neutralinos, much of the transverse energy in 
the reaction is carried off by neutalinos and is invisible.  But 
still, the quantity              is a reasonable indicator of the mass 
difference between the directly produced and the final SUSY 
states.

Meff
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These relations work well because most new particle production 
occurs close to threshold.  The production cross sections turn on 
at threshold and then rise only slowly when                , while 
parton luminosities fall off very rapidly.

ŝ! 4m2



Recently  Thaler, Schuster, Toro, et mult al.  (hep-ph/0703088) 
suggested that we can take advantage of this to do a broader 
phenomenological analysis.  They suggest that we

Choose an appropriate set of candidate new particles

Approximate all production cross sections by constants

Choose appropriate decay modes for each particle.  These might be 
2-body decays or multi-body decays through effective operators.  
Approximate all decay matrix elements by constants.

Fit the data to obtain the masses, cross sections, and branching 
fractions.  

They refer to this description as an on-shell effective theory (OSET).
The program is encoded in a software package called MARMOSET.



Here is a fit to the        and       distributions for a specific 
SUSY model (red) and the corresponding curves (green, blue) 
when the gluino mass is shifted by 20%, 40%.
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Here is the effect of shifting the gluino mass by 40%, keeping the 
gluino-neutralino mass difference fixed.

The       distribution is unaffected, but the       distribution gives a 
poor fit.

!ETHT



To extract more specific information, we need to perform 
analyses that rely on special features of the supersymmetry 
spectrum.  

Every spectrum has special features.  It is part of the art of 
experimentation to find and exploit them.

In the discussion to follow, I will pick out a particular feature 
that has been studied in a number of different analyses and 
use it to illustrate that level of insight that one could achieve 
in the hadron collider environment.  



It is typical in supersymmetry models that the partners of 
quarks and gluons are relatively heavy states.  These decay to 
the charginos and neutralinos, the partners of SU(2)xU(1) 
gauge bosons and Higgs bosons.

A feature of many supersymmetry spectra is the decay chain

The lepton momenta are measured completely, and we can 
construct their spectrum of invariant masses.  From this point, 
depending on the specific model of the dilepton decay, the 
analysis can proceed in several different ways.
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The decay of the       can occur by any of the mechanisms:

In a model in which                                  , these modes are 
preferred in the order listed:  2-body decays dominate over 3-
body decays, and the       coupling to sleptons is larger than the           
      coupling to     . 

N0
2 → !± + !̃∓ , !̃∓ → !∓ + N0

1

N0
2 → N0

1 Z0 , Z0
→ !+!−

N0
2 → N0

1 Z∗0 , Z∗0
→ !+!− (1)

N2

N2 ∼ w̃0 , N0

1 ∼ b̃0

N2

N2 Z
0



The decay to an on-shell       is hard to work with, but the other 
two cases are interesting.   To analyze them, consider the Dalitz 
plot associated with the 3-body system
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We can distinguish the cases of 2-body decay to a slepton and 
3-body decay in the following way:

2-body decay populates lines on the Dalitz plot and leads to a 
sharp endpoint:

3-body decay populates the whole Dalitz plot and gives a slope 
at the endpoint:

m(!+!
−)

m(!+!
−)



In the 3-body case, the endpoint in                  is exactly

so we obtain a precise measurement of this quantity.  The shape 
of the spectrum has more information.  For example, for heavy 
slepton masses, this shape is different for gaugino-like or 
Higgsino-like lightest neutralino.

m(!+!
−)

m(N2) − m(N1)
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Hinchliffe et al. 

an example where the lightest neutralinos are gaugino:
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an example where the lightest neutralinos are Higgsino:



The origin of the shape difference is interesting.  The 
neutralino mass matrix has the form 

so the signs of the eigenvalues        are  (+ + ) for gauginos, 
(-+) for Higgsinos.

The decay                          through a virtual Z involves 
interfering diagrams

The interference term is proportional to             .





m1 0 −mZcβsw mZsβsw

0 m2 mZcβcw −mZsβcw

−mZcβsw mZcβcw 0 −µ
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
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Hinchliffe et al. noticed that one could go further.

At the endpoint, the unobserved WIMP is at rest in 
the frame of the l+l- pair.   If we have an estimate of 
the mass of the WIMP, we can add back its 4-vector.

Now there is no more missing information.  Add 
observed jets and reconstruct the parent squarks.

l+l-

N1



At the endpoint, the       is at rest in the frame of the        .
If we know (or guess) the mass of the       , we know its 4-
vector.  Now we have solved the problem of missing 
momentum; we can add jets and try to reconstruct the parent 
squarks.

N1 !
+
!
−

N1

Hinchliffe et al. 



The case of a 2-body decay is even nicer.  There is a sharp 
endpoint at 
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−) = m(N2)
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The decay                   is also 2-body, and so there are also 
upper and lower kinematic endpoints in combinations        ,
         .   From 4 endpoints, one can solve for the 4 unknown 
masses in the problem.

q̃ → qN2

(j!)
(j!!)

Hinchliffe and Paige



The case in which the decay involves an on-shell Z is the most 
difficult.  To get definite kinematic information, we need to 
combine the Z with other jets in the events.

Recently, Butterworth, Ellis, and Raklev have considered the 
following strategy, directed at squark decay chains including 

         

         select SUSY events (jets + missing ET)

         look for hadronic jets with pT > 200, 2-jet substructure
              and mass consistent with the W mass

         combine these W candidates with the highest pT jets 
              and look for kinematic endpoints

q̃ → qC+
1 → qW+N1



Butterworth, Ellis, and Raklev

m(jW )



One more case of an                   decay should be mentioned.  
If the 2-body decays to sleptons are not kinematically 
allowed, the dominant 2-body decay might be

In this case, supersymmetry production can provide a copious 
source of Higgs bosons.  

N2 → N1

N2 → N1 + h
0

Hinchliffe et al.



If we expect that there are two missing particles in the event, 
we might try to partition the missing momentum into two 
parts.

The first analysis of this type was done for the process

by Feng and Finnell.   In this case, the momenta of the quark 
jets is measured, and the squark energies are known from the 
beam energy.  Then the magnitudes of the neutralino energies 
are known.  The missing momentum is measured.  So it is only 
necessary to find the orientation of the neutralino momentum 
vectors.  These must lie on the 
circle C as shown:

We can then find the point on 
this circle that gives the minimum
value of the reconstructed squark
mass.  This is a lower bound on 
the actual squark mass.

e+e− → q̃q̃∗ → qN1qN1



“...momentum vectors lying on large circles C may give mass 
minima both close and far from the actual squark mass .. 
However, small circles give only accurate solutions, and thus the 
calculated minimum masses preferentially lie close the actual 
underlying squark mass.”    -  Feng and Finnell



Lester and Summers have suggested a similar analysis in the 
hadron collider environment.  They considered

Because we do not know the frame of the parton-parton collision, 
work with transverse momenta only.  

A mass estimate from transverse momenta is the transverse mass

where                                  .  This is a lower bound to the 
actual mass 

pp→ l̃+ l̃− → l+N1l
−N1

m2(12) = m2
1 + m2

2 + 2(ET1ET2 cosh(η1 − η2)− "pT1 · "pT2)

ET = (p2
T + m2)1/2

m2
T (12) = m2

1 + m2
2 + 2(ET1ET2 − !pT1 · !pT2)



Assume that we knew the mass of the neutralino.  Then if we also 
knew the transverse momentum of the neutralino, we could 
estimate 

Since we only know the sum of the two neutralino momenta, we 
need to partition these two momenta in an arbitrary way.  Some 
partition will still give a bound.  Then

m(l̃)2 ≥M2
T2 ≡ min

!pT =1+2

[
max(m2

T (l, 1), m2
T (l, 2))

]

m(l̃)2 ≥ m2
T (!N1)



mT2
m(l̃)

The distribution of          has a sharp endpoint at the correct 
value of           (assuming that we have input the correct 
neutralino mass):

Kawagoe, Nojiri, and Polesello and Cheng et al have discussed 
other methods that partition the measured missing momentum.



The methods I have discussed can be even more powerful 
in combination.   Kitano and Nomura have tried a squark 
reconstruction by combining the variables:

min1,2{m(!!j)}

M2
T = min ( !p

T1
+ !p

T2
= !p

T
) max{m2

T (p1 !p1), m
2
T (p2 !p2)}

Lester and Summers

multibody endpoint



Kitano-Nomura
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The endpoint positions have a different functional dependence 
on the squark and neutralino masses.   Demand consistency:



In these examples, we are obtaining rather precise SUSY 
particle masses, at the level of 

        10% or below for WIMP, squark, gluino masses

         1%  for mass differences in l+l- cascades



It is more subtle to obtain information on the spins and 
electroweak quantum numbers of new particles discovered at 
the LHC.

The most important information comes from the value of the 
pair production cross section.

In special cases, there are also asymmetries that directly test 
spin/chirality assignments.



Here is an example:  Consider the gluino decay scheme at a 
particular SUSY parameter point with the decay chain

Alves, Eboli, and Plehn have shown that the spin correlations 
generate distinctly different mass distributions for

The large effect comes from the far b in gluino decay paired with 
the near l from N decay.  At the chosen spectrum point, these are 
the most energetic products. 

m(b!+) vs. m(b!−)



Alves, Eboli, Plehn



In SUSY, the difference comes from a spin correlation in the 
sbottom decay noted by Barr and Kawagoe, Nojiri, Polesello:

This is very tricky:   The effect comes from the fact that the    
     and      partner specific helicity states of  b and l.

But it is important also that      is a scalar.  This leads to 100% 
spin correlation in its decay. 

b̃

b̃

!̃



I cannot finish a discussion of SUSY mass measurements 
without discussing the stage in the program after the 
LHC.

Eventually, the LHC data will be supplemented by data 
on SUSY particle production in electron-positron 
collisions from the International Linear Collder.  

Here the center of mass energy is fixed, the events are 
simpler in character and easier to analyze, and initial-
state polarization is available as an incisive probe of spin 
and of the mixing of weak-interaction eigenstates.



Here is are two examples of muon energy distributions from 

presented in the TESLA simulation studies:

It is expected that these masses could be measured at a next-
generation e+e- collider (ILC) to a few hundred MeV (parts per mil).

µ̃ µ̃

Blair and Martyn

e+e− → µ̃+µ̃− → µ+N1µ
−N1



e+e- +~ ~-



Here is the energy spectrum of visible decay products in the stau 
case.  The kinematic endpoints are still well-defined.

Blair and Martyn
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So you see that there will also be a high-precision era 
of SUSY particle measurements which has the potential 
to bring us direct measurements of the SUSY Lagrangian 
parameters.

The direct experimental study of SUSY will soon begin.
Don’t miss the opportunities it will present !


