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2.  Can we understand the Standard Model at a sufficient level to 
         claim that data is inconsistent with its predictions ?   SUSY 
         predicts complex events.  How do we compute the Standard 
         Model backgrounds to these complex event topologies ? 



As Scott Thomas has explained to you, there are many types of 
SUSY models, with many possible signatures.  Some of this are 
dramatic and ‘unmissable’, e.g., the presence of two stable 
charged sleptons in each event.

In these lectures, I will concentrate on the more canonical SUSY 
signatures of pair production and decay of heavy particles.  If 
there is a SUSY connnection to dark matter, the final decay 
product will be invisible and so we will also see unbalanced pT.

This same general set of signatures apply to most of the models 
that Nima Arkani-Hamed will discuss in the BSM lectures.





It is expected that events of the kinds that we are discussing 
will appear as a very significant signal above background.

Here are the estimates of Tovey (2003) for supersymmetry 
models with universal scalar and gaugino masses at the GUT 
scale.



ATLAS

For squark and 
gluino masses 
below 1 TeV, the 
missing energy 
signature should be 
significant with a 
very small amount 
of integrated 
luminosity.



ATLAS

At the same time, 
many different 
signatures of new 
physics should be 
seen above the 
Standard Model 
expectation.



However, the expectation of large signals above Standard Model 
background does not mean that we can be complacent.

The theoretical background levels must be understood very well
both absolutely and in relation to the actual data.

In the previous lecture, we discussed the problems of overall 
detection and recognition of events, and the measurement of 
missing ET. 

Assuming that all of these issues can be understood, we now 
come to the irreducible backgrounds - Standard Model events 
with heavy particle production, leptons, and missing energy.



In the physics studies of ATLAS and CMS, the dominant 
backgrounds to new physics come from a different source, 
heavy particle production within the Standard Model, 
production of                 plus jets. 

These reactions already offer missing energy, leptons, and 
hadronic activity.  They populate the region of large transverse 
energy deposition associated with new physics to the extent 
the additional jets  are radiated along with the heavy particles.

I remind you of the hierarchy of cross sections:

W, Z, tt

σtot 100 mb
jets w. pT > 100 1 µb
Drell-Yan 100 nb
tt̄ 800 pb

SUSY (M < 1 TeV) 1-10 pb



This is genuinely scary.  Processes such as

have cross sections comparable to the SUSY signal and might 
compete with it.



A similar problem arises in the search for top quark pair 
production at the Tevatron.   The similarities to our problem 
are: 

The cross section is             of the hadron collider total cross 
section.

The irreducible background                                   produces 
events qualitatively similar to top quark production at a similar 
rate.  These events can even contain b quarks (and c faking b)
through gluon splitting                     .

10−10

pp→W + ng + X

g → bb , cc



CDF



How can we decide whether events from our sample of this type 
come from                               or                 ?

One way to to compute the background cross section precisely.  
This is difficult but not impossible, and such calculations are 
underway for LHC.  An easier task is to compute the systematic 
dependence of the background cross section on variables that 
characterize heavy particle production:

                     no. of jets,                          ,           

Such dependences were first recognized and computed by Ellis, 
Kleiss, and Stirling for the analysis of the data from the UA1 and 
UA2 experiments.  I like to call such a relation a staircase.        

HT =
∑

i

ETi !ET

pp→W+ + jets pp→ tt



Ellis-Kleiss-Stirling 
staircase (1985)

compared to preliminary 
data from UA1. 



Berends, 
Giele,Kuijf, 

Kleiss, Stirling
1989

UA1
1988

number of jets

Here is the published 
UA1 data, compared to 
a calculation based on 
the Berends-Giele 
technology for multijet 
computation :





To look for top, we add to this analysis the requirement that 
at least one jet should have a b-tag.  

Most events in the category:

actually come from 

However, as we extrapolate to large jet number,  there are 
not enough W + jets events to explain the data.

pp→ l+ "ET + b-tag jet + jets

pp→W + ng , g → cc



1 b-tag events



2 b-tag events



CDF has also shown 
that top quarks can 
be found by purely 
kinematic analysis. 

Comparison of HT 
distributions between  
ttbar and W + jets 
events



ttbar/W+jets 
shape 
comparisons 
for 9 
kinematic 
observables.

CDF



W+3 jets                                         W + 4 jets

HT =!ET + ET! +

∑

i

ETi

Using these and 10 more variables input to a neural network 
classfier,  CDF has demonstrated the ability to observe      events 
without b-tagging.  Here are the last two steps in the staircase in 
that analysis.

tt



Here are the 
2-jet and 3-jet 
mass distributions 
in the final event 
sample selected 
by CDF.



In the remainder of this lecture, I would like to explain how 
one would actually calculate the rates for complex background 
processes with production of multiple jets.

A huge amount of work has been done in the area in the past 
few years.   There are several dedicated codes - in particular,  
ALPGEN, MADEVENT, and SHERPA. 

But the subject is not inaccessible, and it good for everyone to 
know how to do these calculations at some level. 



In particular, some very interesting methods (not explained 
in Peskin and Schroeder) have been invented to make these 
calculations simpler.  New and important methods were 
invented here at IAS in the past few years.

I will discuss only the calculation of tree diagrams.  We 
might estimate backgrounds by 

      computing tree diagrams to get the shapes of staircases, 
           and normalizing to the data

       using similar methods to do more accurately normalized 
           1-loop calculations

The final results should be validated by comparing these 
methods.



The computation of QED and QCD tree diagrams has undergone 
enormous development since 1981, when Berends, Wu, and their 
CALKUL collaboration pointed out that computations with 
massless particles could be dramatically simplified by the use of 
spinors of lightlike momenta

These objects are related to more familiar objects by 

The spinor products are square roots of Lorentz vector products:

The major developments before 2004 from the application of 
spinor product methods to QCD are nicely reviewed by Mangano 
and Parke, Physics Reports, 1991, and Dixon, 1995 TASI lectures. 

〈12〉 = uL(1)uR(2) [12] = uR(1)uL(2)

|〈12〉|2 = |[12]|2 = 2k1 · k2

1〉 = uR(1) 1] = uL(1) 〈1 = uL(1) [1 = uR(1)

1〉[1 =
1
2
(1 + γ5) " 1



Here is a very simple example:  

Spinor products are antisymmetric
and obey the Fierz identity

so

Then 

which is correct ! 

e−Le+
R → qLqR

〈1γµ2]〈3γµ4] = 2 〈13〉[42]

iM = (−ie)2〈1γµ2]
−i

s34
〈3γµ4]

= 2ie2 〈13〉[42]
〈34〉[43]

× 〈31〉
〈31〉

= −2ie2 (〈13〉)2

〈34〉〈12〉

|M |2 = 4e4 u2

s2
= e4(1 + cos θ)2



Photon and gluon polarization vectors for momentum k are 
conveniently written in terms of spinor products involving k and 
a second lightlike “reference” vector r:

The logic of this choice is:

     if k = 1 is parallel to z, r = 2 is parallel to -z: 

      
     a change in r is like a change of gauge and has no physical 
          effect.   We can choose r for maximum convenience, 
          independently in each helicity amplitude.

εµ
+(k) =

1√
2
〈rγµk]
〈rk〉 εµ

−(k) = − 1√
2

[rγµk〉
[rk]

〈2γµ1] = uL(2)γµuL(1) =
√

s12 · (0, 1,−i, 0)



Another example:

choose r = 1 for 3
           r = 4 for 2

second diagram:

first 
   diagram: 
 

〈1γµ · · · 〈1γµ3]
〈13〉 · · · = 〈11〉 · · · = 0

which is correct!

(−ie2)〈1γµ (1 + 2)
s12

γν4] · 1√
2

[4γµ2〉
[42]

· −1√
2
〈1γµ3]
〈13〉

= 2ie2 〈12〉[4(1 + 2)1〉[34]
[42]〈12〉[21]〈13〉

= 2ie2 〈21〉[34]
[21]〈13〉

= 2ie2
( t

u

)1/2



We can incorporate massive vector bosons such as W by decaying 
them to massless fermions (Kleiss and Stirling).  Schematically, 
replace

To correctly normalize the result, consider

contract:

This shows that

As a bonus, the generated final state fermions correctly represent 
the polarization of the W’s.  A similar trick works for top quarks.   

εµ(Q) → uL(1)γµuL(2) = 〈1γµ2]

∫
dΩ
4π

〈1γµ2]〈2γν1] = A(ηµν − QµQν/Q2)
∫

dΩ
4π

2〈12〉[12] = A · 3

3
2m2

W

∫
dΩ
4π

〈1γµ2]〈2γν1] =
∑

i

εµ(Q)ε∗ν(Q)



Now think about QCD.  It is very convenient to write QCD 
amplitudes in terms of color structures 

To do this, write

To leading order in       , the color-ordered amplitudes A do 
not interfere.  Square them and multiply by the power of          
indicated by the number of color loops.

= tr[T1T2T3T4]A(1, 2, 3, 4) + · · ·

=                            + other color structures

ta =
1√
2
T a ifabc =

−i√
2
tr[T aT bT c − T aT cT b]

NC
NC



ig√
2
(ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν)

ig2

2
(2ηµρηνσ − ηµνηρσ − ηµσηνρ)

ig√
2
γµ

Color-ordered amplitudes can be computed with the color-
ordered Feynman rules: 

A given color-ordered amplitude has only the singularities from 
collinear singularities in its color-ordering:

∼ 1
(2k1 · k2)(2k2 · k3) · · · (2kn · k1)



Every initial and final fermion or boson has a definite helicity 
R or L.  From now on, I will label all helicities as if the 
particles were outgoing, and use the notation  +  or −. 

Certain amplitudes are very simple after all diagrams are 
summed. Notate, for example

where the figure denotes the color-
ordered amplitude appropriate to 
large       .

Then tree amplitudes with zero or one + or − vanish!  This 
vanishing turns out to be a consequence of supersymmetry, 
even for QCD.

iM(1−, 2−, 3+, 4−, 5−, 6−, 7+) =

NC



Parke and Taylor found that the amplitudes with two − take a 
very simple form.  For example, 

These are called MHV amplitudes.  The amplitudes with two + 
(anti-MHV) take a similar form in terms of square brackets.

Notice that the square of this amplitude gives the most general 
set of singular factors appropriate to a color-ordered amplitude.

In 2004, Witten interpreted this result as being holomorphic in 
twistor space and set out to develop a twistor string theory that 
would compute it.

iM(1+, 2−, 3+, 4−, 5+, 6+, 7+) = ig5 〈24〉4

〈12〉〈23〉〈34〉 · · · 〈71〉



Exercise:

     Derive the color-ordered Feynman rules for QCD from 
         the usual QCD Feynman rules.

     Derive the Parke-Taylor amplitudes

using Feynman diagrams for the cases n = 3,4.  For n = 3, keep 
the reference momenta r general.  For n = 4, a specific set of 
choices for the reference momenta will simplify the 
computation.

iM(1+, · · · , i−, · · · , j−, · · · , n+) = ign−2 〈ij〉4

〈12〉〈23〉 · · · 〈n1〉

iM(1−, · · · , i+, · · · , j+, · · · , n−) = i(−1)ngn−2 [ij]4

[12][23] · · · [n1]



For practical purposes, we need all helicity amplitudes, not just 
MHV.   However. Witten’s program led to a remarkable method 
for the computation of non-MHV amplitudes, discovered by 
Britto, Cachazo, and Feng.

It would be wonderful to build up non-MHV amplitudes from the 
simple MHV expressions.  But it is not so obvious how to do this. 
MHV amplitudes are on-shell expressions, but if we cut the more 
complex amplitudes, we will have to evaluate them off-shell.

Or do we ?   BCF suggested that we pick legs i and j and shift

for     a complex variable.

i] → i] + z j] j〉 → j〉 − z i〉
z



Now consider

The first term is the amplitude that we wish to evaluate.  The 
contour at      vanishes if we choose i and j correctly (e.g  i a   
− gluon and j a + gluon).   The additional poles result when a 
momentum on an intermediate line satisfies  

Looking again at the diagram,

and so 

∮
dz

2πi

iM(z)
z

= iM(z = 0) + (other poles) = (contour at ∞)

Q(z)2 = 0

Qµ(z)γµ =
b∑

k=a

k〉[k − z i〉[j
a

bz∗ =
sa...b

〈i(
∑

k〉[k)j]

∞



Tidying up the formula, one finds the following relation:

called the Britto-Cachazo-Feng (BCF) recursion formula.

Momenta with hats have the shift with     .  The hatted momenta 
are complex but satisfy             , so the amplitudes on the right-
hand side are to be evaluated on shell!

This allows the n-point amplitudes to be recursively evaluated in 
terms of amplitudes with fewer legs.  We can stop when we reach 
MHV.  At 5 points all amplitudes are MHV or anti-MHV.

z∗
Q̂2 = 0

iM(1 · · ·n) =
∑

splits

iM(b + 1 · · · î · · · a− 1 − Q̂)

· 1
sa···b

· iM(a · · · ĵ · · · b Q̂)



The technique applies not only to multi-gluon amplitudes but 
also to other amplitudes of interest.  Here are two more MHV 
formulae:

The second formula crosses into an MHV formula for

and we can use this to compute heavy particle production at 
LHC.   Badger, Glover, Khoze, and Svrcek have shown that the 
technique applies to even more general heavy-particle 
amplitudes, such as those of top quark production.

iM(qLg+
2 g+

3 · · · g
−
i · · · g

+
n−1qR) = ign−2 〈1i〉3〈ni〉

〈12〉〈23〉 · · · 〈n1〉

ud→W+ + ng → !+ν + ng

iM(e−Le+
RqLg+

4 g+
5 · · · g

+
n−1qR) = −ig2

wgn−4 〈13〉2

〈12〉 〈34〉 〈45〉 · · · 〈n − 1 n〉



Exercise:

     Using the results of the previous exercise for n = 3, 4 and 
the BCF recursion formula, prove the validity of the general 
MHV formula for the n-gluon case by induction on the number 
of external gluons.



I would like to illustrate the use of the BCF recursion formula by 
computing a non-MHV contribution to                                        .
This crosses into a contribution to W + 2 jets, which we would 
need to compute the mass distribution of the hadronic system 
recoiling against a W or Z.

Using the shift

we find

I will evaluate the first of these BCF cuts.

e+e− → qq + 2 gluons

12

3

4 5

6

+

+
6

+
6

+

+ 4+ 4+_
5_ 5_

_
12

+ _ 12
+ _

_

3
_

= 3
_

+

^ ^ ^ ^

5̂] = 5] + z 4] 4̂〉 = 4〉 − z 5〉



where

Multiply the formula top and bottom by           and work out the 
pieces:

Q̂2 = 0 for z = − s56

〈5(5 + 6)4]
= − [65]

[64]

Q̂ = −5〉[5− 6〉[6− z 5〉[4

[Q̂4]2

〈5Q̂〉[Q̂4] = −〈56〉[64]
〈6Q̂〉[Q̂4] = −〈65〉[54]
〈4̂Q̂〉[Q̂4] = −s456

〈34̂〉 = 〈3(4 + 5)6]/[46]

ig2
wg2 〈13〉2

〈12〉〈34̂〉〈4̂(−Q̂)〉
i

s56
ig

〈Q̂5〉3〈56〉
〈Q̂5〉〈56〉〈6Q̂〉

= −ig2
wg2 〈13〉2〈5Q̂〉2

〈12〉〈34̂〉〈4̂Q̂〉〈6Q̂〉s56



in all 

An even nicer property of this formalism is that you do not need 
to work out these expressions directly.  Instead, it is possible to 
compute directly with the complex spinors !

ig2
wg2 〈13〉2〈56〉2[46]3

〈12〉[45]s56s456〈3(4 + 5)6]



Once we have derived expressions for multi-parton tree level 
cross sections, there is still problems in interpreting these 
formulae correctly.

As Steve Ellis explained, jets are built from multiple parton 
radiation.  Our explicit formulae acount only the first few 
radiated quarks or gluons in the cascade.

Often, we rely on a parton shower Monte Carlo program such 
as PYTHIA or HERWIG to supply the additional quarks and 
gluons.  But then there is a problem of double-counting.  We 
do not want partons to be radiated by our explicit calculation 
and radiated again by the parton shower MC.

Explicit formulae for multi-parton radiation give very large 
cross sections if we integrate down to soft partons.  Loop 
diagrams provide compensating factors that restore unitarity.
It is a problem how to include the important effects without a 
full loop computation.



The authors of codes for generating multijet processes have 
tried out different ways to solve these problems. 

To the extent that different codes agree, we might have 
confidence (or not) that we understand these issues.  
Ultimately, comparison to deeper and higher-order QCD 
calcuations is needed. 



predictions of the ET spectrum in  W+ jets at the LHC for the 4 
hardest jets,  from J. Alwall et al.  arXiv:0706.2569



In this lecture, I have introduced the issues involved in the 
prediction of multi-jet Standard Model backgrounds to new 
particle production at the LHC. 

Much work is being done.  I am optimistic that it will be 
enough to make strong statements about whether new 
particle production is seen at the LHC.

Once we have observed violation of the Standard Model, we 
can try to interpret the anomalies.  This will be the subject 
of my third lecture.


