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The natural mass scale for supersymmetric particles is the
scale of electroweak symmetry breaking, the mass scale of a
few hundred GeV. It was interesting bet that the most recent
generation of particle accelerators - SLC, LEP, and the
Tevatron - would have enough energy to reach the SUSY scale.
But it was not required that this be so.

For LHC, the prospects are very different. We expect that
proton beams at the LHC energy will produce SUSY particles
in significant numbers.

We should now be planning for the discovery at the LHC of
SUSY or another comparable model of electroweak symmetry
breaking.



A discovery era in fundamental physics is very different from the
era of study and confirmation of a ‘Standard Model’.

The major issues for the SLC, LEP, and Tevatron experiments
have been

Can the experimental data be accounted for by known
electroweak and strong interaction sources ?

What precision can be achieved in the Standard Model

parameters when we use QCD and the electroweak theory to
model the data ?

Which observations of agreement between the Standard Model
and the data give the best limits on new physics ? Which
observations might be most sensitive to the first appearance of
new physics ?



When our standard theory fails to account for the data, new
types of question arise:

In what channels are anomalies observed ? Do we understand
the standard prediction, in each case, well enough to claim
an anomaly. Could the anomaly be an experimental artifact
or misinterpretation ?

Can we assemble a pattern of anomalies into evidence for a
specific new physics model ?

What additional anomalies must we observe to confirm this
model ? What observations claimed by the experiments must
be incorrect ?

These questions require new and unfamiliar skills. We all
need to develop these skills.



In these lectures, | will discuss some topics that | expect will be
relevant to these questions:

1. How will the experiments at the LHC be done ? What are the
difficulties ? To what extent do these create opportunities
for misinterpretation ?

2. Can we understand the Standard Model at a sufficient level to
claim that data is inconsistent with its predictions ? SUSY
predicts complex events. How do we compute the Standard
Model backgrounds to these complex event topologies ?

3. How can we use LHC observations to constrain the spectrum
of SUSY particles in a way that is as model-independent
as possible ?



1. How will the experiments at the LHC be done ? What are the
difficulties ? To what extent do these create opportunities
for misinterpretation ?



What considerations drive the design of the LHC experiments ?

We are interested in observing cross sections at the level of
1-10pb

for SUSY pair production and Higgs boson production. These must
often be multiplied by branching ratios

BR(Z° - utpu )=0.034  BR(A’ —yy) ~2x107°
So we need luminosities of the order of

10 fb~'/yr or 1nb !/sec

The LHC design luminosity is 10 times higher. However, the initial
LHC running should be at about this level.



The proton bunches collide and interact every 25 nsec.
So,

for a cross section of 1 nb,
we have 1 event / second

for a cross section of 0.1 barn,
we have 2.5 events / bunch crossing

for example,
o(pp — tt + X) ~ 0.8 nb

so we will see almost 1 ¢t pair per second, and (hopefully)
many SUSY events per hour.



However, there are relevant processes with rates of events/crossing:

the proton-proton total cross section is expected to be
100 mb, or 2.5 events/crossing

the parton-parton hard scattering cross section reaches
these rates for pr ~ 10 GeV

So

We need to be able to observe processes at 10~ — 107
of the rates for these dominant reactions.

Every observed new physics event will be accompanied by additional
‘minimum bias’ events and by additional jets.
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If events occur at every bunch crossing, we must ask what fraction
of these events will be recorded into permanent storage.

The current plan is to record about 200 events/sec , compared to
the bunch crossing rate of 40 x 10°/sec.

At about 100 Mb/event, this gives a database of 20 Pb / yr. The

reduced data sets used for scanning and crude analysis are of size
200 Tb / yr.

The reduction from 40 MHz to 100 Hz must be done automatically,
without direct human intervention. This is done by the trigger, a
network of computers and data pipelines. In ATLAS, the trigger
has 3 levels. Conceptually,

allowed rate decision time
Level 1 1 MHz 100 microsec
Level 2 10 kHz 10 msec

Level 3 100 Hz 1 sec



more precisely:

Trigger
40 MHz
79 kHz
Rol Builder
L2 Supnwimr
L2 NYwork
L2 Proc Unit
~2 kHz
Event Filter
Processors
~ 200 Hz

(Functional elements and their connections)

Cale
MuTrCh

DAQ

Other detectors

FE Pipelines

Read - Out l:lfi'itr‘.lﬁ
Read -Out Li
Read - Out Buffers

B/s

Read-Out Sub-systems
~2+4 GB/s

Dataflow Manager
Event Building MN/work

Sub-Farm Input
Event Builder

Event Filter M/work

Sub -Farm Output

~ 300 MB/s

N. Ellis, ATLAS



With this background, we can look at the rates of jet
production and similar processes.

To understand the jet rates, we should look at the integral pr
spectrum for jet production

as computed from the parton distributions and QCD.

It is acceptable that this quantity becomes larger than the
pp total cross section. This only indicates that there are
multiple parton scattering events per pp collision.
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To deal with the event rate, we must first demand the
presence of jets with sufficiently large values of pr.
We then need to look for other indicators that the
reaction is not simple parton-parton scattering:

high deposited energy

central angular distribution

multiple jets

missing pr

isolated or high pr leptons

b quarks

tau leptons



Two of these items deserve special comment.

In pp collisions, much of the particle production occurs at
extremely forward angles. A variable more convenient than
angle is rapidity y defined by

E ="Prcoshy p° ="Prsinhy PT:\/p?F m?

We then refer to particles or jets by their position in the

(yv ¢7 pT)
space. The very useful 3-d plot of pp over the (y, @) plane is

called the Lego Plot.

Often we ignore m and replace polar angle by pseudorapidity n

1 1 v,
cosf) =tanhn or n = §log 1+COSH
— COS

Boosts are translations in rapidity. Generic particle production
and low- prjets result from parton reactions randomly
distributed over boosts and are thus approximately uniform in
rapidity. HIgh-p7 collisions occur near y = 0.
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It is difficult to produce leptons without accompanying jets in
typical QCD reactions, so isolated leptons are important
indicators for new physics.

Electrons are detected in the inner detector by the same
technologies that are used for jets, but muons are highly
penetrating and can be studied outside the region where the
hadrons are absorbed. This makes the study of muons a ‘safe
objective for the LHC experiments, even at high luminosity.

)

Thus, the LHC detectors are designed to be precision muon
spectrometers. This is the most important consideration for
the large-scale design of ATLAS and CMS.



The LHC cross sections for vector boson production and decay
to leptons (e or mu, accepted in |n| < 2.5) are

W+ 10 nb
W- 8 nb
Z 1.5 nb

So we can in principle write this whole sample to permanent
storage. The rates for hadronic W and Z decays are also quite
acceptable (-~ 50 nb). However, it is not clear how to trigger
on general hadronic or tau decays of W, Z without some
additional signature.



the Geneva region

with the CERN Large Hadron Collider
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arrival of a superconducting muon toroid at CERN

Paula Collins, CERN



A Compact Solenoidal Detector for LHC
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simulated high-
energy event in
ATLAS
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ATLAS toroidal-field muon spectrometer

for the complete muon system

o(pr) [2% 100 GeV p
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ATLAS
liquid-argon
calorimeter




o
E B ¢ Electrons
= n
g — o _ \/Oz bz
2 3 L <E>" (E + >
2 - ¢
L = ® =03
EB B a=8.544+0.16 [4*xv/GeV]
— B b=0.50+0.03 [74]
S 2 -
ad — h @) T]=11
B ‘\ a=12.444+0.24 [Z*vGeV]
I b=0.394+0.03[7%]
1

0 500 1000 1500
Energy (GeV)

Energy resolution [% ]

Photons

® Unconverted

a=9.5410.23 [7%6xvGeV]
— | b=0.25+£0.02 [7%]
\

B O Converted

-\ a=12.48+0.37 [%*VGeV]
Q' b=0.19+0.06 [%]

i ¢ <g>= V(g + b
¢

0 500 1000 1500
Energy (GeV)

ATLAS liquid Ar calorimeter energy resolution
for electrons and photons.

electrons at n = 0.3:

7 = | (

8.5%
vVE

1/2
)2 + (0.5%)?



energy resolution of the CMS crystal calorimeter
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ATLAS calorimeter
resolution for pions

single pions:

jets:
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The geography of the detector becomes an issue in thinking
about missing ET. If a part of the detector does not function,
you will see missing ET.

More generally, mismeasurement, especially of jets, will
produce unbalanced ET.

To control for this, it is necessary to

calibrate the response of the detector elements using
2-jet events and pp — v + jet

look at the geometry of sighal event and reject them if
they are likely to have been mismeasured.
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DO missing ET search - dijet sample

DO Preliminary

To B
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Finally, since we expect that new physics associated
with electroweak symmetry breaking can have
preferred coupling to the third generation, it is
important to understand the tagging of b quarks and

T leptons.



The principal b tags are
soft lepton tagging:

leptons with pT > 1 GeV with respect to a jet
are likely to come from b semileptonic decays

lifetime tagging:
cr(BT) =049 mm , cr(BY) =0.46 mm
so a precision silicon tracker close to the
interaction point should see clusters of tracks

displaced from the vertex

Be careful, especially of charm :

cr(DY) =031 mm, ecr(DY) =0.12 mm
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T=jet axis

To tag taus, look for “tau jets” try A
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selection efficiency as a function of cone sizes
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We have now discussed the basic tools for LHC physics.
The next step is to discuss the structure of events that
resemble new particle production.



