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Abstract

This is a preliminary written version of a series of lectures aimed at graduate students and

postdoctoral fellows in particle theory/string theory/particle experiment familiar with the basics

of the Standard Model. We begin with an overview of flavor physics and its implications for new

physics. We emphasize the “new physics flavor puzzle”. Then, we give four specific examples of

flavor measurements and the lessons that have been (or can be) drawn from them: (i) Charm

physics: lessons for supersymmetry from the upper bound on ∆mD. (ii) Bottom physics: model

independent lessons on the KM mechanism and on new physics in B0 − B0 mixing from SψKS .

(iii) Top physics and beyond: testing minimal flavor violation at the LHC. (iv) Neutrino physics:

interpreting the data on neutrino masses and mixing within flavor models.

∗ Lectures given at PiTP 2007, “Standard Model and Beyond”, IAS, Princeton, USA, July 16–25 2007.
†Electronic address: yosef.nir@weizmann.ac.il

1



I. INTRODUCTION

The Standard Model fermions appear in three generations. Flavor physics describes

interactions that distinguish between the fermion generations.

The fermions experience two types of interactions: gauge interactions, where two fermions

couple to a gauge boson, and Yukawa interactions, where two fermions couple to a scalar.

Within the Standard Model, there are twelve gauge bosons, related to the gauge symmetry

GSM = SU(3)C × SU(2)L × U(1)Y, (1)

and a single Higgs scalar, related to the spontaneous symmetry breaking

GSM → SU(3)C × U(1)EM. (2)

In the interaction basis, gauge interactions are diagonal and universal, namely described

by a single gauge coupling for each factor in GSM: g3, g2, and gY . By definition, the inter-

action eigenstates have no gauge couplings between fermions of different generations. The

Yukawa interactions are, however, quite complicated in the interaction basis. In particular,

there are Yukawa couplings that involve fermions of different generations and, consequently,

the interaction eigenstates do not have well-defined masses. Flavor physics here refers to

the part of the Standard Model that depends on the Yukawa couplings.

In the mass basis, Yukawa interactions are diagonal (in the Standard Model, its single-

Higgs extensions and even with extended Higgs sector subject to natural flavor conservation),

but not universal. The mass eigenstates have, by definition, well-defined masses. The

interactions related to spontaneously broken symmetries are, however, quite complicated in

the mass basis. In particular, the interactions of the charged weak force carriers W± are not

diagonal, that is, they mix quarks of different generations. (In extensions of the Standard

Model, with left-handed SU(2)L-singlet left-handed quarks, or SU(2)L-doublet right-handed

quarks, also the Z-couplings involve mixing.) Flavor physics here refers to fermion masses

and mixings.

Why is flavor physics interesting?

• Flavor physics and the physics of CP violation can discover new physics or probe it

before it is directly observed in experiments. Here are some examples from the past:

– The smallness of Γ(KL→µ+µ−)
Γ(K+→µ+ν)

led to predicting a fourth (the charm) quark;
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– The size of ∆mK led to a successful prediction of the charm mass;

– The size of ∆mB led to a successful prediction of the top mass;

– The measurement of εK led to predicting the third generation.

• CP violation is closely related to flavor physics. Within the Standard Model, there is

a single CP violating parameter, the Kobayashi-Maskawa phase δKM [1]. Baryogenesis

tells us, however, that there must exist new sources of CP violation. Measurements of

CP violation in flavor changing processes might provide evidence for such sources.

• The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply

that there exists new physics at, or below, the TeV scale. If such new physics had a

generic flavor structure, it would contribute to flavor changing neutral current (FCNC)

processes orders of magnitude above the observed rates. The question of why this does

not happen constitutes the new physics flavor puzzle.

• Most of the charged fermion flavor parameters are small and hierarchical. The Stan-

dard Model does not provide any explanation of these features. This is the Standard

Model flavor puzzle.

The puzzle became even deeper when neutrino masses and mixings have been mea-

sured. So far, neither smallness nor hierarchy in these parameters have been estab-

lished.

In these lectures, we discuss four specific measurements that relate to the four points above:

• We show how measurements of D0 − D0 mixing allow us to explore supersymmetry

and, in particular, give evidence that if there are squarks below the TeV scale, they

must be quasi-degenerate.

• We explain how the measurement of the CP asymmetry in B → J/ψKS decays gives

evidence that the KM mechanism is the dominant source of the observed CP violation,

and quantitatively constrains the amount of new physics in B0 −B0 mixing.

• We present the idea of minimal flavor violation as a solution to the new physics flavor

problem, and argue that the ATLAS and CMS experiments may be able to test this

solution.
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• We describe the extraction of four neutrino parameters from measurements related

to atmospheric and solar neutrinos, and explain their impact on models that aim to

explain the Standard Model flavor puzzle.

II. FLAVOR IN THE STANDARD MODEL

A model of elementary particles and their interactions is defined by three ingredients:

(i) The symmetries of the Lagrangian; (ii) The pattern of spontaneous symmetry breaking;

(iii) The representations of fermions and scalars. The Standard Model (SM) is defined as

follows. (i) The gauge symmetry is GSM of Eq. (1); (ii) Its spontaneous symmetry breaking

is described by Eq. (2); (iii) There are three fermion generations, each consisting of five

representations of GSM:

QI
Li(3, 2)+1/6, U I

Ri(3, 1)+2/3, DI
Ri(3, 1)−1/3, LILi(1, 2)−1/2, EI

Ri(1, 1)−1. (3)

Our notations mean that, for example, left-handed quarks, QI
L, are triplets of SU(3)C,

doublets of SU(2)L and carry hypercharge Y = +1/6. The super-index I denotes interaction

eigenstates. The sub-index i = 1, 2, 3 is the flavor (or generation) index. There is a single

scalar representation,

φ(1, 2)+1/2 =

(

φ+

φ0

)

. (4)

The scalar φ0 assumes a VEV,

〈φ0〉 =
v√
2
, (5)

leading to (2).

A. The interactions basis

The Standard Model Lagrangian, LSM, is the most general renormalizable Lagrangian

that is consistent with the gauge symmetry (1), the particle content (3,4) and the pattern

of spontaneous symmetry breaking (2,5). It can be divided to three parts:

LSM = Lkinetic + LHiggs + LYukawa. (6)
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As concerns the kinetic terms, to maintain gauge invariance, one has to replace the

derivative with a covariant derivative:

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY. (7)

Here Gµ
a are the eight gluon fields, W µ

b the three weak interaction bosons and Bµ the single

hypercharge boson. The La’s are SU(3)C generators (the 3 × 3 Gell-Mann matrices 1
2
λa

for triplets, 0 for singlets), the Tb’s are SU(2)L generators (the 2 × 2 Pauli matrices 1
2
τb for

doublets, 0 for singlets), and the Y ’s are the U(1)Y charges. For example, for the quark

doublets QI
L, we have

Lkinetic(QL) = iQI
Liγµ

(

∂µ +
i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)

QI
Li, (8)

while for the lepton doublets LIL, we have

Lkinetic(LL) = iLILiγµ

(

∂µ +
i

2
gW µ

b τb − ig′Bµ
)

LILi. (9)

These parts of the interaction Lagrangian are flavor-universal and CP conserving.

The Higgs potential, which describes the scalar self interactions, is given by:

LHiggs = µ2φ†φ− λ(φ†φ)2. (10)

For the Standard Model scalar sector, where there is a single doublet, this part of the

Lagrangian is also CP conserving.

The quark Yukawa interactions are given by

−Lquarks
Yukawa = Y d

ijQ
I
LiφD

I
Rj + Y u

ijQ
I
Liφ̃U

I
Rj + h.c., (11)

while the lepton Yukawa interactions are given by

−Lleptons
Yukawa = Y e

ijL
I
LiφE

I
Rj + h.c.. (12)

This part of the Lagrangian is, in general, flavor-dependent (that is, Y f 6∝ 1) and CP

violating.

B. Global symmetries and parameter counting

In the absence of the Yukawa matrices Y d, Y u and Y e, the SM has a large U(3)5 global

symmetry:

Gglobal(Y
f = 0) = SU(3)3

q × SU(3)2
ℓ × U(1)5, (13)
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where

SU(3)3
q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2
ℓ = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E . (14)

Out of the five U(1) charges, three can be identified with baryon (B) and lepton (L) numbers

and hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining

U(1) groups can be identified with the PQ symmetry whereby the Higgs and DR, ER fields

have opposite charges, and with a global rotation of ER only.

The Yukawa interactions (11) and (12) break this symmetry (of course, the gauged U(1)Y

remains a good symmetry),

Gglobal(Y
u,d,e 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (15)

One can think of the quark Yukawa couplings as spurions that break the global SU(3)3
q

symmetry (but are neutral under U(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q
, Y d ∼ (3, 1, 3̄)SU(3)3q

, (16)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
ℓ symmetry (but

are neutral under U(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2
ℓ
. (17)

The spurion formalism is convenient for several purposes: parameter counting (see below),

identification of flavor suppression parameters, and the idea of minimal flavor violation.

How many independent parameters are there in Lquarks
Yukawa? Each of the two Yukawa ma-

trices Y q (q = u, d) is 3× 3 and complex. Consequently, there are 18 real and 18 imaginary

parameters in these matrices. Not all of them are, however, physical. The pattern of Gglobal

breaking means that there is freedom to remove 9 real and 17 imaginary parameters (the

number of parameters in three 3 × 3 unitary matrices minus the phase related to U(1)B).

We conclude that there are 10 quark flavor parameters: 9 real ones and a single phase. In

the mass basis, we will be able to identify the nine real parameters as six quark masses and

three mixing angles, while the single phase is δKM.
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How many independent parameters are there in Lleptons
Yukawa? The Yukawa matrix Y e is 3× 3

and complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix.

There is, however, freedom to remove 6 real and 9 imaginary parameters (the number of

parameters in two 3 × 3 unitary matrices minus the phases related to U(1)3). We conclude

that there are 3 real lepton flavor parameters. In the mass basis, we will be able to identify

these parameters as the three charged lepton masses. We will have, however, to modify the

model when we take into account the evidence for neutrino masses.

C. The mass basis

Upon the replacement Re(φ0) → v+H0
√

2
[see Eq. (5)], the Yukawa interactions (11) give

rise to mass terms:

−LqM = (Md)ijD
I
LiD

I
Rj + (Mu)ijU

I
LiU

I
Rj + h.c., (18)

where

Mq =
v√
2
Y q, (19)

and we decomposed the SU(2)L quark doublets into their components:

QI
Li =

(

U I
Li

DI
Li

)

. (20)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always

find unitary matrices VqL and VqR such that

VqLMqV
†
qR = Mdiag

q (q = u, d), (21)

with Mdiag
q diagonal and real. The quark mass eigenstates are then identified as

qLi = (VqL)ijq
I
Lj, qRi = (VqR)ijq

I
Rj (q = u, d). (22)

The charged current interactions for quarks [that is the interactions of the charged SU(2)L

gauge bosons W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ)], which in the interaction basis are described by (8),

have a complicated form in the mass basis:

−LqW± =
g√
2
ULiγ

µVijDLjW
+
µ + h.c.. (23)
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where V is a unitary 3 × 3 matrix,

V = VuLV
†
dL, (V V † = V †V = 1). (24)

V is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix for quarks [1, 2]. As a result

of the fact that V is not diagonal, the W± gauge bosons couple to quark mass eigenstates of

different generations. Within the Standard Model, this is the only source of flavor changing

quark interactions.

Exercise 1: Prove that, in the absence of neutrino masses, there is no mixing in the

lepton sector.

Exercise 2: Prove that there is no mixing in the Z couplings. (In the physics jargon,

there are no flavor changing neutral currents at tree level.)

The detailed structure of the CKM matrix, its parametrization, and the constraints on

its elements are described in Appendix A.

III. THE NEW PHYSICS FLAVOR PUZZLE

It is clear that the Standard Model is not a complete theory of Nature:

1. It does not include gravity, and therefore it cannot be valid at energy scales above

mPlanck ∼ 1019 GeV:

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales

above mseesaw ∼ 1014 GeV;

3. The fine-tuning problem of the Higgs mass and the puzzle of the dark matter suggest

that the scale where the SM is replaced with a more fundamental theory is actually

much lower, ΛNP ∼< 1 TeV.

Given that the SM is only an effective low energy theory, non-renormalizable terms must

be added to LSM of Eq. (6). These are terms of dimension higher than four in the fields

which, therefore, have couplings that are inversely proportional to the scale of new physics

ΛNP. For example, the lowest dimension non-renormalizable terms are dimension five:

−Ldim−5
Yukawa =

Zν
ij

ΛNP
LILiL

I
Ljφφ+ h.c.. (25)
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These are the seesaw terms, leading to neutrino masses. We will return to the topic of

neutrino masses in section VII.

Exercise 3: How does the global symmetry breaking pattern (15) change when (25) is

taken into account?

Exercise 4: What is the number of physical lepton flavor parameters in this case?

Identify these parameters in the mass basis.

As concerns quark flavor physics, consider, for example, the following dimension-six,

four-fermion, flavor changing operators:

L∆F=2 =
zsd
Λ2

NP

(dLγµsL)
2 +

zcu
Λ2

NP

(cLγµuL)
2 +

zbd
Λ2

NP

(dLγµbL)2 +
zbs
Λ2

NP

(sLγµbL)2. (26)

Each of these terms contributes to the mass splitting between the corresponding two neutral

mesons. For example, the term L∆B=2 ∝ (dLγµbL)
2 contributes to ∆mB, the mass difference

between the two neutral B-mesons. We use MB
12 = 1

2mB
〈B0|L∆F=2|B0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B0〉 = −1

3
m2
Bf

2
BBB. (27)

Analogous expressions hold for the other neutral mesons. This leads to ∆mB/mB ∼
(zbd/3)(fB/ΛNP)2. Experiments give:

ǫK ∼ 2.3 × 10−3,

∆mK/mK ∼ 7.0 × 10−15,

∆mD/mD ∼< 2 × 10−14,

∆mB/mB ∼ 6.3 × 10−14,

∆mBs/mBs ∼ 2.2 × 10−13. (28)

These measurements give then the following constraints (the bound on Im(zsd) is stronger

by a factor of (2
√

2ǫK)−1 than the bound on |zsd|):

ΛNP ∼>















































√

Im(zsd) 2 × 104 TeV ǫK
√
zsd 1 × 103 TeV ∆mK

√
zcu 8 × 102 TeV ∆mD

√
zbd 5 × 102 TeV ∆mB

√
zbs 2 × 102 TeV ∆mBs

(29)

If the new physics has a generic flavor structure, that is zij = O(1), then its scale must be

above 103 − 104 TeV. If indeed ΛNP ≫ TeV , it means that we have misinterpreted the hints
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from the fine-tuning problem and the dark matter puzzle. There is, however, another way to

look at these constraints:

Im(zsd) ∼< 5 × 10−9 (ΛNP/TeV )2,

zsd ∼< 7 × 10−7 (ΛNP/TeV )2,

zcu ∼< 2 × 10−6 (ΛNP/TeV )2,

zbd ∼< 4 × 10−6 (ΛNP/TeV )2,

zbs ∼< 3 × 10−5 (ΛNP/TeV )2. (30)

It could be that the scale of new physics is of order TeV, but its flavor structure is far from

generic.

One can use that language of effective operators also for th SM, integrating out all

particles significantly heavier than the neutral mesons (that is, the top, the Higgs and the

weak gauge bosons). Thus, the scale is ΛSM ∼ mW . Since the leading contributions to neutral

meson mixings come from box diagrams, the zij coefficients are suppressed by α2
2. To identify

the relevant flavor suppression factor, one can employ the spurion formalism. For example,

the flavor transition that is relevant to B0 − B0 mixing involves dLbL which transforms as

(8, 1, 1)SU(3)3q . The leading contribution must then be proportional to (Y uY u†)13 ∝ y2
t VtbV

∗
td.

Indeed, an explicit calculation (using VIA for the matrix element and neglecting QCD

corrections) gives1

2MB
12

mB

≈ −α
2
2

12

f 2
B

m2
W

S0(xt)(VtbV
∗
td)

2, (31)

where xi = m2
i /m

2
W and

S0(x) =
x

(1 − x)2

[

1 − 11x

4
+
x2

4
− 3x2 ln x

2(1 − x)

]

. (32)

Similar spurion analyses, or explicit calculations, allows us to extract the weak and flavor

suppression factors that apply in the SM:

Im(zSM
sd ) ∼ α2

2y
2
t |VtdVts|2 ∼ 1 × 10−10,

zSM
sd ∼ α2

2y
2
c |VcdVcs|2 ∼ 5 × 10−9,

zSM
bd ∼ α2

2y
2
t |VtdVtb|2 ∼ 7 × 10−8,

zSM
bs ∼ α2

2y
2
t |VtsVtb|2 ∼ 2 × 10−6. (33)

1 A detailed derivation can be found in Appendix B of [3].
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(We did not include zSM
cu in the list because it requires a more detailed consideration.

The SM contribution to ∆mD is dominated by long distance physics, with zSM
cu ∝

α2
2y

2
s(Λ/mD)2|VcsVus|2 ∼ 5 × 10−12. In fact, peculiar phase space effects [4, 5] have been

identified which contribute a factor of y2
s to the denominator, potentially enhancing zSM

cu ∝
α2

2(Λ/mD)2|VcsVus|2 ∼ 5 × 10−6. The short distance contribution is ∝ α2
2(y

4
s/y

2
c )|VcsVus|2 ∼

5 × 10−13.)

It is clear than that contributions from new physics at ΛNP ∼ 1 TeV should be suppressed

by factors that are comparable or smaller than the SM ones. Why does that happen? This

is the new physics flavor puzzle.

The fact that the flavor structure of new physics at the TeV scale must be non-generic

means that flavor measurements are a good probe of the new physics. Perhaps the best-

studied example is that of supersymmetry. Here, the spectrum of the superpartners and

the structure of their couplings to the SM fermions will allow us to probe the mechanism of

dynamical supersymmetry breaking.

IV. LESSONS FROM D0 −D
0

MIXING

Interesting experimental results concerning D0 −D
0

mixing have been recently achieved

by the BELLE and BABAR experiments. For the first time, there is evidence for width

splitting (of order one percent) between the two neutral D-mesons [6, 7], while the bound

on the mass splitting has become stronger [8]. We use this recent experimental information

to draw important lessons on supersymmetry. This demonstrates how flavor physics – at

the GeV scale – provides a significant probe of supersymmetry – at the TeV scale.

A. Neutral meson mixing with supersymmetry

We consider the contributions from the box diagrams involving the squark doublets of

the first two generations, Q̃L1,2, to the D0 − D
0

and K0 − K
0

mixing amplitudes. The

contribution that is relevant to the neutral D system is proportional to Ku
2iK

u∗
1i K

u
2jK

u∗
1j ,

where Ku is the mixing matrix of the gluino couplings to a left-handed up quark and their

supersymmetric squark partners. (In the language of the mass insertion approximation, we

calculate here the contribution that is ∝ [(δuLL)12]
2.) The contribution that is relevant to
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the neutral K system is proportional to Kd
2iK

d∗
1iK

d
2jK

d∗
1j , where Kd is the mixing matrix of

the gluino couplings to a left-handed down quark and their supersymmetric squark partners

(∝ [(δdLL)12]
2 in the mass insertion approximation). We work in the mass basis for both

quarks and squarks.

A detailed derivation [9] is given in Appendix B. It gives:

MD
12 =

α2
smDf

2
DBDηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Ku
21K

u∗
11 )2, (34)

MK
12 =

α2
smKf

2
KBKηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Kd
21K

d∗
11 )2. (35)

One can immediately identify the three generic ways in which flavor features can suppress

the supersymmetric contributions to the mixing:

1. Degeneracy: ∆m̃2
21 ≪ m̃2

q ;

2. Heaviness: m̃q ≫ 1 TeV ;

3. Alignment: Kd,u
21 ≪ 1.

The 2 × 2 mass-squared matrices for the relevant squarks have the following form:

(M̃2
U )LL = m̃2

QL
+
(

1

2
− 2

3
s2
W

)

m2
Z cos 2β +M2

u ,

(M̃2
D)LL = m̃2

QL
−
(

1

2
− 1

3
s2
W

)

m2
Z cos 2β +M2

d . (36)

Here m̃2
QL

is a 2 × 2 hermitian matrix. It does not break SU(2)L and it is common to M̃2
U

and M̃2
D. Given the lower bounds on squark masses, the scale of its eigenvalues must be a

factor of at least O(10) higher than m2
Z . We can draw the following conclusions:

1. The scale m̃2
q is the same in Eqs. (34) and (35) up to effects of order m2

Z , namely to

an accuracy better than 0.1.

2. The mass-squared difference ∆m̃2
21 is the same in Eqs. (34) and (35) up to effects of

order m2
c , namely to an accuracy better than 10−4.

3. Since Ku ≃ VuLṼ
†
L and Kd ≃ VdLṼ

†
L (the matrices VqL are defined in Eq. (21), while

ṼL diagonalizes m̃2
QL

), the mixing matrices Ku and Kd are different from each other,

but they are related through the CKM matrix:

KuKd† = V. (37)
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B. Non-degenerate squarks at the LHC?

Eqs. (34) and (35) can be translated into our generic language:

ΛNP = m̃q, (38)

zcu = z12 sin2 θ̃u12,

zsd = z12 sin2 θ̃d12,

z12 =
11f6(x) + 4xf̃6(x)

18
α2
s

(

∆m̃2
21

m̃2
q

)2

, (39)

with Eq. (37) giving

sin θ̃u12 − sin θ̃d12 ≈ sin θc = 0.23. (40)

We now ask the following question: Is it possible that the first two generation squarks,

Q̃L1,2, are accessible to the LHC (say, m̃q ∼< 1 TeV ), and are not degenerate?

To answer this question, we use Eqs. (30). For ΛNP ∼< 1 TeV , we have zcu ∼< 2 × 10−6

and, for a phase that is 6≪ 0.1, zsd ∼< ×5 × 10−8. On the other hand, for non-degenerate

squarks, ∆m̃2
21/m̃

2
q ∼ 1 and, for example, 11f6(1) + 4f̃6(1) = 1/6, we have z12 = 8 × 10−5.

Then we need, simultaneously, sin θ̃u12 ∼< 0.15 and sin θ̃d12 ∼< 10−3, but this is inconsistent with

Eq. (40).

There are three ways out of this situation:

1. The first two generation squarks are quasi-degenerate. The minimal level of degeneracy

is (m̃2 − m̃1)/(m̃2 + m̃1) ∼< 0.2. It could be the result of RGE [10].

2. The first two generation squarks are heavy. Putting sin θ̃u12 = 0.23 and sin θ̃d12 ≈ 0 , as

in models of alignment [11, 12], Eq. (29) leads to

m̃q ∼> 2 TeV. (41)

3. The ratio x = m̃2
g/m̃

2
q is in a fine-tuned region of parameter space where there are

accidental cancellations in 11f̃6(x) + 4xf6(x). For example, for x = 2.33, this combination

is ∼ 0.003 and the bound (41) is relaxed by a factor of 7.

Barring such accidental cancellations, the conclusion is that if squarks are within the

reach of the LHC, they must be quasi-degenerate [13, 14].

Exercise 5: Does Kd
31 ∼ |Vub| suffice to satisfy the ∆mB constraint (with neither degen-

eracy nor heaviness)?
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V. LESSONS FROM SψKS

Measurements of rates, mixing, and CP asymmetries in B decays in the two B factories,

BaBar abd Belle, and in the two Tevatron detectors, CDF and D0, signified a new era in our

understanding of CP violation. The progress is both qualitative and quantitative. Various

basic questions concerning CP and flavor violation have received, for the first time, answers

based on experimental information. These questions include, for example,

• Is the Kobayashi-Maskawa mechanism at work?

• Does the KM phase dominate the observed CP violation?

• How large can new physics contributions to B0 − B0 and Bs − Bs be?

A. Is the KM mechanism at work?

The three generation standard model has room for CP violation, through the KM phase

in the quark mixing matrix. Yet, one would like to make sure that indeed CP is violated

by the SM interactions, namely to establish that sin δKM 6= 0. Indeed, we can now say with

confidence that this is the case.

In proving that the KM mechanism is at work, there is one basic assumption that we

must make: Charged-current tree-level processes are dominated by the W -mediated SM

diagrams. This is a very plausible assumption. I am not aware of any viable well-motivated

model where this assumption is not valid.

What we would like to establish is that the CP violating Wolfenstein parameter η 6= 0

[Eq. (A4)]. The following tree level processes are useful for this purpose:

1. Charmless semileptonic B-decays, b→ uℓν, measure Ru [see Eq. (A8)].

2. B → DK decays, which go through the quark transitions b → cūs and b → uc̄s,

measure the angle γ [see Eq. (A9)].

3. B → ρρ decays (and, similarly, B → ππ and B → ρπ decays) go through the quark

transition b → uūd. With an isospin analysis, one can determine the relative phase

between the tree decay amplitude and the mixing amplitude. By incorporating the
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FIG. 1: The allowed region in the ρ− η plane, assuming that tree diagrams are dominated by the

Standard Model [16].

measurement of SψKS , one can subtract the phase from the mixing amplitude, finally

providing a measurement of the angle α [see Eq. (A9)].

In addition, one can use measurements related to B0 − B0 mixing. There are three

relevant observables [see Eq. (56)] while the theoretical expressions, allowing for arbitrary

new physics in the mixing, involve only two new parameters [see Eq. (55)]. Similarly, one

can use measurements related to Bs − Bs mixing. One gains three new observables at the

cost of two new parameters (see, for example, [15]).

The results of such fit, projected on the ρ− η plane, can be seen in Fig. 1. It gives [16]

η = 0.44+0.05
−0.23 (3σ). (42)

It is clear that η 6= 0 is well established:

The Kobayashi-Maskawa mechanism of CP violation is at work.
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B. Is the KM mechanism dominant?

The measurement of the CP asymmetry in the B → J/ψKS decay and in other modes

that proceed via the b → cc̄s quark transition signified a new era in our understanding of

CP violation. In particular, it provided the first precision test of the Kobayashi-Maskawa

mechanism.

The CP asymmetry in neutral meson decays into final CP eigenstates fCP is defined as

follows:

AfCP (t) ≡ dΓ/dt[B0
phys(t) → fCP ] − dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (43)

A detailed evaluation of this asymmetry is given in Appendix C. It leads to the following

form:

AfCP (t) = SfCP sin(∆mt) − CfCP cos(∆mt),

SfCP ≡ 2 Im(λfCP )

1 + |λfCP |2 , CfCP ≡ 1 − |λfCP |2
1 + |λfCP |2 , (44)

where

λfCP = e−iφB(AfCP /AfCP ) . (45)

Here φB refers to the phase of M12 [see Eq. (C23)]. Within the Standard Model, the

corresponding phase factor is given by

e−iφB = (V ∗
tbVtd)/(VtbV

∗
td) . (46)

The decay amplitudes Af and Af are defined in Eq. (C1).

FIG. 2: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing to B0 → f or

Bs → f via a b̄→ q̄qq̄′ quark-level process.
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Some of the most interesting decays involve final states that are common to B0 and

B
0

[17, 18], such as B → J/ψKS. Here Eq. (C21) applies. The processes of interest proceed

via quark transitions of the form b̄ → c̄cs̄. There are contributions from both tree (t) and

penguin (pqu, where qu = u, c, t is the quark in the loop) diagrams (see Fig. 2) which carry

different weak phases:

Af = (V ∗
cbVcs) tf +

∑

qu=u,c,t

(

V ∗
qubVqus

)

pquf . (47)

(The distinction between tree and penguin contributions is a heuristic one, the separation

by the operator that enters is more precise. For a detailed discussion of the more complete

operator product approach, which also includes higher order QCD corrections, see, for ex-

ample, ref. [19].) Using CKM unitarity, these decay amplitudes can always be written in

terms of just two CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (48)

where TψK = tψK + pcψK − ptψK and P u
ψK = puψK − ptψK . A subtlety arises in this decay that

is related to the fact that B0 → J/ψK0 and B
0 → J/ψK0. A common final state, e.g.

J/ψKS, is reached only via K0 −K0 mixing. Consequently, the phase factor corresponding

to neutral K mixing, e−iφK = (V ∗
cdVcs)/(VcdV

∗
cs), plays a role:

AψKS
AψKS

= −(VcbV
∗
cs)TψK + (VubV

∗
us)P

u
ψK

(V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK

× V ∗
cdVcs
VcdV

∗
cs

. (49)

For B → J/ψKS and other b̄ → c̄cs̄ processes, we can neglect the P u contribution to

AψK , in the SM, to an approximation that is better than one percent:

λψKS = −e−2iβ ⇒ SψKS = sin 2β, CψKS = 0 , (50)

where β is defined in Eq. (A9). (Below the percent level, several effects modify this equation

[20, 21].)

Exercise 6: Show that, if the B → ππ decays were dominated by tree diagrams, then

Sππ = sin 2α.

Exercise 7: Estimate the accuracy of the predictions SφKS = sin 2β and CφKS = 0.

The SM prediction for sin 2β, based on all other constraints, is [22]

sin 2β 6SψK = 0.76 ± 0.04. (51)
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A fit assuming only that tree processes are dominated by the SM diagrams (see previous

section) obtains [16]

sin 2βtree = 0.82+0.02
−0.13. (52)

The experimental measurements give the following ranges [23]:

SψKS = 0.68 ± 0.03, CψKS = 0.01 ± 0.02 . (53)

The consistency of the experimental results (53) with the SM predictions (50,51,52) means

that the KM mechanism of CP violation has successfully passed its first precision test. For

the first time, we can make the following statement based on experimental evidence:

The Kobayashi-Maskawa mechanism is the dominant source of the CP violation

observed in flavor changing processes.

There are two qualifications implicit in this statement [24]:

• ‘Dominant’: While SψK is measured with an accuracy of order 0.04, the accuracy of

the SM prediction for sin 2β is only at the level of 0.1. Thus, it is quite possible that

there is a new physics contribution at the level of |MNP
12 /M

SM
12 | ∼< O(0.1).

• ‘Flavor changing’: It may well happen that the KM phase, which is closely related

to flavor violation through the CKM matrix, dominates meson decays while new,

flavor diagonal phases (such as the two unavoidable phases in the universal version of

the MSSM) dominate observables such as electric dipole moments by many orders of

magnitude.

The measurement of SψK provides a significant constraint on the unitarity triangle. In

the ρ− η plane, it reads:

sin 2β =
2η(1 − ρ)

η2 + (1 − ρ)2
= 0.68 ± 0.03. (54)

One can get an impression of the impact of this constraint by looking at Fig. 7, where the

blue region represents sin 2β = 0.68±0.03. An impression of the KM test can be achieved by

observing that the blue region has an excellent overlap with the region allowed by all other

measurements. A comparison between the constraints in the ρ−η plane from CP conserving

and CP violating processes is provided in Fig. 3. The impressive consistency between the

two allowed regions is the basis for our statement that the KM mechanism has passed its
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first precision tests. The fact that the allowed region from the CP violating processes is

more strongly constrained is related to the fact that CP is a good symmetry of the strong

interactions and that, therefore, various CP violating observables – in particular SψK – can

be cleanly interpreted.

FIG. 3: Constraints in the ρ− η plane from (a) CP conserving or (b) CP violating processes.
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C. How much can new physics contribute to B0 −B0 mixing?

The measurement of SψKS cleanly determines the relative phase between the B0 − B
0

mixing amplitude and the b → cc̄s decay amplitude (sin 2β in the SM). The b → cc̄s decay

has Standard Model tree contributions and therefore is very unlikely to be significantly

affected by new physics. On the other hand, the mixing amplitude can be easily modified

by new physics. We parametrize such a modification as follows:

r2
d e

2iθd =
M12

MSM
12

. (55)

Then the following observables provide constraints on r2
d and 2θd:

SψKS = sin(2β + 2θd),

∆mB = r2
d(∆mB)SM,

ASL = −Re
(

Γ12

M12

)SM sin 2θd
r2
d

+ Im
(

Γ12

M12

)SM cos 2θd
r2
d

. (56)

Examining whether SψKS , ∆mB and ASL fit the SM prediction, that is, whether θd 6= 0

and/or r2
d 6= 1, we can answer the following question (see e.g. [25]):

Is there new physics in B0 − B
0

mixing?

Thanks to the fact that quite a few observables that are related to SM tree level processes

have already been measured, we are able to refer to this question in a quantitative way. The
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tree level processes are insensitive to new physics and can be used to constrain ρ and η even

in the presence of new physics contributions to loop processes, such as ∆mB . Among these

observables we have |Vcb| and |Vub| from semileptonic B decays, the phase γ from B → DK

decays, and the phase α from B → ρρ decays (in combination with SψK). One can fit these

observables, and the ones in Eq. (56) to the four parameters ρ, η, r2
d and 2θd. The resulting

constraints are shown in Fig. 4.

FIG. 4: Constraints in the (a) ρ− η plane (b) r2d − 2θd plane, assuming that NP contributions to

tree level processes are negligible [16].
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An alternative way to present the data is to use the hd, σd parametrization,

r2
de

2iθd = 1 + hde
iσd. (57)

While the rd, θd parameters give the relation between the full mixing amplide and the SM

one, and are convenient to apply to the measurements, the hd, σd parameters give the re-

lation between the new physics and SM contributions, and are more convenient in testing

theoretical models:

hde
iσd =

MNP
12

MSM
12

. (58)

The constraints in the hd − σd plane are shown in Fig. 5.

We conclude from Fig. 4 that a new physics contribution to the B0 − B
0

mixing

amplitude at a level higher than about 30% is now disfavored. Consequently, a
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processes are negligible [16].

long list of models that require a significant modification of the B0 − B
0

mixing amplitude

are excluded.

VI. FLAVOR AT THE LHC

A. Top Physics

The LHC will study the physics of electroweak symmetry breaking. There are high hopes

that it will discover not only the Higgs, but also shed light on the fine-tuning problem that

is related to the Higgs mass.

The top quark plays a role in electroweak symmetry breaking. It poses the most severe

fine tuning problem to the Higgs, as it gives the largest contribution to m2
H :

− 3

8π2
y2
tΛ

2
NP = −(2 TeV )2

(

ΛNP

10 TeV

)2

. (59)

It is, therefore, very likely that there exists a “top-partner” that couples to the Higgs and

21



cancels these quadratically divergent contributions to the Higgs mass-squared. The LHC

can, in principle, measure the mass and the production cross section of the top partner and

even shed light on the question of its spin [26]. Moreover, in some models – such as minimal

SUGRA – it is the top quark that induces the electroweak symmetry breaking.

Given that the top quark is the only one that has an order one coupling to the Higgs,

it plays a special role in various extensions of the SM. For example, in RS1 models, there

is a strong enhancement of t → cZ decays (see e.g. [27]), and it is the only one that has a

significant coupling to the Kaluza-Klein gluons (see e.g. [28]).

Thus, the LHC is likely to yield exciting top physics. Here, we will not focus on this issue

but rather on how the LHC can shed light on the new physics flavor puzzle.

B. Minimal flavor violation (MFV)

A simple and rather generic principle that can guarantee that low energy flavor changing

processes would deviate only very little from the SM predictions is that of minimal flavor

violation (MFV) [29]. The basic idea can be described as follows. The gauge interactions

of the SM are universal in flavor space. The only breaking of this flavor universality comes

from the three Yukawa matrices, YU , YD and YE. If this remains true in the presence of the

new physics, namely YU , YD and YE are the only flavor non-universal parameters, then the

model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions

that we presented in section IIB. The Standard Model with vanishing Yukawa couplings

has a large global symmetry (13,14). In this section we concentrate only on the quarks. The

non-Abelian part of the flavor symmetry for the quarks is SU(3)3
q of Eq. (14) with the three

generations of quark fields transforming as follows:

QL(3, 1, 1), UR(1, 3, 1), DR(1, 1, 3). (60)

The Yukawa interactions,

LY = QLYDDRH +QLYUURHc, (61)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions

with the following transformation properties under SU(3)3
q [see Eq. (16)]:

YU ∼ (3, 3̄, 1), YD ∼ (3, 1, 3̄). (62)
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When we say “spurions”, we mean that we pretend that the Yukawa matrices are fields

which transform under the flavor symmetry, and then require that all the Lagrangian terms,

constructed from the SM fields, YD and YU , must be (formally) invariant under the flavor

group SU(3)3
q . Of course, in reality, LY breaks SU(3)3

q precisely because YD,U are not fields

and do not transform under the symmetry.

The idea of minimal flavor violation is relevant to extensions of the SM, and can be

applied in two ways:

1. If we consider the SM as a low energy effective theory, then all higher-dimension

operators, constructed from SM and Y fields, are formally invariant under Gglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators,

constructed from SM, Y and the new fields, are formally invariant under Gglobal.

Exercise 8: Use the spurion formalism to argue that, in MFV models, the KL → π0νν̄

decay amplitude is proportional to y2
tVtdV

∗
ts.

Examples of MFV models include models of supersymmetry with gauge-mediation or

with anomaly-mediation of its breaking. If the LHC discovers new particles that couple to

the SM fermions, then it will be able to test solutions to the new physics flavor puzzle such

as MFV [30]. Much of its power to test such frameworks is based on identifying top and

bottom quarks.

To understand this statement, we notice that the spurions YU and YD can always be

written in terms of the two diagonal Yukawa matrices λU and λD:

λU =











yu

yc

yt











, λD =











yd

ys

yb











, (63)

and the CKM matrix V . Thus, the only source of quark flavor changing transitions in MFV

models is the CKM matrix. Next, note that to an accuracy that is better than a percent,

we can write the CKM matrix as follows:

V =











1 0.23 0

−0.23 1 0

0 0 1











. (64)

Exercise 9: The approximation (64) should be intuitively obvious to top-physicists, but

definitely counter-intuitive to bottom-physicists. (Some of them have dedicated a large part
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of their careers to experimental or theoretical efforts to determine Vcb and Vub.) What does

the approximation imply for the bottom quark? When we take into account that it is only

good to O(0.05), what would the implications be?

We learn that the third generation of quarks is decoupled, to a good approximation, from

the first two. This, in turn, means that any new particle that couples to the SM quarks

(think, for example, of heavy quarks in vector-like representations of GSM), decay into either

third generation quark, or to non-third generation quark, but not to both. For example, in

Ref. [30], MFV models with additional charge −1/3, SU(2)L-singlets quarks – B′ – were

considered. A concrete test of MFV was proposed, based on the fact that the largest mixing

effect involving the third generation is of order |Vcb|2 ∼ 0.002: Is the followng prediction,

concerning events of B′ pair production, fulfilled:

Γ(B′B′ → Xq1,2q3)

Γ(B′B′ → Xq1,2q1,2) + Γ(B′B′ → Xq3q3)
∼< 10−3. (65)

If not, then MFV is excluded.

One can think of analogous tests in the supersymmetric framework [31]. Here, there is also

a generic prediction that, in each sector (QL, UR, DR), squarks of the first two generations

are quasi-degenerate, and do not decay into third generation quarks. Squarks of the third

generation can be separated in mass (though, for small tanβ, the degeneracy in the D̃R

sector is threefold), and decay only to third generation quarks.

We conclude that flavor physics have taught us much about the Standard Model and its

extensions. Improvements in precision flavor measurements, as well as measurements at the

LHC related to new particles that couple to the SM ones, are likely to teach us much more.

VII. NEUTRINO ANARCHY VERSUS QUARK HIERARCHY

A detailed presentation of the physics and the formalism of neutrino flavor transitions is

given in Appendix D for both vacuum oscillations (D 1) and the matter transitions (D 2). It

follows Ref. [32].

Exercise 10: For atmospheric νµ’s with E ∼ 1 GeV , the flux coming from above has

Pµµ(L ∼ 103 m) ≈ 1, while the flux from below has Pµµ(L ∼ 106 m) ≈ 0.5. Assuming that

for the flux coming from below the oscillations are averaged out, estimate ∆m2 and sin2 2θ.
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Exercise 11: For solar νe’s, the transition between matter (βMSW > 1) and vacuum

(βMSW < cos 2θ) flavor transitions occurs around E ∼ 2 MeV . The transition probability is

measured to be roughly Pee ∼ 0.30 for βMSW > 1 and Pee ∼ 0.55 for βMSW ≪ 1. Estimate

∆m2 and θ.

The derived ranges for the three mixing angles and two mass-squared differences at 1σ

are [33]:

∆m2
21 = (7.9 ± 0.3) × 10−5 eV 2,

|∆m2
31| = (2.6 ± 0.2) × 10−3 eV 2,

θ12 = 33.7 ± 1.3o,

θ23 = 44 ± 4o,

θ13 = 0+5.2o

−0.0 . (66)

The 3σ range for the matrix elements of U are the following [33]:

|U | =











0.79 → 0.86 0.50 → 0.61 0.00 → 0.20

0.25 → 0.53 0.47 → 0.73 0.56 → 0.79

0.21 → 0.51 0.42 → 0.69 0.61 → 0.83











. (67)

A. New physics

The simplest and most straightforward lesson of the evidence for neutrino masses is also

the most striking one: there is new physics beyond the Standard Model. This is the first

experimental result that is inconsistent with the SM.

Most likely, the new physics is related to the existence of GSM-singlet fermions at some

high energy scale that induce, at low energies, the effective terms Eq. (25) through the

seesaw mechanism. The existence of heavy singlet fermions is predicted by many extensions

of the SM, especially by GUT’s [beyond SU(5)] and left-right-symmetric theories.

There are of course other possibilities. Neutrino masses can be generated without in-

troducing any new fermions beyond those of the SM. Instead, the existence of a scalar

∆L(1, 3)+1, that is, an SU(2)L-triplet, is required. The smallness of the neutrino masses is

related here to the smallness of the vacuum expectation value 〈∆0
L〉 (required also by the

success of the ρ = 1 relation) and does not have a generic natural explanation.
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In left-right-symmetric models, however, where the breaking of SU(2)R × U(1)B−L →
U(1)Y is induced by the VEV of an SU(2)R-triplet, ∆R, there must exist also an SU(2)L-

triplet scalar. Furthermore, the Higgs potential leads to an order of magnitude relation

between the various VEVs, 〈∆0
L〉〈∆0

R〉 ∼ v2, and the smallness of 〈∆0
L〉 is correlated with

the high scale of SU(2)R breaking. This situation can be though of as a seesaw of VEVs.

In this model there are, however, also SM-singlet fermions. The light neutrino masses arise

from both the seesaw mechanism (“type I”) and the triplet VEV (“type II”).

Neutrino masses could also be of the Dirac type. Here, again, singlet fermions are intro-

duced, but lepton number is imposed by hand. This possibility is disfavored by theorists

since it is likely that global symmetries are violated by gravitational effects. Furthermore,

the lightness of the neutrinos (compared to charged fermions) is unexplained.

Another possibility is that neutrino masses are generated by mixing with singlet fermions

but the mass scale of these fermions is not high. Here again the lightness of neutrino

masses remains a puzzle. The best known example of such a scenario is the framework of

supersymmetry without R parity.

Let us emphasize that the seesaw mechanism or, more generally, the extension of the SM

with non-renormalizable terms, is the simplest explanation of neutrino masses. Models in

which neutrino masses are generated by new physics at low energy imply a much more dra-

matic departure from the SM. Furthermore, the existence of seesaw masses is an unavoidable

prediction of various extensions of the SM. In contrast, many (but not all) of the low energy

mechanisms are introduced for the specific purpose of generating neutrino masses.

B. The scale of new physics

Eq. (25) gives a light neutrino mass matrix:

(Mν)ij =
Zν
ij

2

v2

ΛNP
. (68)

It is straightforward to use the measured neutrino masses of Eq. (66) in combination with Eq.

(68) to estimate the scale of new physics that is relevant to their generation. In particular,

if there is no quasi-degeneracy in the neutrino masses, the heaviest of the active neutrino

masses can be estimated:

mh = m3 ∼
√

∆m2
31 ≈ 0.05 eV. (69)
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(In the case of inverted hierarchy, the implied scale is mh = m2 ∼
√

∆m2
31 ≈ 0.05 eV .) It

follows that the scale in the nonrenormalizable terms (25) is given by

ΛNP ∼ v2/mh ≈ 1015 GeV. (70)

We should clarify two points regarding Eq. (70):

1. There could be some level of degeneracy between the neutrino masses. In such a case,

Eq. (69) is modified into a lower bound and, consequently, Eq. (70) becomes an upper

bound on the scale of new physics.

2. It could be that the Zij of Eq. (25) are much smaller than 1. In such a case, again,

Eq. (70) becomes an upper bound on the scale of new physics.

On the other hand, in models of approximate flavor symmetries, there are relations

between the structures of the charged lepton and neutrino mass matrices that give, quite

generically, Z33 ∼> m2
τ/v

2 ∼ 10−4. We conclude that the likely range for ΛNP is given by

1011 GeV ∼< ΛNP ∼< 1015 GeV. (71)

The estimates (70) and (71) are very exciting. First, the upper bound on the scale of

new physics is well below the Planck scale. This means that there is new physics in Nature

which is intermediate between the two known scales, the Planck scale, mPl ∼ 1019 GeV , and

the electroweak breaking scale, v ∼ 102 GeV .

Second, the scale ΛNP ∼ 1015 GeV is intriguingly close to the scale of gauge coupling

unification.

Third, the range (71) for the scale of lepton number breaking is optimal for leptogenesis.

C. The flavor puzzle

In the absence of neutrino masses, there are 13 flavor parameters in the SM:

yt ∼ 1, yc ∼ 10−2, yu ∼ 10−5,

yb ∼ 10−2, ys ∼ 10−3, yd ∼ 10−4,

yτ ∼ 10−2, yµ ∼ 10−3, ye ∼ 10−6,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, sin δKM ∼ 1. (72)
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These flavor parameters are hierarchical (their magnitudes span six orders of magnitude),

and all but two or three (the top Yukawa, the CP violating phase, and perhaps the Cabibbo

angle) are small. The unexplained smallness and hierarchy pose the SM flavor puzzle. Its

solution may direct us to physics beyond the Standard Model.

Several mechanisms have been proposed in response to this puzzle. For example, approx-

imate horizontal symmetries, broken by a small parameter, can lead to selection rules that

explain the hierarchy of the Yukawa couplings.

In the extension of the SM with three active neutrinos that have Majorana masses, there

are nine new flavor parameters in addition to those of Eq. (72). These are three neutrino

masses, three lepton mixing angles, and three phases in the mixing matrix. Of the nine new

parameters, four have been measured: two mass-squared differences and two mixing angles

[see Eq. (66)]. This adds significantly to the input data on flavor physics and provides an

opportunity to test and refine flavor models.

If neutrino masses arise from effective terms of the form of Eq. (25), then the overall scale

of neutrino masses is related to the scale ΛNP and, in most cases, does not tell us anything

about flavor physics. More significant information for flavors models can be written in terms

of three dimensionless parameters whose values can be read from Eq. (66):

|Uµ3U
∗
τ3| ∼ 0.4 − 0.6,

|Ue1U∗
e2| ∼ 0.4 − 0.5,

∆m2
21/|∆m2

31| ∼ 0.027 − 0.034. (73)

In addition, the upper bound on θ13 often plays a significant role in flavor model building:

|Ue3| ∼< 0.20 (3σ). (74)

There are several features in the numerical estimates (73,74) that have drawn much

attention and have driven numerous investigations:

(i) Large mixing and strong hierarchy: The mixing angle that is relevant to the 2 − 3

sector is large, |Uµ3| ∼ 0.7. On the other hand, if there is no quasi-degeneracy in the neutrino

masses, the corresponding mass ratio is small, m2/m3 ∼ 0.17. It is difficult to explain in

a natural way a situation where there is an O(1) mixing but the corresponding masses are

hierarchical.
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(ii) Two large and one small mixing angles: The mixing angles relevant to the 2−3 sector

(|Uµ3| ∼ 0.7) and 1 − 2 sector (|Ue2| ∼ 0.55) are large, yet the 1 − 3 mixing angle is small

(|Ue3| ∼< 0.20). Such a situation is, again, difficult – though not impossible – to explain from

approximate symmetries. An example of a symmetry that does predict such a pattern is

that of Le −Lµ−Lτ . This symmetry predicts, however, θ12 ≃ π/4, which is experimentally

excluded.

(iii) Maximal mixing: The value of θ23 is intriguingly close to maximal mixing (sin2 2θ23 =

1). It is interesting to understand whether a symmetry could explain this special value.

(iv) Tribimaximal mixing: The mixing matrix (67) has a structure that is consistent with

the following unitary matrix [34]:

U =











√

2
3

√

1
3

0

−
√

1
6

√

1
3

√

1
2

√

1
6

−
√

1
3

√

1
2











. (75)

It is interesting to understand whether a symmetry could explain this special structure.

All four features enumerated above are difficult to explain in a large class of flavor models

that do very well in explaining the flavor features of the quark sector. In particular, models

with Abelian horizontal symmetries (Froggatt-Nielsen type [35]) predict that, in general,

|Vub| ∼ |VusVcb|, |Vij | ∼> mi/mj (i < j) and V ∼ 1 [12, 36]. All of these are successful

predictions. At the same time, however, these models predict [37] that for the neutrinos,

in general, |Uij |2 ∼ mi/mj and |Ue3| ∼ |Ue2Uµ3|, in contradiction to, respectively, points (i)

and (ii) above (and there is no way to make θ23 parametrically close to π/4). On the other

hand, there exist very specific models where these features are related to a symmetry.

It is possible, however, that the above interpretation of the results is wrong. Indeed, the

data can be interpreted in a very different way:

(iv) No small parameters. The two measured mixing angles are larger than any of the

quark mixing angles. Indeed, they are both of order one. The measured mass ratio, m2/m3 ∼>
0.16 is larger than any of the quark and charged lepton mass ratios, and could be interpreted

as an O(1) parameter (namely, it is accidentally small, without any parametric suppression).

If this is the correct way of reading the data, the measured neutrino parameters may actually

reflect the absence of any hierarchical structure in the neutrino mass matrices [38]. The

possibility that there is no structure – neither hierarchy, nor degeneracy – in the neutrino

sector has been called “neutrino mass anarchy”. An important test of this idea will be
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provided by the measurement of |Ue3|. If indeed the entries in Mν have random values of

the same order, all three mixing angles are expected to be of order one. If experiments

measure |Ue3| ∼ 0.1, that is, close to the present bound, it can be argued that its smallness

is accidental. The stronger the upper bound on this angle becomes, the more difficult it will

be to maintain this view.

Neutrino mass anarchy can be accommodated within models of Abelian flavor symmetries,

if the three lepton doublets carry the same charge. Indeed, consider a supersymmetric model

with a U(1)H symmetry that is broken by a single small spurion ǫH of charge −1. Let us

assume that the three fermion generations contained in the 10-representation of SU(5) carry

charges (2, 1, 0), while the three 5̄-representations carry charges (0, 0, 0). (The Higgs fields

carry no H charges.) Such a model predicts ǫ2H hierarchy in the up sector, ǫH hierarchy in

the down and charged lepton sectors, and anarchy in the neutrino sector.

Exercise 12: The selection rule for this model is that a term in the superpotential that

carries H charge n ≥ 0 is suppressed by ǫnH . Find the parametric suppression of the various

entries in Mu,Md,Mℓ and Mν . Find the parametric suppression of the mixing angles.

It would be nice if the features of quark mass hierarchy and neutrino mass anarchy can

be traced back to some fundamental principle or to a stringy origin (see, for example, [39]).

VIII. CONCLUSIONS

We have described four topics in flavor physics, each demonstrating a different point of

interest:

(i) The upper bound on ∆mD shows that alignment cannot be the only flavor mechanism

that suppresses the supersymmetric flavor changing contributions. It demonstrates how

flavor physics at the GeV scale probes new physics at the TeV scale.

(ii) The measurement of SψK provides a precision test of the Kobayashi-Maskawa mech-

anism of CP violation. It strengthens the evidence that this is the dominant source of CP

violation in flavor changing processes.

(iii) The LHC may discover new particles that couple to the standard model fermions. If

that happens, we will be able to use the new physics for better understanding of the flavor

puzzle, and the flavor physics for better understanding of the new physics.

(iv) The measurements of neutrino flavor parameters – mass-squared differences and

30



mixing angles – have tested models that aim to explain the hierarchy in the quark sector,

and have added novel aspects to the question of whether the flavor structure has a symmetry-

related explanation.

The huge progress in flavor physics in recent years has provided answers to many ques-

tions. At the same time, new questions arise. We look forward to the LHC era for more

answers and more questions.

APPENDIX A: THE CKM MATRIX

The CKM matrix V is a 3 × 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in defining V in that we can permute between the various generations.

This freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e.

(u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b). The elements of V are written as follows:

V =











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











. (A1)

(ii) There is further freedom in the phase structure of V . This means that the number

of physical parameters in V is smaller than the number of parameters in a general unitary

3 × 3 matrix which is nine (three real angles and six phases). Let us define Pq (q = u, d) to

be diagonal unitary (phase) matrices. Then, if instead of using VqL and VqR for the rotation

(22) to the mass basis we use ṼqL and ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still

maintain a legitimate mass basis since Mdiag
q remains unchanged by such transformations.

However, V does change:

V → PuV P
∗
d . (A2)

This freedom is fixed by demanding that V has the minimal number of phases. In the three

generation case V has a single phase. (There are five phase differences between the elements

of Pu and Pd and, therefore, five of the six phases in the CKM matrix can be removed.)

This is the Kobayashi-Maskawa phase δKM which is the single source of CP violation in the

quark sector of the Standard Model [1].

The fact that V is unitary and depends on only four independent physical parameters
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can be made manifest by choosing a specific parametrization. The standard choice is [40]

V =











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











, (A3)

where cij ≡ cos θij and sij ≡ sin θij . The θij ’s are the three real mixing parameters while

δ is the Kobayashi-Maskawa phase. It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1.

It is convenient to choose an approximate expression where this hierarchy is manifest. This

is the Wolfenstein parametrization, where the four mixing parameters are (λ,A, ρ, η) with

λ = |Vus| = 0.23 playing the role of an expansion parameter and η representing the CP

violating phase [41, 42]:

V =











1 − 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ + 1
2
A2λ5[1 − 2(ρ+ iη)] 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[1 − (1 − 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1 − 2(ρ+ iη)] 1 − 1

2
A2λ4











. (A4)

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix

leads to various relations among the matrix elements, e.g.

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (A5)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (A6)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (A7)

Each of these three relations requires the sum of three complex quantities to vanish and

so can be geometrically represented in the complex plane as a triangle. These are “the

unitarity triangles”, though the term “unitarity triangle” is usually reserved for the relation

(A7) only. The unitarity triangle related to Eq. (A7) is depicted in Fig. 6.

The rescaled unitarity triangle is derived from (A7) by (a) choosing a phase convention

such that (VcdV
∗
cb) is real, and (b) dividing the lengths of all sides by |VcdV ∗

cb|. Step (a) aligns

one side of the triangle with the real axis, and step (b) makes the length of this side 1.

The form of the triangle is unchanged. Two vertices of the rescaled unitarity triangle are

thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the

Wolfenstein parameters (ρ, η). The area of the rescaled unitarity triangle is |η|/2.

Depicting the rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex

sides are

Ru ≡
∣

∣

∣

∣

VudVub
VcdVcb

∣

∣

∣

∣

=
√

ρ2 + η2, Rt ≡
∣

∣

∣

∣

VtdVtb
VcdVcb

∣

∣

∣

∣

=
√

(1 − ρ)2 + η2. (A8)
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

FIG. 6: Graphical representation of the unitarity constraint VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a

triangle in the complex plane.

The three angles of the unitarity triangle are defined as follows [43, 44]:

α ≡ arg

[

− VtdV
∗
tb

VudV
∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV
∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV
∗
cb

]

. (A9)

They are physical quantities and can be independently measured by CP asymmetries in B

decays. It is also useful to define the two small angles of the unitarity triangles (A6,A5):

βs ≡ arg

[

−VtsV
∗
tb

VcsV ∗
cb

]

, βK ≡ arg

[

− VcsV
∗
cd

VusV ∗
ud

]

. (A10)

The λ and A parameters are very well determined at present:

λ = 0.226 ± 0.001, A = 0.818 ± 0.015. (A11)

The main effort in CKM measurements is thus aimed at improving our knowledge of ρ and

η:

ρ = 0.14+0.04
−0.02, η = 0.35 ± 0.02. (A12)

The present status of our knowledge is best seen in a plot of the various constraints and the

final allowed region in the ρ− η plane. This is shown in Fig. 7.

APPENDIX B: SUPERSYMMETRIC CONTRIBUTIONS TO NEUTRAL ME-

SON MIXING

We consider the squark-gluino box diagram contribution to D0 − D
0

mixing amplitude

that is proportional toKu
2iK

u∗
1i K

u
2jK

u∗
1j , whereKu is the mixing matrix of the gluino couplings
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FIG. 7: Allowed region in the ρ, η plane. Superimposed are the individual constraints from charm-

less semileptonic B decays (|Vub/Vcb|), mass differences in the B0 (∆md) and Bs (∆ms) neutral

meson systems, and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and

B → DK (γ). Taken from [16].

to a left-handed up quark and their supersymmetric squark partners. (In the language of

the mass insertion approximation, we calculate here the contribution that is ∝ [(δuLL)12]
2.)

We work in the mass basis for both quarks and squarks.

The contribution is given by

MD
12 = −i4π

2

27
α2
smDf

2
DBDηQCD

∑

i,j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j )(11Ĩ4ij + 4m̃2

gI4ij). (B1)

where

Ĩ4ij ≡
∫

d4p

(2π)4

p2

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )

=
i

(4π)2

[

m̃2
g

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃4
i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2

ln
m̃2
i

m̃2
g

+
m̃4
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2

ln
m̃2
j

m̃2
g

]

, (B2)
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I4ij ≡
∫

d4p

(2π)4

1

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j )

=
i

(4π)2

[

1

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃2
i

(m̃2
i − m̃2

j )(m̃
2
i − m̃2

g)
2

ln
m̃2
i

m̃2
g

+
m̃2
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2

ln
m̃2
j

m̃2
g

]

. (B3)

We now follow the discussion in refs. [9, 10]. To see the consequences of the super-GIM

mechanism, let us expand the expression for the box integral around some value m̃2
q for the

squark masses-squared:

I4(m̃
2
g, m̃

2
i , m̃

2
j) = I4(m̃

2
g, m̃

2
q + δm̃2

i , m̃
2
q + δm̃2

j )

= I4(m̃
2
g, m̃

2
q, m̃

2
q) + (δm̃2

i + δm̃2
j )I5(m̃

2
g, m̃

2
q, m̃

2
q , m̃

2
q)

1

2

[

(δm̃2
i )

2 + (δm̃2
j )

2 + 2(δm̃2
i )(δm̃

2
j)
]

I6(m̃
2
g, m̃

2
q , m̃

2
q, m̃

2
q, m̃

2
q) + · · · ,(B4)

where

In(m̃
2
g, m̃

2
q, . . . , m̃

2
q) ≡

∫

d4p

(2π)4

1

(p2 − m̃2
g)

2(p2 − m̃2
q)
n−2

, (B5)

and similarly for Ĩ4ij. Note that In ∝ (m̃2
q)
n−2 and Ĩn ∝ (m̃2

q)
n−3. Thus, using x ≡ m̃2

g/m̃
2
q,

it is customary to define

In ≡ i

(4π)2(m̃2
q)
n−2

fn(x), Ĩn ≡ i

(4π)2(m̃2
q)
n−3

f̃n(x). (B6)

The unitarity of the mixing matrix implies that

∑

i

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) =

∑

j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) = 0. (B7)

We learn that the terms that are proportional f4, f̃4, f5 and f̃5 vanish in their contribution to

M12. When δm̃2
i ≪ m̃2

q for all i, the leading contributions to M12 come from f6 and f̃6. We

learn that for quasi-degenerate squarks, the leading contribution is quadratic in the small

mass-squared difference. The functions f6(x) and f̃6(x) are given by

f6(x) =
6(1 + 3x) lnx+ x3 − 9x2 − 9x+ 17

6(1 − x)5
,

f̃6(x) =
6x(1 + x) ln x− x3 − 9x2 + 9x+ 1

3(1 − x)5
. (B8)

For example, with x = 1, f6(1) = −1/20 and f̃6 = +1/30; with x = 2.33, f6(2.33) = −0.015

and f̃6 = +0.013.
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To further simplify things, let us consider a two generation case. Then

MD
12 ∝ 2(Ku

21K
u∗
11 )2(δm̃2

1)
2 + 2(Ku

22K
u∗
12 )2(δm̃2

2)
2 + (Ku

21K
u∗
11K

u
22K

u∗
12 )(δm̃2

1 + δm̃2
2)

2

= (Ku
21K

u∗
11 )2(m̃2

2 − m̃2
1)

2. (B9)

We thus rewrite Eq. (B1) for the case of quasi-degenerate squarks:

MD
12 =

α2
smDf

2
DBDηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Ku
21K

u∗
11 )2. (B10)

For example, for x = 1, 11f̃6(x) + 4xf6(x) = +0.17. For x = 2.33, 11f̃6(x) + 4xf6(x) =

+0.003.

APPENDIX C: CP VIOLATION IN NEUTRAL B DECAYS TO FINAL CP

EIGENSTATES

We define decay amplitudes ofB (which could be charged or neutral) and its CP conjugate

B to a multi-particle final state f and its CP conjugate f as

Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , (C1)

where H is the Hamiltonian governing weak interactions. The action of CP on these states

introduces phases ξB and ξf according to

CP |B〉 = e+iξB |B〉 , CP |f〉 = e+iξf |f〉 ,

CP |B〉 = e−iξB |B〉 , CP |f〉 = e−iξf |f〉 , (C2)

so that (CP )2 = 1. The phases ξB and ξf are arbitrary and unphysical because of the flavor

symmetry of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, then

Af and Af have the same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (C3)

A state that is initially a superposition of B0 and B0, say

|ψ(0)〉 = a(0)|B0〉 + b(0)|B0〉 , (C4)

will evolve in time acquiring components that describe all possible decay final states

{f1, f2, . . .}, that is,

|ψ(t)〉 = a(t)|B0〉 + b(t)|B0〉 + c1(t)|f1〉 + c2(t)|f2〉 + · · · . (C5)
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If we are interested in computing only the values of a(t) and b(t) (and not the values of

all ci(t)), and if the times t in which we are interested are much larger than the typical

strong interaction scale, then we can use a much simplified formalism [45]. The simplified

time evolution is determined by a 2×2 effective Hamiltonian H that is not Hermitian, since

otherwise the mesons would only oscillate and not decay. Any complex matrix, such as H,

can be written in terms of Hermitian matrices M and Γ as

H = M − i

2
Γ . (C6)

M and Γ are associated with (B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and

on-shell (absorptive) intermediate states, respectively. Diagonal elements of M and Γ are

associated with the flavor-conserving transitions B0 → B0 and B0 → B0 while off-diagonal

elements are associated with flavor-changing transitions B0 ↔ B0.

The eigenvectors of H have well defined masses and decay widths. We introduce complex

parameters pL,H and qL,H to specify the components of the strong interaction eigenstates,

B0 and B0, in the light (BL) and heavy (BH) mass eigenstates:

|BL,H〉 = pL,H |B0〉 ± qL,H |B0〉 (C7)

with the normalization |pL,H|2 + |qL,H|2 = 1. If either CP or CPT is a symmetry of H
(independently of whether T is conserved or violated) then M11 = M22 and Γ11 = Γ22, and

solving the eigenvalue problem for H yields pL = pH ≡ p and qL = qH ≡ q with

(

q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
. (C8)

From now on we assume that CPT is conserved. If either CP or T is a symmetry of H
(independently of whether CPT is conserved or violated), then M12 and Γ12 are relatively

real, leading to
(

q

p

)2

= e2iξB ⇒
∣

∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

= 1 , (C9)

where ξB is the arbitrary unphysical phase introduced in Eq. (C2).

The real and imaginary parts of the eigenvalues of H corresponding to |BL,H〉 repre-

sent their masses and decay-widths, respectively. The mass difference ∆mB and the width

difference ∆ΓB are defined as follows:

∆mB ≡MH −ML, ∆ΓB ≡ ΓH − ΓL. (C10)
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Note that here ∆mB is positive by definition, while the sign of ∆ΓB is to be experimentally

determined. The average mass and width are given by

mB ≡ MH +ML

2
, ΓB ≡ ΓH + ΓL

2
. (C11)

It is useful to define dimensionless ratios x and y:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (C12)

Solving the eigenvalue equation gives

(∆mB)2 − 1

4
(∆ΓB)2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ

∗
12). (C13)

All CP-violating observables in B and B decays to final states f and f can be expressed in

terms of phase-convention-independent combinations of Af , Af , Af and Af , together with,

for neutral-meson decays only, q/p. CP violation in charged-meson decays depends only

on the combination |Af/Af |, while CP violation in neutral-meson decays is complicated by

B0 ↔ B0 oscillations and depends, additionally, on |q/p| and on λf ≡ (q/p)(Af/Af).

For neutral D, B, and Bs mesons, ∆Γ/Γ ≪ 1 and so both mass eigenstates must be

considered in their evolution. We denote the state of an initially pure |B0〉 or |B0〉 af-

ter an elapsed proper time t as |B0
phys(t)〉 or |B0

phys(t)〉, respectively. Using the effective

Hamiltonian approximation, we obtain

|B0
phys(t)〉 = g+(t) |B0〉 − q

p
g−(t)|B0〉,

|B0
phys(t)〉 = g+(t) |B0〉 − p

q
g−(t)|B0〉 , (C14)

where

g±(t) ≡ 1

2

(

e−imH t−
1

2
ΓH t ± e−imLt−

1

2
ΓLt
)

. (C15)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=
(

|Af |2 + |(q/p)Af |2
)

cosh(yΓt) +
(

|Af |2 − |(q/p)Af |2
)

cos(xΓt)

+ 2Re((q/p)A∗
fAf) sinh(yΓt) − 2 Im((q/p)A∗

fAf) sin(xΓt) , (C16)

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf

=
(

|(p/q)Af |2 + |Af |2
)

cosh(yΓt) −
(

|(p/q)Af |2 − |Af |2
)

cos(xΓt)

+ 2Re((p/q)AfA∗
f) sinh(yΓt) − 2 Im((p/q)AfA

∗
f) sin(xΓt) , (C17)
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where Nf is a common normalization factor. Decay rates to the CP-conjugate final state f

are obtained analogously, with Nf = Nf and the substitutions Af → Af and Af → Af in

Eqs. (C16,C17). Terms proportional to |Af |2 or |Af |2 are associated with decays that occur

without any net B ↔ B oscillation, while terms proportional to |(q/p)Af |2 or |(p/q)Af |2

are associated with decays following a net oscillation. The sinh(yΓt) and sin(xΓt) terms of

Eqs. (C16,C17) are associated with the interference between these two cases. Note that, in

multi-body decays, amplitudes are functions of phase-space variables. Interference may be

present in some regions but not others, and is strongly influenced by resonant substructure.

One possible manifestation of CP-violating effects in meson decays [46] is in the interfer-

ence between a decay without mixing, B0 → f , and a decay with mixing, B0 → B0 → f

(such an effect occurs only in decays to final states that are common to B0 and B0, including

all CP eigenstates). It is defined by

Im(λf ) 6= 0 , (C18)

with

λf ≡
q

p

Af
Af

. (C19)

This form of CP violation can be observed, for example, using the asymmetry of neutral

meson decays into final CP eigenstates fCP

AfCP (t) ≡ dΓ/dt[B0
phys(t) → fCP ] − dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (C20)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation for B mesons), AfCP has a

particularly simple form [47–49]:

Af(t) = Sf sin(∆mt) − Cf cos(∆mt),

Sf ≡ 2 Im(λf )

1 + |λf |2
, Cf ≡

1 − |λf |2
1 + |λf |2

, (C21)

Consider the B → f decay amplitude Af , and the CP conjugate process, B → f ,

with decay amplitude Af . There are two types of phases that may appear in these decay

amplitudes. Complex parameters in any Lagrangian term that contributes to the amplitude

will appear in complex conjugate form in the CP-conjugate amplitude. Thus their phases

appear in Af and Af with opposite signs. In the Standard Model, these phases occur only

in the couplings of the W± bosons and hence are often called “weak phases”. The weak
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phase of any single term is convention dependent. However, the difference between the weak

phases in two different terms in Af is convention independent. A second type of phase can

appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is

the possible contribution from intermediate on-shell states in the decay process. Since these

phases are generated by CP-invariant interactions, they are the same in Af and Af . Usually

the dominant rescattering is due to strong interactions and hence the designation “strong

phases” for the phase shifts so induced. Again, only the relative strong phases between

different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP-

transformation phases of Eq. (C3). Those spurious phases are due to an arbitrary choice of

phase convention, and do not originate from any dynamics or induce any CP violation. For

simplicity, we set them to zero from here on.

It is useful to write each contribution ai to Af in three parts: its magnitude |ai|, its

weak phase φi, and its strong phase δi. If, for example, there are two such contributions,

Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),

Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (C22)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (C23)

Each of the phases appearing in Eqs. (C22,C23) is convention dependent, but combinations

such as δ1 − δ2, φ1 − φ2, φM − φΓ and φM + φ1 − φ1 (where φ1 is a weak phase contributing

to Af ) are physical.

In the approximations that only a single weak phase contributes to decay, Af =

|af |ei(δf+φf ), and that |Γ12/M12| = 0, we obtain |λf | = 1 and the CP asymmetries in decays

to a final CP eigenstate f [Eq. (C20)] with eigenvalue ηf = ±1 are given by

AfCP (t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf). (C24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are

involved in the extraction of its value from Im(λf ).
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APPENDIX D: NEUTRINO FLAVOR TRANSITIONS

1. Neutrinos in vacuum

Neutrino oscillations in vacuum [50] arise since neutrinos are massive and mix. In other

words, the neutrino state that is produced by electroweak interactions is not a mass eigen-

state. The weak eigenstates να (α = e, µ, τ denotes the charged lepton mass eigenstates

and their neutrino doublet-partners) are linear combinations of the mass eigenstates νi

(i = 1, 2, 3):

|να〉 = U∗
αi|νi〉. (D1)

After traveling a distance L (or, equivalently for relativistic neutrinos, time t), a neutrino

originally produced with a flavor α evolves as follows:

|να(t)〉 = U∗
αi|νi(t)〉. (D2)

It can be detected in the charged-current interaction να(t)N
′ → ℓβN with a probability

Pαβ = |〈νβ|να(t)〉|2 =

∣

∣

∣

∣

∣

∣

3
∑

i=1

3
∑

j=1

U∗
αiUβj〈νj(0)|νi(t)〉

∣

∣

∣

∣

∣

∣

2

. (D3)

We follow the analysis of ref. [32]. We use the standard approximation that |ν〉 is a plane

wave (for a pedagogical discussion of the possible quantum mechanical problems in this naive

description of neutrino oscillations we refer the reader to [51, 52]), |νi(t)〉 = e−iEit|νi(0)〉. In

all cases of interest to us, the neutrinos are relativistic:

Ei =
√

p2
i +m2

i ≃ pi +
m2
i

2Ei
, (D4)

where Ei and mi are, respectively, the energy and the mass of the neutrino mass eigenstate.

Furthermore, we can assume that pi ≃ pj ≡ p ≃ E. Then, we obtain the following transition

probability:

Pαβ = δαβ = 4
2
∑

i=1

3
∑

j=i+1

Re
(

UαiU
∗
βiU

∗
αjUβj

)

sin2 xij , (D5)

where xij ≡ ∆m2
ijL/(4E), ∆m2

ij = m2
i −m2

j and L = t is the distance between the source

(that is, the production point of να) and the detector (that is, the detection point of νβ). In

deriving Eq. (D5) we used the orthogonality relation 〈νj(0)|νi(0)〉 = δij . It is convenient to

use the following units:

xij = 1.27
∆m2

ij

eV 2

L/E

m/MeV
. (D6)
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TABLE I: Characteristic values of L and E for various neutrino sources and experiments.

Experiment L (m) E (MeV) ∆m2 (eV2)

Solar 1010 1 10−10

Atmospheric 104 − 107 102 − 105 10−1 − 10−4

Reactor 102 − 103 1 10−2 − 10−3

Kamland 105 1 10−5

Accelerator 102 103 − 104 ∼> 10−1

Long-baseline Accelerator 105 − 106 104 10−2 − 10−3

The transition probability [Eq. (D5)] has an oscillatory behavior, with oscillation lengths

Losc
0,ij =

4πE

∆m2
ij

(D7)

and amplitude that is proportional to elements of the mixing matrix. Thus, in order to

have oscillations, neutrinos must have different masses (∆m2
ij 6= 0) and they must mix

(UαiUβi 6= 0).

An experiment is characterized by the typical neutrino energy E and by the source-

detector distance L. In order to be sensitive to a given value of ∆m2
ij , the experiment has

to be set up with E/L ≈ ∆m2
ij (L ∼ Losc

0,ij). The typical values of L/E for different types of

neutrino sources and experiments are summarized in Table I.

If (E/L) ≫ ∆m2
ij (L ≪ Losc

0,ij), the oscillation does not have time to give an apprecia-

ble effect because sin2 xij ≪ 1. The case of (E/L) ≪ ∆m2
ij (L ≫ Losc

0,ij) requires more

careful consideration. One must take into account that, in general, neutrino beams are not

monochromatic. Thus, rather than measuring Pαβ, the experiments are sensitive to the

average probability

〈Pαβ〉 = δαβ − 4
2
∑

i=1

3
∑

j=i+1

Re
(

UαiU
∗
βiU

∗
αjUβj

)

〈sin2 xij〉. (D8)

For L ≫ Losc
0,ij , the oscillation phase goes through many cycles before the detection and is

averaged to 〈sin2 xij〉 = 1/2.

For a two neutrino case,

Pαβ = δαβ − (2δαβ − 1) sin2 2θ sin2 x. (D9)
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2. Neutrinos in matter

a. The effective potential

When neutrinos propagate in dense matter, the interactions with the medium affect their

properties. These effects are either coherent or incoherent. For purely incoherent ν − p

scattering, the characteristic cross section is very small,

σ ∼ G2
Fs

π
∼ 10−43 cm2

(

E

1 MeV

)2

. (D10)

The smallness of this cross section is demonstrated by the fact that if a beam of 1010

neutrinos with E ∼ 1 MeV was aimed at Earth, only one would be deflected by the Earth’s

matter. It may seem then that for neutrinos matter is irrelevant. However, one must

take into account that Eq. (D10) does not contain the contribution from forward elastic

coherent interactions. In coherent interactions, the medium remains unchanged and it is

possible to have interference of scattered and unscattered neutrino waves which enhances

the effect. Coherence further allows one to decouple the evolution equation of neutrinos from

the equations of the medium. In this approximation, the effect of the medium is described

by an effective potential which depends on the density and composition of the matter [53].

Consider, for example, the evolution of νe in a medium with electrons. The effective

low-energy Hamiltonian describing the relevant neutrino interactions is given by

HW =
GF√

2
[νe(x)γα(1 − γ5)e(x)] × [e(x)γα(1 − γ5)νe(x)] . (D11)

The effective charged-current Hamiltonian due to the electrons in the medium is

H
(e)
C =

GF√
2

∫

d3pef(Ee, T )〈〈e(s, pe)|e(x)γα(1 − γ5)νe(x)νe(x)γα(1 − γ5)e(x)|e(s, pe)〉〉

=
GF√

2
νe(x)γα(1 − γ5)νe(x)

∫

d3pef(Ee, T )〈〈e(s, pe)|e(x)γα(1 − γ5)e(x)|e(s, pe)〉〉,

where s is the electron spin and pe its momentum. Coherence implies that s, pe are the same

for the initial and final electrons.

Expanding the electron fields e(x) in plane waves and using a†s(pe)as(pe) = N (s)
e (pe) (the

number operator), we obtain

〈〈e(s, pe) | e(x)γα(1 − γ5)e(x)|e(s, pe)〉〉 = Ne(pe)
1

2

∑

s

u(s)(pe)γα(1 − γ5)u(s)(pe)

=
Ne(pe)

2
Tr

[

me+ 6 p
2Ee

γα(1 − γ5)

]

= Ne(pe)
pαe
Ee
. (D12)
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Isotropy implies that
∫

d3pe~pef(Ee, T ) = 0. Thus only the p0 term contributes upon inte-

gration, with
∫

d3pef(Ee, T )Ne(pe) = Ne (the electron number density). We obtain:

H
(e)
C =

GFNe√
2
νe(x)γ0(1 − γ5)νe(x). (D13)

The effective potential for νe induced by its charged-current interactions with electrons in

matter is then given by

VC = 〈νe|
∫

d3xH
(e)
C |νe〉 =

GFNe√
2

=
√

2GFNe. (D14)

For νe the sign of V is reversed. The potential can also be expressed in terms of the matter

density ρ:

VC = 7.6
Ne

Np +Nn

ρ

1014 g/cm3 eV. (D15)

Two examples that are relevant to observations are the following:

• At the Earth’s core ρ ∼ 10 g/cm3 and V ∼ 10−13 eV ;

• At the solar core ρ ∼ 100 g/cm3 and V ∼ 10−12 eV .

b. Evolution equation

Consider a state that is an admixture of two neutrino species, |νe〉 and |νa〉 or, equivalently,

|ν1〉 and |ν2〉:

|Φ(x) = Φe(x)|νe〉 + Φa(x)|νa〉

= Φ1(x)|ν1〉 + Φ2(x)|ν2〉. (D16)

The evolution of Φ in a medium is described by a system of coupled Dirac equations:

EΦ1 =

(

h̄

i
γ0γ1

∂

∂x
+ γ0m1 + V11

)

Φ1 + V12Φ2,

EΦ2 =

(

h̄

i
γ0γ1

∂

∂x
+ γ0m2 + V22

)

Φ2 + V12Φ1. (D17)

The Vij terms give the effective potential for neutrino mass eigenstates. They can be simply

derived from the effective potential for interaction eigenstates [such as Vee of Eq. (D14)]:

Vij = 〈νi|
∫

d3xHmedium
int |νj〉 = UiαVααU

∗
jα. (D18)
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We decompose the neutrino state: Φi(x) = Ci(x)φi(x), where φi(x) is the Dirac spinor part

satisfying

(γ0γ1{[E − Vii(x)]
2 −m2

i }1/2 + γ0mi + Vii) = Eφi(x). (D19)

We make the following approximations:

1. The scale over which V changes is much larger than the microscopic wavelength of the

neutrino, (∂V/∂x)V ≪ h̄m/E2.

2. Expanding to first order in V implies that V12γ0γ1φ2 ≃ φ1, V12γ0γ1φ1 ≃ φ2, and

{[E − Vii(x)]
2 −m2

i }1/2 ≃ E − Vii(x) −m2
i /2E.

From 1 we find that the Dirac equations take the form

EC1φ1 =
h̄

i
γ0γ1

∂C1

∂x
φ1 + (γ0m1 + V11)C1φ1 + V12C2φ2,

EC2φ2 =
h̄

i
γ0γ1

∂C2

∂x
φ2 + (γ0m2 + V22)C2φ2 + V12C1φ1. (D20)

Then multiplying by γ0γ1 and using the equation of motion of φ and 2, we can drop the

dependence on the spinor φ and obtain

h̄

i

∂C1

∂x
=

(

E − V11(x) −
m2

1

2E

)

C1 − V12C2,

h̄

i

∂C2

∂x
=

(

E − V22(x) −
m2

2

2E

)

C2 − V12C1. (D21)

Changing notations Ci,α(x) → νi,α(x) (and h̄ = 1), removing the diagonal piece that is

proportional to E, and rotating to the flavor basis, we can rewrite Eq. (D21) in matrix form

[53]:

−i ∂
∂x

(

νe

νa

)

= − 1

2E
M2

w

(

νe

νa

)

, (D22)

where we have defined an effective mass matrix in matter,

M2
w =

1

2

(

m2
1 +m2

2 + 4EVe − ∆m2 cos 2θ ∆m2 sin 2θ

∆m2 sin 2θ m2
1 +m2

2 + 4EVa + ∆m2 cos 2θ

)

, (D23)

with ∆m2 = m2
2 −m2

1.

We define the instantaneous mass eigenstates in matter, νmi , as the eigenstates of Mw for a

fixed value of x. They are related to the interaction eigenstates by a unitary transformation,

(

νe

νa

)

= U(θm)

(

νm1

νm2

)

=

(

cos θm sin θm

− sin θm cos θm

)(

νm1

νm2

)

. (D24)
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The eigenvalues of Mw, that is, the effective masses in matter, are given by [53, 54]

µ2
1,2 =

m2
1 +m2

2

2
+ E(Ve + Va) ∓

1

2

√

(∆m2 cos 2θ −A)2 + (∆m2 sin 2θ)2, (D25)

while the mixing angle in matter is given by

tan 2θm =
∆m2 sin 2θ

∆m2 cos 2θ − A
, (D26)

where

A ≡ 2E(Ve − Va). (D27)

The instantaneous mass eigenstates νmi are, in general, not energy eigenstates: they mix

in the evolution. The importance of this effect is controlled by the relative size of 4Eθ̇m(t)

with respect to µ2
2(t) − µ2

1(t). When the latter is much larger than the first, νmi behave

approximately as energy eigenstates and do not mix during the evolution. This is the

adiabatic transition approximation. The adiabaticity condition reads

µ2
2(t) − µ2

1(t) ≫ 2EA∆m2 sin 2θ
∣

∣

∣Ȧ/A
∣

∣

∣ . (D28)

The transition probability for the adiabatic case is given by

Pee(t) =

∣

∣

∣

∣

∣

∑

i

Uei(θ)U
∗
ei(θp) exp

(

− i

2E

∫ t

t0
µ2
i (t

′)dt′
)

∣

∣

∣

∣

∣

2

, (D29)

where θp is the mixing angle at the production point. For the case of two-neutrino mixing,

Eq. (D29) takes the form

Pee(t) = cos2 θp cos2 θ + sin2 θp sin2 θ +
1

2
sin 2θp sin 2θ cos

(

δ(t)

2E

)

, (D30)

where

δ(t) =
∫ t

tp
[µ2

2(t
′) − µ2

1(t
′)]dt′. (D31)

For µ2
2(t)−µ2

1(t) ≫ E, the last term in Eq. (D30) is averaged out and the survival probability

takes the form

Pee =
1

2
[1 + cos 2θp cos 2θ]. (D32)

The relative importance of the MSW matter term [A of Eq. (D27)] and the kinematic

vacuum oscillation term in the Hamiltonian [the off-diagonal term in Eq. (D23)] can be
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parametrized by the quantity βMSW, which represents the ratio of matter to vacuum effects

(see, for example [55]). From Eq. (D23) we see that the appropriate ratio is

βMSW =
2
√

2GFneEν
∆m2

. (D33)

The quantity βMSW is the ratio between the oscillation length in matter and the oscillation

length in vacuum. In convenient units, βMSW can be written as

βMSW = 0.19
(

Eν
1 MeV

)

(

µeρ

100 g cm−3

)(

8 × 10−5 eV 2

∆m2

)

. (D34)

Here µe is the electron mean molecular weight (µe ≈ 0.5(1 + X), where X is the mass

fraction of hydrogen) and ρ is the total density. If βMSW ∼< cos 2θ, the survival probability

corresponds to vacuum averaged oscillations [see Eq. (D9)],

Pee =
(

1 − 1

2
sin2 2θ

)

(βMSW < cos 2θ, vacuum). (D35)

If βMSW > 1, the survival probability corresponds to matter dominated oscillations [see Eq.

(D32)],

Pee = sin2 θ (βMSW > 1, MSW). (D36)

The survival probability is approximately constant in either of the two limiting regimes,

βMSW < cos 2θ and βMSW > 1. There is a strong energy dependence only in the transition

region between the limiting regimes.

For the Sun, Ne(R) = Ne(0) exp(−R/r0), with r0 ≡ R⊙/10.54 = 6.6 × 107 m = 3.3 ×
1014 eV −1. Then, the adiabaticity condition for the Sun reads

(∆m2/eV 2) sin2 2θ

(E/MeV ) cos 2θ
≫ 3 × 10−9. (D37)
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