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Basic Idea

You can make quantitative predictions of observable

phenomena without knowing everything.

The computations have some small (non-zero) error.

Can improve on the accuracy by adding a finite

number of additional parameters, in a systematic way.

Key concept is locality — as a result one can

factorize quantities into some short distance

parameters (coefficients in the Lagrangian), and long

distance operator matrix elements.

PITP, July 2007 – p.3



Examples

Chemistry and atomic physics depend on the

interactions of atoms. The interaction Hamiltonian

contains non-relativistic electrons and nuclei

interacting via a Coulomb potential, plus

electromagnetic radiation.

The only property of the nucleus we need is the

electric charge Z.

The quark structure of the proton, weak interactions,

GUTs, etc. are irrelevant.
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A more accurate calculation includes recoil

corrections and needs mp. The Hyperfine interaction

needs µp

Charge radius, . . .

Weak interactions, . . .

If one is interested in atomic parity violation, weak

interactions are the leading contribution, and cannot

be treated as a small correction.
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Multipole Expansion

The field far away looks just like a point charge.
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Multipole Expansion

Any collection of charges can be described at long

distances by the multipole moment,

V ∝ 1

r

(a

r

)ℓ
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Effective theory is a local quantum field theory with a

finite number of low energy parameters.

There is a systematic expansion in a small

parameters like a/r for the multipole expansion.

[called power counting]

Keep as many terms as you need to reach the desired

accuracy.

It is a quantum theory — one can compute radiative

corrections (loops), renormalize the theory, etc. just

as for QED or QCD.
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EFT is the low-energy limit of a “full theory”

It is not a Lagrangian with form-factors e→ eF (q2/M2)

These are non-local, contain an infinite amount of

information, and lead to a violation of power

counting.

It is not just a series expansion of amplitudes in the

full theory

F (q2/M2) → F (0) + F ′(0)
q2

M2
+ . . .

though it looks like this at tree-level.
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The EFT is an interacting quantum theory in its own

right.

One can compute using it without ever referring to

the full theory from which it came.

The EFT has a different divergence structure from

the full theory. The renormalization procedure is part

of the definition of a field theory, not some irrelevant

detail.
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Examples of EFT

In some cases, one can compute the EFT from a

more fundamental theory (typically, if it is weakly

coupled).

The Fermi theory of weak interactions is an

expansion in p/MW , and can be computed from

the SU(2) × U(1) electroweak theory in powers of

1/MW , αs(MW ), α(MW ) and sin2 θ.

The heavy quark Lagrangian (HQET) can be

computed in powers of αs(mQ) and 1/mQ from

QCD.

NRQCD/NRQED

SCET
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Chiral perturbation theory: Describes the low energy

interactions of mesons and baryons.

The full theory is QCD, but the relation between the

two theories (and the degrees of freedom) is

non-perturbative.

χPT has parameters that are fit to experiment. Has

been enormously useful.

Standard model — don’t know the more fundamental

theory, and we all hope there is one.

Can use EFT ideas to parameterize new physics in

terms of a few operators in studying, for example,

precision electroweak measurements.
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Dependence on high energy

High energy dynamics irrelevant:

H energy levels do not depend on mt — but this

depends on what is held fixed as mt is varied.

Usually, one takes low energy parameters such as mp,

me, α from low energy experiments, and then uses

them in the Schrödinger equation.

But instead, hold high energy parameters such as

α(µ) and αs(µ) fixed at µ≫ mt.

mt
d

dmt

(

1

α

)

= − 1

3π
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1_
α

µ
mt

The proton mass also depends on the top quark

mass,

mp ∝ m
2/27
t
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There are constraints from the symmetry of the high

energy theory:

For example, the chiral lagrangian preserves C, P and

CP because QCD does.

More interesting case: Non-relativistic quantum

mechanics satisfies the spin-statistics theorem

because of causality in QED.
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Reasons for using EFT

Every theory is an effective theory: Can compute

in the standard model, even if there are new

interactions at (not much) higher energies.

Greatly simplifies the calculation by only including

the relevant interactions: Gives an explicit power

counting estimate for the interactions.

Deal with only one scale at a time: For example

the B meson decay rate depends on MW , mb and

ΛQCD, and one can get horribly complicated

functions of the ratios of these scales. In an

EFT, deal with only one scale at a time, so there

are no functions, only constants.
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Makes symmetries manifest: QCD has

spontaneously broken chiral symmetry, which is

manifest in the chiral Lagrangian, and heavy

quark spin-flavor symmetry which is manifest in

HQET. These symmetries are only true for

certain limits of QCD, and so are hidden in the

QCD Lagrangian.

Sum logs: Use renormalization group improved

perturbation theory. The running of constants is

not small, e.g. αs(MZ) ∼ 0.118 and αs(mb) ∼ 0.22.

Fixed order perturbation theory breaks down.

Sum logs of the ratios of scales (such as MW/mb).
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Efficient way to characterize new physics: Can

include the effects of new physics in terms of

higher dimension operators. All the information

about the dynamics is encoded in the

coefficients. [This also shows it is difficult to

discover new physics using low-energy

measurements.]

Include non-perturbative effects: Can include

ΛQCD/m corrections in a systematic way through

matrix elements of higher dimension operators.

The perturbative corrections and power

corrections are tied together. [Renormalons]
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Dimensional Analysis

Effective Lagrangian (neglect topological terms)

L =
∑

ciOi =
∑

LD

is a sum of local, gauge and Lorentz invariant

operators.

The functional integral has

eiS

so S is dimensionless.
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Kinetic terms:

S =

∫

ddx ψ̄ i/D ψ, S =

∫

ddx
1

2
∂µφ ∂

µφ

so

0 = −d+ 2 [ψ] + 1, 0 = −d+ 2 [φ] + 2

Dimensions given by

[φ] = (d−2)/2, [ψ] = (d−1)/2, [D] = 1, [gAµ] = 1

Field strength Fµν = ∂µAν − ∂νAµ + . . . so Aµ has the

same dimension as a scalar field.

[g] = 1 − (d− 2)/2 = (4 − d)/2
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In d = 4,

[φ] = 1, [ψ] = 3/2, [Aµ] = 1, [D] = 1, [g] = 0

Only Lorentz invariant renormalizable interactions

(with D ≤ 4) are

D = 0 : 1

D = 1 : φ

D = 2 : φ2

D = 3 : φ3, ψ̄ψ

D = 4 : φψ̄ψ, φ4

and kinetic terms which include gauge interactions.
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Renormalizable interactions have coefficients with

mass dimension ≥ 0.

In d = 2,

[φ] = 0, [ψ] = 1/2, [Aµ] = 0, [D] = 1, [g] = 1

so an arbitrary potential V (φ) is renormalizable. Also
(

ψ̄ψ
)2

is renormalizable. In d = 6,

[φ] = 2, [ψ] = 5/2, [Aµ] = 2, [D] = 1, [g] = −1

Only allowed interaction is φ3.
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What Fields to use for EFT?

Not always obvious: Low energy QCD described in

terms of meson fields.

NRQCD/NRQED and SCET: Naive guess does not

work. Need multiple gluon fields.
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Effective Lagrangian:

LD =
OD

MD−d

so in d = 4,

Left = LD≤4 +
O5

M
+
O6

M2
+ . . .

An infinite number of terms (and parameters)
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Power Counting

If one works at some typical momentum scale p, and

neglects terms of dimension D and higher, then the

error in the amplitudes is of order

( p

M

)D−4

A non-renormalizable theory is just as good as a

renormalizable theory for computations, provided one

is satisfied with a finite accuracy.

Usual renormalizable case given by taking M → ∞.
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Photon-Photon Scattering

(a) (b)

L = −1

4
FµνF

µν +
α2

m4
e

[

c1 (FµνF
µν)2 + c2

(

FµνF̃
µν
)2
]

.

(Terms with only three field strengths are forbidden

by charge conjugation symmetry.)

e4 from vertices, and 1/16π2 from the loop.
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An explicit computation gives

c1 =
1

90
, c2 =

7

90
.

Scattering amplitude

A ∼ α2ω4

m4
e

and

σ ∼
(

α2ω4

m4
e

)2
1

ω2

1

16π
∼ α4ω6

16πm8
e

× 15568

22275
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Proton Decay

The lowest dimension operator in the standard model

which violates baryon number is dimension 6,

L ∼ qqql

M2
G

This gives the proton decay rate p→ e+π0 as

Γ ∼
m5

p

16πM4
G

or

τ ∼
(

MG

1015 GeV

)4

× 1030 years
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Neutrino Masses

The lowest dimension operator in the standard model

which gives a neutrino mass is dimension five,

L ∼ (HL)2

MS

This gives a Majorana neutrino mass of

mν ∼ v2

MS

or a seesaw scale of 6 × 1015 GeV for mν ∼ 10−2 eV.

Absolute scale of masses not known. Only ∆m2

measured.
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Rayleigh Scattering

L = ψ†

(

i∂t −
p2

2M

)

ψ + a3
0 ψ

†ψ
(

c1E
2 + c2B

2
)

A ∼ cia
3
0ω

2

σ ∝ a6
0 ω

4.

Scattering goes as the fourth power of the frequency,

so blue light is scattered about 16 times mores

strongly than red.
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Low energy weak interactions

− ig√
2
Vij q̄i γ

µ PL qj,

u

c

d

b

W

A =

(

ig√
2

)2

VcbV
∗
ud (c̄ γµ PL b)

(

d̄ γν PL u
)

(

−igµν

p2 −M2
W

)

,
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1

p2 −M2
W

= − 1

M2
W

(

1 +
p2

M2
W

+
p4

M4
W

+ . . .

)

,

and retaining only a finite number of terms.

A =
i

M2
W

(

ig√
2

)2

VcbV
∗
ud (c̄ γµ PL b)

(

d̄ γµ PL u
)

+ O
(

1

M4
W

)

.

L = −4GF√
2
VcbV

∗
ud (c̄ γµ PL b)

(

d̄ γµ PL u
)

+ O
(

1

M4
W

)

,

GF√
2
≡ g2

8M2
W

.
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Effective Lagrangian for µ decay

L = −4GF√
2

(ē γµ PL νe) (ν̄µ γ
µ PL µ) + O

(

1

M4
W

)

,

Gives the standard result for the muon lifetime at

lowest order,

Γµ =
G2

Fm
5
µ

192π3
.

The advantages of EFT show up in higher order

calculations
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Loops

Gives a contribution

∫

d4k

(2π)4

1

k2 −M2
W

1

k2 −m2
∼ 1

M2
W

∫

d4k

(2π)4

1

k2 −m2
∼ Λ2

M2
W

∼ O (1)

Similarly, a dimension eight operator has vertex

k2/M4
W , and gives a contribution

I ′ ∼ 1

M4
W

∫

d4k
k2

k2 −m2
∼ Λ4

M4
W

∼ O (1)
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Would need to know the entire effective Lagrangian,

since all terms are equally important. The reason for

this breakdown is using a cutoff procedure with a

dimensionful parameter Λ.

More generally, need to make sure that dimensionful

parameters at the high scale do not occur in the

numerator in Feynman diagrams.

In doing weak interactions, one should not have MG

or MP appear in the numerator.

Need a renormalization scheme which maintains the

power counting.
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MS

Need to use a mass independent subtraction scheme

such as MS: µ can only occur in logarithms, so

1

M2
W

∫

d4k
1

k2 −m2
∼ m2

M2
W

log
µ2

m2
,

1

M4
W

∫

d4k
k2

k2 −m2
∼ m4

M4
W

log
µ2

m2
,

Expanding 1/(k2 −M2
W ) in a power series ensures that

there is no pole for k ∼MW , and so MW cannot

appear in the numerator. Dimensional regularization

is like doing integrals using residues. Relevant scales

given by poles of the denominator.
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Expanding does not commute with loop integration

∫

ddk

(2π)d

1

(k2 −m2)(k2 −M2)

=
i

16π2

[

1

ǫ
+ log

µ2

M2
+
m2 log(m2/M2)

M2 −m2
+ 1

]

∫

ddk

(2π)d

1

(k2 −m2)

[

− 1

M2
− k2

M4
− . . .

]

=
i

16π2

[

−1

ǫ

m2

M2 −m2
+

m2

M2 −m2
log

m2

µ2
− m2

M2 −m2

]
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Missing the non-analytic terms in M.

The 1/ǫ terms do not have to agree, they are

cancelled by counterterms which differ in the full and

EFT. The two theories have different anomalous

dimensions.

The term non-analytic in the IR scale, log(m2) agrees

in the two theories. This is the part which must be

reproduced in the EFT. The analytic parts are local,

and can be included as matching contributions to the

Lagrangian.
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The difference between the finite parts of the two

results is

i

16π2

[

log
µ2

M2
+
m2 log(µ2/M2)

M2 −m2
+

M2

M2 −m2

]

=
i

16π2

[(

log
µ2

M2
+ 1

)

+
m2

M2

(

log
µ2

M2
+ 1

)

+ . . .

]

The terms in parentheses are matching coefficients

to a coefficient of order 1, order 1/M2, etc. They are

analytic in m.

Note how logM/m→ logM/µ+ log µ/m, with the first

part in the matching, and the second part in the

EFT.
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Power Counting Formula

Manifest power counting in p/M.

Loop graphs consistent with the power counting,

since one can never get any M’s in the numerator.

If the vertices have 1/Ma, 1/M b, etc. then any

amplitude (including loops) will have

1

Ma

1

M b
. . . =

1

Ma+b+...

Correct dimensions due to factors of the low scale in

the numerator, represented generically by p. (Could

be a mass)
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Only a finite number of terms to any given order.

Order 1/M: L5 at tree level

Order 1/M2: L6 at tree level,

or loop graphs with two insertions of L5.

General power counting result: you can count the

powers of M. You can also count powers of p

[Weinberg power counting formula for χPT]

A ∼ pr, r =
∑

k

nk(k − 4)

where nk is the number of vertices of order pk.
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Decoupling

Heavy particles decouple from low energy physics.

Obvious?

Not explicit in a mass independent scheme such as

MS.

p p

i
e2

2π2

(

pµpν − p2gµν

)

[

1

6ǫ
−
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

]

and we want to look at p2 ≪ m2.

The graph is UV divergent.
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Momentum Subtraction Scheme

Note that renormalization involves doing the

integrals, and then performing a subtraction using

some scheme to render the amplitudes finite.

Subtract the value of the graph at the Euclidean

momentum point p2 = −M2 (the 1/ǫ drops out)

−i e
2

2π2

(

pµpν − p2gµν

)

[
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

m2 +M2x(1 − x)

]

.

β (e) = −e
2
M

d

dM

e2

2π2

[
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

m2 +M2x(1 − x)

]

=
e3

2π2

∫ 1

0

dx x(1 − x)
M2x(1 − x)

m2 +M2x(1 − x)
.
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m≪M (light fermion):

β (e) ≈ e3

2π2

∫ 1

0

dx x(1 − x) =
e3

12π2
.

M ≪ m (heavy fermion):

β (e) ≈ e3

2π2

∫ 1

0

dx x(1 − x)
M2x(1 − x)

m2
=

e3

60π2

M2

m2
.
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cross-over
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In the MS scheme:

−i e
2

2π2

(

pµpν − p2gµν

)

[
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

]

.

β (e) = −e
2
µ
d

dµ

e2

2π2

[
∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

]

=
e3

2π2

∫ 1

0

dx x(1 − x) =
e3

12π2
,
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−i e
2

2π2

(

pµpν − p2gµν

)

[
∫ 1

0

dx x(1 − x) log
m2

µ2

]

,

Large logs cancel the wrong β-function contributions.

Explicitly integrate out heavy particles and go to an

EFT.

Full theory: Includes fermion with mass m.

EFT: drop the heavy fermion (it no longer

contributes to β)
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p p

Present in theory above m, but not in theory below

m. Assume that p≪ m, so

∫ 1

0

dx x(1 − x) log
m2 − p2x(1 − x)

µ2

=

∫ 1

0

dx x(1 − x)

[

log
m2

µ2
+
p2x(1 − x)

m2
+ . . .

]

=
1

6
log

m2

µ2
+

p2

30m2
+ . . .
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So in theory above m:

i
e2

2π2

(

pµpν − p2gµν

)

[

1

6ǫ
− 1

6
log

m2

µ2
− p2

30m2
+ . . .

]

+ c.t.

Counterterm cancels 1/ǫ term (and also contributes

to the β function).

i
e2

2π2

(

pµpν − p2gµν

)

[

−1

6
log

m2

µ2
− p2

30m2
+ . . .

]
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The log term gives

Z = 1 − e2

12π2
log

m2

µ2

so that in the effective theory,

1

e2
L(µ)

=
1

e2
H(µ)

[

1 − e2
H(µ)

12π2
log

m2

µ2

]

One usually integrates out heavy fermions at µ = m,

so that (at one loop), the coupling constant has no

matching correction.
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The p2 term gives the dimension six operator

−1

4

e2

2π2

1

30m2
Fµν∂

2F µν

and so on.

Even if the structure of the graphs is the same in the

full and effective theories, one still needs to compute

the difference to compute possible matching

corrections, because the integrals need not have the

same value. (next example)

This difference is independent of IR physics, since

both theories have the same IR behavior, so the

matching corrections are IR finite. PITP, July 2007 – p.51



Note that nothing discontinuous is happening to any

physical quantity at m. We have changed our

description of the theory from the full theory

including m to an effective theory without m. By

construction, the EFT gives the same amplitude as

the full theory, so the amplitudes are continuous

through m.

All m dependence in the effective theory is manifest

through the explicit 1/m factors and through

logarithmic dependence in the matching coefficients

(in eL).
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HQET

A.V. Manohar and M.B. Wise: Heavy Quark Physics,

Cambridge University Press (2000)

Will not discuss the theory or its applications in any

detail.

Use it to discuss EFT at one-loop, because all the

calculations can be found in any field theory textbook

which discusses QED at one loop.

The EFT describes a heavy quark with mass mQ

interacting with gluons and light quarks with

momentum k ≪ mQ

Expansion in 1/mQ

PITP, July 2007 – p.53



The full theory is QCD, the heavy quark part is

L = Q̄
(

i /D −mQ

)

Q

In the limit mQ → ∞, the heavy quark does not move

when interacting with the light degrees of freedom.

Even though for finite mQ, the quark does recoil, the

EFT is constructed as a formal expansion in powers

of 1/mQ, expanding about the mQ → ∞ limit. Recoil

effects are taken care of by 1/mQ corrections.

Quark moving with fixed four-velocity vµ

p = mQv
µ + k k ≪ mQ
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Quark Propagator

Look at the quark propagator:

mQv mQv+k

k

i
p/+mQ

p2 −m2
Q + iǫ

p = mv + k, where k is called the residual momentum,

and is of order ΛQCD.
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HQET Propagator

i
mQv/+ k/+mQ

(mQv + k)2 −m2
Q + iǫ

Expanding this in the limit k ≪ mQ gives

i
1 + v/

2k · v + iǫ
+ O

(

k

mQ

)

= i
P+

k · v + iǫ
+ O

(

k

mQ

)

,

with a well defined limit.

P+ ≡ 1 + v/

2
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Gluon Vertex

The quark-gluon vertex

−igT aγµ → −igT avµ,

using the spinors and keeping the leading terms in

1/mQ.

In the rest frame: the coupling is purely that of an

electric charge.
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HQET L0

HQET Lagrangian:

L = h̄v (x) (iD · v)hv (x) ,

hv(x) is the quark field in the effective theory and

satisfies

P+hv (x) = hv (x) .

hv annihilates quarks with velocity v, but does not

create antiquarks

Mainfest spin-flavor symmetry of L
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Dividing up momentum space

v appears explictly in the HQET Lagrangian.

hv describes quarks with velocity v, and momenta

within ΛQCD of mQv.
mQ

ΛQCD

mQv

k

quarks with velocity v′ 6= v are far away in the EFT.

EFT: look at only one box. Full: All of momentum

space.
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1/mQ Lagrangian

L = h̄v (iv ·D)hv + ck
1

2mQ

h̄v (iD⊥)2 hv − cF
g

4mQ

h̄vσαβG
αβhv

The (iD⊥)2
term violates flavor symmetry at order

1/mQ

gσαβG
αβ term violates spin and flavor symmetry at

order 1/mQ

The coefficients ck, cF are fixed by matching, and are

one at tree-level.

One can carry out the expansion to higher order in

1/mQ.
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Field Redefinitions

Field redefinition

hv →
[

1 +
1

mQ

X

]

hv

changes the effective Lagrangian to

L = h̄v (iv ·D)hv +
1

2mQ

h̄v (iD⊥)2 hv −
g

4mQ

h̄vσαβG
αβhv

+
1

mQ

hv

[

(iv ·D)X +X† (iv ·D)
]

hv + O
(

1

m2
Q

)

For X = 1/2 (iv ·D), one can replace

D2
⊥ → D2

⊥ + (v ·D)2 = D2
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Field redefinition change off-shell amplitudes, but not

S-matrix elements. (Follows from the LSZ reduction

formula)

The only thing that the effective theory and full

theory have to agree on are S-matrix elements.

Effective Lagrangians which look different can

reproduce the same S-matrix.
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In a renormalizable field theory, the only field

redefinition used is a rescaling ψ → Z1/2ψ to keep the

kinetic term properly normalized. Non-trivial field

redefinitions would induce non-renormalizable terms

with dimension > 4.

There is more freedom in an EFT, since we already

have higher dimension terms.

Make field redefinitions consistent with the power

counting.
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Equations of Motion

Field redefinitions are related to using the equations

of motion. The shift in L was proportional to (v ·D)ψ,

which is the equation of motion from the leading

order Lagrangian.

By making a transformation on a field, φ→ φ+ ξf(φ),

one shifts the action by ξδS/δφ+ O(ξ2). So generically,

one can eliminate terms proportional to the equation

of motion by a field redefinition.

Note that one is using the classical equations of

motion in the quantum theory (to all orders in ~).
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One loop matching

AM, PRD56 (1997) 230

Look at the gluon coupling to one-loop in the full

theory:

Note that we are matching an S-matrix element, the

scattering of a quark off a low-momentum gluon, so

the wavefunction graph must be included.
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The effective theory graphs are:

and wavefunction renormalization

They look the same, but now

γµ → vµ,
1

/p−mQ

→ 1

v · k
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The amplitude is

Γ(3) = −igT a ū (p′)

[

F1

(

q2
)

γµ + iF2

(

q2
) σµνqν

2m

]

u (p) ,

by current conservation, so we are computing F1,2 at

one loop.

The graphs do not have this form unless you use

background field gauge, which respects gauge

invariance on the external gluon.

On-shell, the graphs are IR divergent.
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What we want is the matching condition. It is given

by the difference of the full and EFT amplitudes, and

takes care of the fact that the two theories differ in

the UV.

The EFT reproduces the IR behavior of the full

theory, and so has the same IR divergences. Thus

the matching corrections to the Lagrangian

coefficients are IR finite, and well-defined.

One way to proceed: Assume the quarks are off-shell,

p2 6= m2 and compute full and EFT theory graphs.

p2 −m2
Q → (mQv + k)2 −m2

Q ∼ 2mQv · k
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Matching using a IR Regulator

The graphs involve parameter integrals of the form

∫

1

m2z − q2x(1 − x)z2 − p2
1xz(1 − z) − p2

2(1 − x)z(1 − z)

Starts to look messy, because there are 4 scales in it.

The EFT graph is also messy. It involves q2, v · k1 and

v · k2 but not m.
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Matching using Dim Reg for the IR

There is a much better procedure using dimensional

regularization

The form factors are functions F (q2/m2, µ2/m2), and

can have non-analytic terms such as log q2. These

non-analytic terms arise from IR physics and so are

the same in the full and EFT theory.

Compute F (q2/m2, µ2/m2, ǫ) at finite ǫ and first expand

in q2/m2 and then take the limit ǫ→ 0. This drops all

non-analytic terms in q, but we don’t care since the

effective Lagrangian is analytic in momentum.
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xǫ = xǫ
∣

∣

∣

x=0
+ ǫxǫ−1

∣

∣

∣

x=0
+ . . .

In dim reg, all the terms are zero.

Then

F = F (0) + q2 dF (q2)

dq2

∣

∣

∣

q2=0
+ . . .

The derivatives of F are integrals of the form

F (n)(0) =

∫

d4k f(k,m)

and depend on only a single scale.
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∫

1

m2z − q2x(1 − x)z2 − p2
1xz(1 − z) − p2

2(1 − x)z(1 − z)

becomes
∫

1

[(m2 − q2x(1 − x)) z2]1+ǫ

→
∫

1

[(m2) z2]1+ǫ , (1 + ǫ)

∫

x(1 − x)z2

[(m2) z2]2+ǫ
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Full Theory Computation

F (n)(0) =
An

ǫUV

+
Bn

ǫIR

+ (An +Bn) log
µ2

m2
+Dn

UV divergences are cancelled by counterterms. IR

divergences are real, and are an indication that you

are not computing something sensible.

The derivatives of F in the EFT are integrals of the

form

F (n)(0) =

∫

d4k f(k, v)

and are scaleless
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EFT Computation

Scaleless integrals vanish in dim regularization.

∫

dd k

(2π)d

1

k4
=

∫

dd k

(2π)d

[

1

k2 (k2 −m2)
− m2

k4 (k2 −m2)

]

=
i

16π2

[

1

ǫUV

− 1

ǫIR

]

= 0,

So the EFT form factor computation is

F (n)(0) =
En

ǫUV

− En

ǫIR

= 0

There can be no log terms and no constants.
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Matching

Matching:

full = eft + c

which gives

An

ǫUV

+
Bn

ǫIR

+(An +Bn) log
µ2

m2
+Dn + c.t. =

En

ǫUV

− En

ǫIR

+ cn + c.t.

The ǫUV terms are cancelled by the counterterms,

which are different in the two theories (An 6= En)

The IR divergence are the same, so Bn = −En.

cn = (An +Bn) log
µ2

m2
+Dn
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Summary

The anomalous dimension in the full theory is −2An

The anomalous dimension in the EFT is −2En = 2Bn

The IR divergence in the full theory is equal to the

UV divergence in the EFT

The matching coefficient is given by the finite part of

the full theory graph.

The coefficient of the log in the matching

computation is the difference of the anomalous

dimensions in the full and EFT theories.
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Summing Logs

Suppose there is an infrared scale in the problem, λ2.

In the presence of this scale, the full theory IR

divergence is cut off at λ2, so the IR log term becomes

B log
λ2

m2
= B log

µ2

m2
+B log

λ2

µ2

This log of a ratio of scales is split into two logs,

each involving a single scale. The first is in the

matching at m, and the second is in the anomalous

dimension in the EFT.
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By matching at µ = m, and then running from m to λ,

one finds no large logs in the matching coefficient c.

The IR logs in the full theory are summed by the

RGE in the effective theory.
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Schematic Calculation

So how does one compute B decay?

1. Match onto the Fermi theory at MW — αs(MW )

2. Run the 4-quark operators to mb —

(αs logMW/mb)
n.

3. Match onto HQET at mb — αs(mb)

4. Run in HQET to some low scale µ ∼ ΛQCD —

(αs logmb/ΛQCD)n

5. Evaluate non-perturbative matrix elements of

operators in L — ΛQCD/mb.

PITP, July 2007 – p.79



One computation has been broken up into

several much simpler calculations, each of which

involves a single scale.

Can sum the logarithms using RG improved

perturbation theory, rather fixed order

perturbation theory (which often breaks down)

Both short distance and long distance corrections

can be included in a systematic way to arbitrary

accuracy (assuming you work hard enough).

It is just the full theory computation, so there is

no model dependence.
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Application to B Decays

Bauer et al. PRD 70 (2004) 094017

m1S
b = 4.68 ± 0.03 GeV, Vcb = (41.4 ± 0.7) × 10−3

PITP, July 2007 – p.81


	Outline
	Basic Idea
	Examples
	
	Multipole Expansion
	Multipole Expansion
	
	
	
	Examples of EFT
	
	Dependence on high energy
	
	
	Reasons for using EFT
	
	
	Dimensional Analysis
	
	
	
	What Fields to use for EFT?
	
	Power Counting
	Photon-Photon Scattering
	
	Proton Decay
	Neutrino Masses
	Rayleigh Scattering
	Low energy weak interactions
	
	
	Loops
	
	$overline {hbox {MS}}$
	
	
	
	Power Counting Formula
	
	Decoupling
	Momentum Subtraction Scheme
	
	
	
	
	
	
	
	
	
	HQET
	
	Quark Propagator
	HQET Propagator
	Gluon Vertex
	HQET $mathcal {L}_0$
	Dividing up momentum space
	$1/m_Q$ Lagrangian
	Field Redefinitions
	
	
	Equations of Motion
	One loop matching
	
	
	
	Matching using a IR Regulator
	Matching using Dim Reg for the IR
	
	
	Full Theory Computation
	EFT Computation
	Matching
	Summary
	Summing Logs
	
	Schematic Calculation
	
	Application to $B$ Decays

