Introduction to the Standard Model

- Origins of the Electroweak Theory
- Gauge Theories
- The Standard Model Lagrangian
- Spontaneous Symmetry Breaking
- The Gauge Interactions
- Problems With the Standard Model

("Structure Of The Standard Model," hep-ph/0304186)

Spontaneous Symmetry Breaking

Gauge invariance implies massless gauge bosons and fermions

Weak interactions short ranged \Rightarrow spontaneous symmetry breaking for mass; also for fermions

Color confinement for QCD \Rightarrow gluons remain massless

Allow classical (ground state) expectation value for Higgs field

 $v = \langle 0 | \varphi | 0
angle = ext{constant}$

 $\partial_{\mu}v \neq 0$ increases energy, but important for monopoles, strings, domain walls, phase transitions (e.g., EWPT, baryogenesis)

PiTP 2007 (July 17, 2007)

Minimize V(v) to find v and quantize $\varphi' = \varphi - v$

 $SU(2) \times U(1)$: introduce Hermitian basis

$$arphi = \left(egin{array}{c} arphi^+ \ arphi^0 \end{array}
ight) = \left(egin{array}{c} rac{1}{\sqrt{2}}(arphi_1 - i arphi_2) \ rac{1}{\sqrt{2}}(arphi_3 - i arphi_4 \end{array}
ight),$$

where $\varphi_i = \varphi_i^{\dagger}$.

$$V(arphi) = rac{1}{2} \mu^2 \left(\sum_{i=1}^4 arphi_i^2
ight) + rac{1}{4} \lambda \left(\sum_{i=1}^4 arphi_i^2
ight)^2$$

is O(4) invariant.

w.l.o.g. choose $\langle 0|arphi_i|0
angle=0, \;\;i=1,2,4$ and $\langle 0|arphi_3|0
angle=
u$

$$V(arphi){
ightarrow}V(v)=rac{1}{2}\mu^2
u^2+rac{1}{4}\lambda
u^4$$

PiTP 2007 (July 17, 2007)

Paul Langacker $(IAS)_{3}$

SSB for
$$\mu^2 = 0$$
 also; must consider loop corrections

 $arphi
ightarrow rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \
u \end{array}
ight) \equiv v \Rightarrow$ the generators L^1 , L^2 , and $L^3 - Y$ spontaneously broken, $L^1 v \neq 0$, etc $(L^i = rac{ au^i}{2}, Y = rac{1}{2}I)$

$$egin{aligned} Qv &= (L^3+Y)v = egin{pmatrix} 1 & 0 \ 0 & 0 \ \end{pmatrix} v = 0 &\Rightarrow U(1)_Q & ext{unbroken} &\Rightarrow & SU(2) imes U(1)_Y o U(1)_Q \end{aligned}$$

PiTP 2007 (July 17, 2007)

Paul Langacker (IAS)

Quantize around classical vacuum

• Kibble transformation: introduce new variables ξ^i for rolling modes

$$arphi = rac{1}{\sqrt{2}} e^{i \sum \xi^i L^i} \left(egin{array}{c} 0 \
u + H \end{array}
ight)$$

- $H = H^{\dagger}$ is the Higgs scalar
- \bullet No potential for $\xi^i \Rightarrow$ massless Goldstone bosons for global symmetry
- Disappear from spectrum for gauge theory ("eaten")
- Display particle content in unitary gauge

$$arphi
ightarrow arphi' = e^{-i\sum \xi^i L^i} arphi = rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \
u + H \end{array}
ight)$$

+ corresponding transformation on gauge fields

Rewrite Lagrangian in New Vacuum

Higgs covariant kinetic energy terms

$$egin{aligned} &(D_{\mu}arphi)^{\dagger}D^{\mu}arphi &=& rac{1}{2}(0 \
u) \left[rac{g}{2} au^{i}W^{i}_{\mu}+rac{g'}{2}B_{\mu}
ight]^{2}\left(egin{aligned} 0 \
u \end{array}
ight)+H ext{ terms}\ &&
ightarrow &M^{2}_{W}W^{+\mu}W^{-}_{\mu}+rac{M^{2}_{Z}}{2}Z^{\mu}Z_{\mu}\ &+& H ext{ kinetic energy and gauge interaction terms} \end{aligned}$$

Mass eigenstate bosons: W, Z, and A (photon)

$$egin{array}{rcl} W^{\pm} &=& rac{1}{\sqrt{2}}(W^1 \mp i W^2) \ Z &=& -\sin heta_W B + \cos heta_W W^3 \ A &=& \cos heta_W B + \sin heta_W W^3 \end{array}$$

PiTP 2007 (July 17, 2007)

Paul Langacker $(IAS)_{6}$

Masses

$$M_W = rac{g
u}{2}, \quad M_Z = \sqrt{g^2 + g'^2} rac{
u}{2} = rac{M_W}{\cos heta_W}, \quad M_A = 0$$

(Goldstone scalar transformed into longitudinal components of W^\pm, Z)

Weak angle: $\tan \theta_W \equiv g'/g$

Will show: Fermi constant $G_F/\sqrt{2} \sim g^2/8M_W^2$, where $G_F = 1.16637(1) \times 10^{-5}~GeV^{-2}$ from muon lifetime

Electroweak scale

$$u=2M_W/g\simeq (\sqrt{2}G_F)^{-1/2}\simeq 246\;GeV$$

Lecture 2

PiTP 2007 (July 17, 2007)

Paul Langacker $(IAS)_{7}$

Will show: $g = e/\sin\theta_W$, where $\alpha = e^2/4\pi \sim 1/137.036 \Rightarrow$

$$M_W = M_Z \cos heta_W \sim rac{(\pi lpha / \sqrt{2} G_F)^{1/2}}{\sin heta_W}$$

Weak neutral current: $\sin^2 \theta_W \sim 0.23 \Rightarrow M_W \sim 78 \ GeV$, and $M_Z \sim 89 \ GeV$ (increased by $\sim 2 \ GeV$ by loop corrections)

Discovered at CERN: UA1 and UA2, 1983

Current:

 $M_Z = 91.1876 \pm 0.0021$ $M_W = 80.403 \pm 0.029$ The Higgs Scalar H

Gauge interactions: $ZZH, ZZH^2, W^+W^-H, W^+W^-H^2$

$$arphi
ightarrow rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \
u + H \end{array}
ight)$$

$$egin{aligned} \mathcal{L}_arphi &= & (D^\mu arphi)^\dagger D_\mu arphi - V(arphi) \ &= & rac{1}{2} \left(\partial_\mu H
ight)^2 + M_W^2 W^{\mu +} W_\mu^- \left(1 + rac{H}{
u}
ight)^2 \ &+ & rac{1}{2} M_Z^2 Z^\mu Z_\mu \left(1 + rac{H}{
u}
ight)^2 - V(arphi) \end{aligned}$$

PiTP 2007 (July 17, 2007)

Paul Langacker $(IAS)_{9}$

Higgs potential:

$$egin{aligned} V(arphi) &=& +\mu^2arphi^\daggerarphi+\lambda(arphi^\daggerarphi)^2 \ & o & -rac{\mu^4}{4\lambda}-\mu^2H^2+\lambda
u H^3+rac{\lambda}{4}H^4 \end{aligned}$$

Fourth term: Quartic self-interaction Third: Induced cubic self-interaction Second: (Tree level) H mass-squared, $M_H = \sqrt{-2\mu^2} = \sqrt{2\lambda}\nu$

- No a priori constraint on λ except vacuum stability ($\lambda > 0 \Rightarrow 0 < M_H < \infty$), but
 - t quark loops destabilize vacuum unless $M_H \gtrsim 130$ GeV (Depends on Λ . Doesn't hold in supersymmetry)

Strong coupling for $\lambda \gtrsim 1 \Leftrightarrow M_H \gtrsim 1$ TeV

Triviality: running λ should not diverge below scale Λ at which theory breaks down \Rightarrow

$$M_H < \left\{ egin{array}{l} O(200) \,\, {
m GeV}, \,\, \Lambda \sim M_P = G_N^{-1/2} \sim 10^{19} \,\, {
m GeV} \ O(750) \,\, {
m GeV}, \,\, \Lambda \sim 2 M_H \end{array}
ight.$$

Experimental bound (LEP 2), $e^+e^- \rightarrow Z^* \rightarrow ZH \Rightarrow M_H \gtrsim 114.5$ GeV at 95% cl (can evade with singlet or in MSSM) Hint of signal at 115 GeV Indirect (precision tests): $M_H < 189$ GeV, 95% cl MSSM: much of parameter space has standard-like Higgs with $M_H < 130$ GeV

Theoretical M_H limits, Hambye and Riesselmann, hep-ph/9708416

Decays: $H \rightarrow \overline{b}b$ dominates for $M_H \lesssim 2M_W$ ($H \rightarrow W^+W^-$, ZZ dominate when allowed because of larger gauge coupling)

Production:

LEP: Higgstrahlung ($e^+e^- \rightarrow Z^* \rightarrow ZH$)

Tevatron, LHC: GG-fusion ($GG \rightarrow H$ via top loop), WW fusion ($WW \rightarrow H$), or associated production ($\bar{q}q \rightarrow WH$, ZH)

First term in V: vacuum energy

$$\langle 0|V|0
angle = -\mu^4/4\lambda$$

No effect on microscopic interactions, but gives *negative* contribution to cosmological constant

 $|\Lambda_{
m SSB}|=8\pi G_N|\langle 0|V|0$

Require fine-tuned cancellation

 $\Lambda_{
m cosm} = \Lambda_{
m bare} + \Lambda_{
m SSB}$

Also, QCD contribution from SSB of global chiral symmetry

Yukawa Interactions

$$egin{aligned} -\mathcal{L}_{ ext{Yukawa}} &
ightarrow & \sum_{m,n=1}^{F} ar{u}_{mL}^{0} \Gamma^{u}_{mn} \left(rac{
u+H}{\sqrt{2}}
ight) u_{mR}^{0} + (d,e) ext{ terms } + ext{ H.C.} \ &= & ar{u}_{L}^{0} \left(M^{u} + h^{u}H
ight) u_{R}^{0} + (d,e,
u) ext{ terms } + ext{H.C.} \end{aligned}$$

 $u_L^0 = \left(u_{1L}^0 u_{2L}^0 \cdots u_{FL}^0\right)^T$ is *F*-component column vector

 M^u is $F \times F$ fermion mass matrix $M^u_{mn} = \Gamma^u_{mn} \nu / \sqrt{2}$ (need not be Hermitian, diagonal, symmetric, or even square)

 $h^u = M^u / \nu = g M^u / 2 M_W$ is the Yukawa coupling matrix

PiTP 2007 (July 17, 2007)

Paul Langacker (IAS)

Diagonalize M by separate unitary transformations A_L and A_R ($(A_L = A_R)$ for Hermitian M)

$$A_L^{u\dagger}M^uA_R^u=M_D^u=\left(egin{array}{ccc} m_u & 0 & 0\ 0 & m_c & 0\ 0 & 0 & m_t \end{array}
ight)$$

is diagonal matrix of physical masses of the charge $\frac{2}{3}$ quarks. Similarly

$$egin{array}{rcl} A^{d\dagger}_L M^d A^d_R &=& M^d_D \ A^{e\dagger}_L M^e A^e_R &=& M^e_D \ (A^{
u\dagger}_L M^
u A^
u_R A^
u_R &=& M^
u_D) \end{array}$$

(may also be Majorana masses for ν_R)

Find A_L and A_R by diagonalizing Hermitian matrices MM^{\dagger} and $M^{\dagger}M$, e.g., $A_L^{\dagger}MM^{\dagger}A_L = M_D^2$

PiTP 2007 (July 17, 2007)

Mass eigenstate fields

$$u_{L} = A_{L}^{u\dagger} u_{L}^{0} = (u_{L} c_{L} t_{L})^{T}$$

$$u_{R} = A_{R}^{u\dagger} u_{R}^{0} = (u_{R} c_{R} t_{R})^{T}$$

$$d_{L,R} = A_{L,R}^{d\dagger} d_{L,R}^{0} = (d_{L,R} s_{L,R} b_{L,R})^{T}$$

$$e_{L,R} = A_{L,R}^{e\dagger} e_{L,R}^{0} = (e_{L,R} \mu_{L,R} \tau_{L,R})^{T}$$

$$\nu_{L,R} = A_{L,R}^{\nu\dagger} \nu_{L,R}^{0} = (\nu_{1L,R} \nu_{2L,R} \nu_{3L,R})^{T}$$

(For $m_{\nu} = 0$ or negligible, define $\nu_L = A_L^{e\dagger} \nu_L^0$, so that $\nu_i \equiv \nu_e, \ \nu_\mu, \ \nu_\tau$ are the weak interaction partners of the $e, \ \mu$, and τ .)

 $\begin{array}{l} \mbox{Typical estimates: } m_u = 1.5 - 4 \ {\rm MeV}, \ m_d = 4 - 8 \ {\rm MeV}, \ m_s = \\ 80 - 130 \ {\rm MeV}, \ m_c \sim 1.3 \ {\rm GeV}, \ m_b \sim 4.2 \ {\rm GeV}, \ m_t = 170.9 \pm \\ 1.8 \ {\rm GeV} \end{array}$

Implications for global $SU(3)_L \times SU(3)_R$ of QCD

These are current quark masses. $M_i = m_i + M_{dyn}$, $M_{dyn} \sim \Lambda_{\overline{MS}} \sim 300$ MeV from chiral condensate $\langle 0|\bar{q}q|0
angle
eq 0$

 m_t is pole mass; others, running masses at m or at 2 GeV²

Yukawa couplings of Higgs to fermions

$$L_{
m Yukawa} = \sum_{i} ar{\psi}_{i} \left(-m_{i} - rac{gm_{i}}{2M_{W}} H
ight) \psi_{i}$$

Coupling $gm_i/2M_W$ is flavor diagonal and small except t quark

- $H \rightarrow \overline{b}b$ dominates for $M_H \lesssim 2M_W$ ($H \rightarrow W^+W^-$, ZZ dominate when allowed because of larger gauge coupling)
- Flavor diagonal because only one doublet couples to fermions \Rightarrow fermion mass and Yukawa matrices proportional
- Often flavor changing Higgs couplings in extended models with two doublets coupling to same kind of fermion (*not* MSSM)
 - Stringent limits, e.g., tree-level Higgs contribution to $K_L K_S$ mixing (loop in standard model) $\Rightarrow h_{\bar{d}s}/M_H < 10^{-6} {
 m GeV}^{-1}$

The Weak Charged Current

Fermi Theory incorporated in SM and made renormalizable

W-fermion interaction

$$\mathcal{L}=-rac{g}{2\sqrt{2}}\left(J^{\mu}_{W}W^{-}_{\mu}+J^{\mu\dagger}_{W}W^{+}_{\mu}
ight),$$

Charge-raising current

$$egin{aligned} J^{\mu\dagger}_W &= \sum\limits_{m=1}^F \left[ar{
u}^0_m \gamma^\mu (1-\gamma^5) e^0_m + ar{u}^0_m \gamma^\mu (1-\gamma^5) d^0_m
ight] \ &= & (ar{
u}_e ar{
u}_\mu ar{
u}_\tau) \gamma^\mu (1-\gamma^5) \left(egin{aligned} e^- \ \mu^- \ au^- \end{array}
ight) + (ar{u} \ ar{c} \ ar{t}) \gamma^\mu (1-\gamma^5) V \left(egin{aligned} s \ s \ b \end{array}
ight) \end{aligned}$$

PiTP 2007 (July 17, 2007)

Ignore ν masses for now

Pure $V - A \Rightarrow$ maximal P and C violation; CP conserved except for phases in V

 $V = A_L^{u\dagger} A_L^d$ is $F \times F$ unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix from mismatch between weak and Yukawa interactions

Cabibbo matrix for F = 2

$$V = \left(egin{array}{cc} \cos heta_{m c} & \sin heta_{m c} \ -\sin heta_{m c} & \cos heta_{m c} \end{array}
ight)$$

 $\sin heta_c \simeq 0.22 \equiv \mathsf{Cabibbo}$ angle

Good zeroth-order description since third family almost decouples

CKM matrix for F = 3 involves 3 angles and 1 CP-violating phase (after removing unobservable q_L phases) (new interations involving q_R could make observable)

$$V=\left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{td} & V_{td} \end{array}
ight)$$

Extensive studies, especially in B decays, to test unitarity of V as probe of new physics and test origin of CP violation

Need additional source of CP breaking for baryogenesis

Effective zero- range 4-fermi interaction (Fermi theory)

For $|Q| \ll M_W$, neglect Q^2 in W propagator

$$-L^{cc}_{ ext{eff}}=rac{G_F}{\sqrt{2}}J^{\mu}_WJ^{\dagger}_{W\mu}$$

Fermi constant

$$rac{G_F}{\sqrt{2}} \simeq rac{g^2}{8M_W^2} = rac{1}{2
u^2}$$

Muon lifetime $au^{-1} = rac{G_F^2 m_{\mu}^5}{192\pi^3} \Rightarrow G_F = 1.16639(2) imes 10^{-5} \; {
m GeV}^{-2}$

Weak scale $u = \sqrt{2} \langle 0 | arphi^0 | 0
angle \simeq 246 \; {
m GeV}$

Excellent description of β , K, hyperon, heavy quark, μ , and τ decays, $\nu_{\mu}e \rightarrow \mu^{-}\nu_{e}, \ \nu_{\mu}n \rightarrow \mu^{-}p, \ \nu_{\mu}N \rightarrow \mu^{-}X$

PiTP 2007 (July 17, 2007)

Full theory probed:

 $e^{\pm}p \rightarrow \overset{(-)}{\nu}_{e}X$ at high energy (HERA)

Electroweak radiative corrections (loop level)

(Very important. Only calculable in full theory.)

 $M_{K_S} - M_{K_L}$, kaon CP violation, $B \leftrightarrow \overline{B}$ mixing (loop level)

(CKMFITTER group: http://ckmfitter.in2p3.fr/) Quantum Electrodynamics (QED)

Incorporated into standard model

Lagrangian:

$${\cal L}=-rac{gg'}{\sqrt{g^2+g'^2}}J^{\mu}_Q(\cos heta_W B_{\mu}+\sin heta_W W^3_{\mu})$$

Photon field:

$$A_{\mu} = \cos heta_W B_{\mu} + \sin heta_W W_{\mu}^3$$

Positron electric charge: $e = g \sin \theta_W$, where $\tan \theta_W \equiv g'/g$

PiTP 2007 (July 17, 2007)

Electromagnetic current:

$$egin{aligned} J^{\mu}_{Q} &=& \sum_{m=1}^{F} \left[rac{2}{3} ar{u}^{0}_{m} \gamma^{\mu} u^{0}_{m} - rac{1}{3} ar{d}^{0}_{m} \gamma^{\mu} d^{0}_{m} - ar{e}^{0}_{m} \gamma^{\mu} e^{0}_{m}
ight] \ &=& \sum_{m=1}^{F} \left[rac{2}{3} ar{u}_{m} \gamma^{\mu} u_{m} - rac{1}{3} ar{d}_{m} \gamma^{\mu} d_{m} - ar{e}_{m} \gamma^{\mu} e_{m}
ight] \end{aligned}$$

Flavor diagonal: Same form in weak and mass bases because fields which mix have same charge

Purely vector (parity conserving): L and R fields have same charge

Experiment	Value of $lpha^{-1}$		Difference from $lpha^{-1}(a_{e})$
Deviation from gyromagnetic	$137.035 \ 999 \ 58 \ (52)$	$[3.8 imes 10^{-9}]$	_
ratio, $a_{oldsymbol{e}}=(g-2)/2$ for e^{-}			
ac Josephson effect	${\color{red}137.035}{\color{red}988}0({\color{red}51})$	$[3.7 imes10^{-8}]$	$(0.116 \pm 0.051) imes 10^{-4}$
$h/m_n \ (m_n \ { m is the neutron mass})$ from $n \ { m beam}$	137.036 011 9 (51)	$[3.7 imes 10^{-8}]$	$(-0.123 \pm 0.051) \times 10^{-4}$
Hyperfine structure in muonium, μ^+e^-	$137.035 \ 993 \ 2 \ (83)$	$[6.0 \times 10^{-8}]$	$(0.064 \pm 0.083) \times 10^{-4}$
Cesium D_1 line	137.035 992 4 (41)	$[3.0 imes10^{-8}]$	$(0.072 \pm 0.041) \times 10^{-4}$

Spectacularly successful:

Most precise: e anomalous magnetic moment $\rightarrow \alpha$ Many low energy tests to few $\times 10^{-8}$ $m_{\gamma} < 6 \times 10^{-17}$ eV $q_{\gamma} < 5 \times 10^{-30} |e|$ Running $\alpha(Q^2)$ observed High energy well-measured (PEP, PETRA, TRISTAN, LEP) Muon g - 2 sensitive to new physics. Anomaly? The Weak Neutral Current

Prediction of $SU(2) \times U(1)$

$$egin{aligned} \mathcal{L} &=& -rac{\sqrt{g^2+g'^2}}{2}J_Z^\mu \left(-\sin heta_W B_\mu +\cos heta_W W_\mu^3
ight) \ &=& -rac{g}{2\cos heta_W}J_Z^\mu Z_\mu \end{aligned}$$

Neutral current process and effective 4-fermi interaction for $|Q| \ll M_Z$

PiTP 2007 (July 17, 2007)

Neutral current:

$$\begin{split} J_{Z}^{\mu} &= \sum_{m} \left[\bar{u}_{mL}^{0} \gamma^{\mu} u_{mL}^{0} - \bar{d}_{mL}^{0} \gamma^{\mu} d_{mL}^{0} + \bar{\nu}_{mL}^{0} \gamma^{\mu} \nu_{mL}^{0} - \bar{e}_{mL}^{0} \gamma^{\mu} e_{mL}^{0} \right] \\ &- 2 \sin^{2} \theta_{W} J_{Q}^{\mu} \\ &= \sum_{m} \left[\bar{u}_{mL} \gamma^{\mu} u_{mL} - \bar{d}_{mL} \gamma^{\mu} d_{mL} + \bar{\nu}_{mL} \gamma^{\mu} \nu_{mL} - \bar{e}_{mL} \gamma^{\mu} e_{mL} \right] \\ &- 2 \sin^{2} \theta_{W} J_{Q}^{\mu} \end{split}$$

Flavor diagonal: Same form in weak and mass bases because fields which mix have same charge

- GIM mechanism: c quark predicted so that s_L could be in doublet to avoid unwanted flavor changing neutral currents (FCNC) at tree and loop level
- Parity and charge conjugation violated but not maximally: first term is pure V A, second is V

Effective 4-fermi interaction for $|Q^2| \ll M_Z^2$:

$$-{\cal L}^{NC}_{
m eff}={G_F\over\sqrt{2}}J^\mu_Z J_Z \mu$$

Coefficient same as WCC because

$$rac{G_F}{\sqrt{2}} = rac{g^2}{8M_W^2} = rac{g^2+g'^2}{8M_Z^2}$$

The Z, the W, and the Weak Neutral Current

- Primary prediction and test of electroweak unification
- WNC discovered 1973 (Gargamelle at CERN, HPW at FNAL)
- 70's, 80's: weak neutral current experiments (few %)
 - Pure weak: νN , νe scattering
 - Weak-elm interference in eD, e^+e^- , atomic parity violation
 - $SU(2) \times U(1)$ group/representations; t and ν_{τ} exist; hint for SUSY unification; limits on TeV scale physics
- W, Z discovered directly 1983 (UA1, UA2)

- 90's: Z pole (LEP, SLD), 0.1%; lineshape, modes, asymmetries
- LEP 2: M_W , Higgs search , gauge self-interactions
- Tevatron: m_t , M_W , M_H search
- 4th generation weak neutral current experiments (atomic parity (Boulder); νe ; νN (NuTeV); polarized Møller asymmetry (SLAC))

Running \hat{s}_Z^2 in $\overline{\mathrm{MS}}\,$ scheme

The LEP/SLC Era

- Z Pole: $e^+e^- \rightarrow Z \rightarrow \ell^+\ell^-, \ q\bar{q}, \ \nu\bar{\nu}$
 - LEP (CERN), $2 \times 10^7 Z's$, unpolarized (ALEPH, DELPHI, L3, OPAL); SLC (SLAC), 5×10^5 , $P_{e^-} \sim 75$ % (SLD)
- Z pole observables
 - lineshape: M_Z, Γ_Z, σ
 - branching ratios
 - $*~e^+e^-,\mu^+\mu^-, au^+ au^-$
 - $* q \bar{q}, c \bar{c}, b \bar{b}, s \bar{s}$
 - $* \
 u ar{
 u} \Rightarrow N_
 u = 2.984 \pm 0.009$ if $m_
 u < M_Z/2$
 - asymmetries: FB, polarization, P_{τ} , mixed
 - lepton family universality

- $N_{
 u} = 3 + \Delta N_{
 u} = 2.984 \pm 0.009$
- $\Delta N_{
 u} = 1$ for fourth family u with $m_{
 u} \lesssim M_Z/2$
- $\Delta N_{
 u} = rac{1}{2}$, light $ilde{
 u}$ in supersymmetry
- $\Delta N_{
 u} = 2$, Majoron + scalar in triplet model of $m_{
 u}$ with spontaneous L violation

The Z Pole Observables: LEP and SLC (09/05)

Quantity	Group(s)	Value	Standard Model	pull
M_Z [GeV]	LEP	91.1876 ± 0.0021	91.1874 ± 0.0021	0.1
Γ_Z [GeV]	LEP	2.4952 ± 0.0023	2.4968 ± 0.0011	-0.7
$\Gamma(had)$ [GeV]	LEP	1.7444 ± 0.0020	1.7434 ± 0.0010	—
$\Gamma(\mathrm{inv})$ [MeV]	LEP	499.0 ± 1.5	501.65 ± 0.11	—
$\Gamma(\ell^+\ell^-)$ [MeV]	LEP	83.984 ± 0.086	83.996 ± 0.021	—
$oldsymbol{\sigma}_{ ext{had}}$ [nb]	LEP	41.541 ± 0.037	41.467 ± 0.009	2.0
R_e	LEP	20.804 ± 0.050	20.756 ± 0.011	1.0
$oldsymbol{R}_{oldsymbol{\mu}}$	LEP	20.785 ± 0.033	20.756 ± 0.011	0.9
$R_{ au}$	LEP	20.764 ± 0.045	20.801 ± 0.011	-0.8
$oldsymbol{A}_{FB}(oldsymbol{e})$	LEP	0.0145 ± 0.0025	0.01622 ± 0.00025	-0.7
$oldsymbol{A}_{FB}(oldsymbol{\mu})$	LEP	0.0169 ± 0.0013		0.5
$oldsymbol{A}_{FB}(oldsymbol{ au})$	LEP	0.0188 ± 0.0017		1.5

Quantity	Group(s)	Value	Standard Model	pull
R _b	LEP/SLD	0.21629 ± 0.00066	0.21578 ± 0.00010	0.8
R_c	LEP/SLD	0.1721 ± 0.0030	0.17230 ± 0.00004	-0.1
$A_{FB}(b)$	LEP	0.0992 ± 0.0016	0.1031 ± 0.0008	-2.4
$A_{FB}(c)$	LEP	0.0707 ± 0.0035	0.0737 ± 0.0006	-0.8
$A_{FB}(s)$	DELPHI/OPAL	0.0976 ± 0.0114	0.1032 ± 0.0008	-0.5
A_b	SLD	0.923 ± 0.020	0.9347 ± 0.0001	-0.6
A_c	SLD	0.670 ± 0.027	0.6678 ± 0.0005	0.1
A_s	SLD	0.895 ± 0.091	0.9356 ± 0.0001	-0.4
A_{LR} (hadrons)	SLD	0.15138 ± 0.00216	0.1471 ± 0.0011	2.0
A_{LR} (leptons)	SLD	0.1544 ± 0.0060		1.2
A_{μ}	SLD	0.142 ± 0.015		-0.3
$A_{ au}$	SLD	0.136 ± 0.015		-0.7
$A_{ au}(\mathcal{P}_{ au})$	LEP	0.1439 ± 0.0043		-0.7
$A_e(\mathcal{P}_{m{ au}})$	LEP	0.1498 ± 0.0049		0.6
$ig ar{s_\ell^2}(Q_{FB})$	LEP	0.2324 ± 0.0012	0.23152 ± 0.00014	0.7
$ig ar{s_\ell^2}(A_{FB}(q))$	CDF	0.2238 ± 0.0050		-1.5

• LEP 2

- M_W , Γ_W , B (also hadron colliders)
- M_H limits (hint?)
- WW production (triple gauge vertex)
- Quartic vertex
- SUSY/exotics searches

Global Standard Model Fit Results

- PDG 2006 (9/05) (Erler, PL)
 - $\chi^2/df = 47.5/42$
 - Fully \overline{MS}
 - Good agreement with LEPEWWG up to known effects

- $M_{H} = 89^{+38}_{-28} \, {
 m GeV},$
- $m_t~=~172.7\pm2.8~{
 m GeV}$
 - $\alpha_s = 0.1216 \pm 0.0017$
- $\hat{\alpha}(M_Z)^{-1} = 127.904 \pm 0.019$
 - $\hat{s}_Z^2 = 0.23122 \pm 0.00015$
 - $ar{s}_{\ell}^2 = 0.23152 \pm 0.00014$
 - $s_W^2 = 0.22306 \pm 0.00033$

 $\Delta lpha_{
m had}^{(5)}(M_Z) ~=~ 0.02802 \pm 0.00015$

• $m_t=172.7\pm 2.8~{
m GeV}$

- $172.3^{+10.2}_{-7.6}$ GeV from indirect (loops) only (direct: $172.7 \pm 2.9 \pm 0.6$)

- Fit actually uses $\overline{
 m MS}~$ mass $\hat{m}_t(\hat{m}_t)$ (\sim 10 GeV lower) and converts to pole mass at end
- Significant change from previous analysis due to lower m_t from Run II

- $\alpha_s = 0.1216 \pm 0.0017$
 - Higher than $\alpha_s = 0.1187(20)$ (PDG: 2004), because of aulifetime

- Z-pole alone: $\alpha_s = 0.1198(28)$
- insensitive to oblique new physics
- very sensitive to non-universal new physics (e.g., $Zb\overline{b}$ vertex)

- Higgs mass $M_H = 89^{+38}_{-28}$ GeV
 - LEPEWWG: 91_{-32}^{+45}
 - direct limit (LEP 2): $M_H \gtrsim 114.4~(95\%)$ GeV
 - SM: 115 (vac. stab.) $\lesssim M_H \lesssim$ 750 (triviality)
 - MSSM: $M_H \lesssim 130$ GeV (150 in extensions)
 - indirect: $\ln M_H$ but significant
 - * affected by new physics (S < 0, T > 0)
 - * strong $A_{FB}(b)$ effect
 - * $M_H < 189$ GeV at 95%, including direct

Gauge Self-Interactions

Three and four-point interactions predicted by gauge invariance

Indirectly verified by radiative corrections, α_s running in QCD, etc.

Strong cancellations in high energy amplitudes would be upset by anomalous couplings

$$e^+ \rightarrow v_e \gamma, z^0 \rightarrow w^+$$

Tree-level diagrams contributing to $e^+e^- \rightarrow W^+W^-$

- Gauge unification: GUTs, string theories
 - $lpha + \hat{s}_Z^2
 ightarrow lpha_s = 0.130 \pm 0.010$ (MSSM) (non-SUSY: 0.073(1))
 - $M_G\sim 3 imes 10^{16}$ GeV
 - Perturbative string: $\sim 5 \times 10^{17}$ GeV (10% in $\ln M_G$). Exotics: O(1) corrections.

Implications of Precision Electroweak

- \bullet WNC, $Z,\ W$ are primary predictions and test of electroweak unification
- SM correct and unique to first approx. (gauge principle, group, representations)
- SM correct at loop level (renorm gauge theory; m_t , α_s , M_H)
- Watershed: TeV physics severely constrained (unification vs compositeness)
 - unification (decoupling): expect 0.1%
 - TeV compositeness/dynamics: several % unless decoupling
 - Z', W_R ; 4-Fermi; exotic fermions/mixings; extended Higgs; · · ·
- Precise gauge couplings (gauge unification)

Problems with the Standard Model

Lagrangian after symmetry breaking:

$$egin{aligned} \mathcal{L} &= & L_{ ext{gauge}} + L_{ ext{Higgs}} + \sum_i ar{\psi}_i \left(i \ {
ot\!\!\partial} - m_i - rac{m_i H}{
u}
ight) \psi_i \ &- & rac{g}{2\sqrt{2}} \left(J_W^\mu W_\mu^- + J_W^{\mu\dagger} W_\mu^+
ight) - e J_Q^\mu A_\mu - rac{g}{2\cos heta_W} J_Z^\mu Z_\mu \end{aligned}$$

Standard model: $SU(2) \times U(1)$ (extended to include ν masses) + QCD + general relativity

Mathematically consistent, renormalizable theory

Correct to 10^{-16} cm

PiTP 2007 (July 17, 2007)

However, too much arbitrariness and fine-tuning: O(27) parameters (+ 2 for Majorana ν) and electric charges

• Gauge Problem

- complicated gauge group with 3 couplings
- charge quantization ($|q_e| = |q_p|$) unexplained
- Possible solutions: strings; grand unification; magnetic monopoles (partial); anomaly constraints (partial)

• Fermion problem

- Fermion masses, mixings, families unexplained
- Neutrino masses, nature? Probe of Planck/GUT scale?
- CP violation inadequate to explain baryon asymmetry
- Possible solutions: strings; brane worlds; family symmetries; compositeness; radiative hierarchies. New sources of CP violation.

- Higgs/hierarchy problem
 - Expect $M_H^2 = O(M_W^2)$
 - higher order corrections: $\delta M_H^2/M_W^2 \sim 10^{34}$

Possible solutions: supersymmetry; dynamical symmetry breaking; large extra dimensions; Little Higgs; anthropically motivated finetuning (split supersymmetry) (landscape)

- Strong CP problem
 - Can add $\frac{\theta}{32\pi^2}g_s^2F\tilde{F}$ to QCD (breaks, P, T, CP)
 - $d_N \Rightarrow heta < 10^{-9}$, but $\delta heta ert_{
 m weak} \sim 10^{-3}$
 - Possible solutions: spontaneously broken global U(1) (Peccei-Quinn) \Rightarrow axion; unbroken global U(1) (massless u quark); spontaneously broken CP + other symmetries

PiTP 2007 (July 17, 2007)

• Graviton problem

- gravity not unified
- quantum gravity not renormalizable
- cosmological constant: $\Lambda_{
 m SSB}=8\pi G_N \langle V
 angle>10^{50}\Lambda_{
 m obs}$ $(10^{124}$ for GUTs, strings)

Possible solutions:

- supergravity and Kaluza Klein unify
- strings yield finite gravity
- Λ ? Anthropically motivated fine-tuning (landscape)?

- Necessary new ingredients
 - Mechanism for small neutrino masses
 - * Planck/GUT scale? Small Dirac (intermediate scale)?
 - Mechanism for baryon asymmetry?
 - * Electroweak transition (Z' or extended Higgs?)
 - * Heavy Majorana neutrino decay (seesaw)?
 - * Decay of coherent field? CPT violation?
 - What is the dark energy?
 - * Cosmological Constant? Quintessence?
 - * Related to inflation? Time variation of couplings?
 - What is the dark matter?
 - * Lightest supersymmetric particle? Axion?
 - Suppression of flavor changing neutral currents? Proton decay? Electric dipole moments?
 - * Automatic in standard model, but not in extensions

Conclusions

- The standard model is spectacularly successful, but is incomplete
- Promising theoretical ideas at Planck and TeV scale
- Eagerly anticipate guidance from LHC