Warped Conifolds and Their Applications to Cosmology

Igor Klebanov
Department of Physics
Princeton University

PiTP Seminar
IAS, July 19, 2007

From D-branes to AdS/CFT

, A stack of N Dirichlet 3-branes realizes gy=4 supersymmetric $\mathrm{SU}(\mathrm{N})$ gauge theory in 4 dimensions. It also creates a surved 10-d background of closed type IIB superstring theory (artwork by E.Imeroni)

$$
d s^{2}=\left(1+\frac{L^{4}}{r^{4}}\right)^{-1 / 2}\left(-\left(d x^{0}\right)^{2}+\left(d x^{i}\right)^{2}\right)+\left(1+\frac{L^{4}}{r^{4}}\right)^{1 / 2}\left(d r^{2}+r^{2} d \Omega_{5}^{2}\right)
$$

The AdS/CFT duality

Maldacena; Gubser, IK, Polyakov; Witten
, Relates conformal gauge theory in 4 dimensions to stiring theory on 5-d Anti-dle Sitter space times a $5-\mathrm{d}$ compact space. For the $\mathfrak{N}=4$ SYM theory this compact space is a $5-\mathrm{d}$ sphere.
, The geometrical symmetry of the AdS_{5} space realizes the conformal symmetry of the gauge theory.
The $\mathrm{AdS}_{\mathrm{d}}$ space is a hyperboloid

$$
\left(X^{0}\right)^{2}+\left(X^{d}\right)^{2}-\sum_{i=1}^{d-1}\left(X^{i}\right)^{2}=L^{2} .
$$

- Its metric is

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left(d z^{2}-\left(d x^{0}\right)^{2}+\sum_{i=1}^{d-2}\left(d x^{i}\right)^{2}\right)
$$

Cone-Brane Dualities

, To reduce the number of supersymmetries in AdS/CFI, we may place the stack of N D3-branes at the tip of a 6-d Rjucj-flat cone X whose base is a $5-\mathrm{d}$ Einstein space Y:

$$
d s_{X}^{2}=d r^{2}+r^{2} d s_{Y}^{2}
$$

- Taking the near-horizon limit of the background created by the N D3-branes, we find the space $\mathrm{AdS}_{5} \times \mathrm{Y}$, with N units of R R 5 -form flux, whose radius is given by

$$
L^{4}=\frac{\sqrt{\pi} \kappa N}{2 \operatorname{Vol}(Y)}=4 \pi g_{s} N \alpha^{\prime 2} \frac{\pi^{3}}{\operatorname{Vol}(Y)}
$$

- This type IIB background is conjectured to be dual to the IR limit of the gauge theory on N D3-branes at the tip of the cone X.
Kachru, Silverstein; ...

D3-branes on the Conifold

The conifold is a Calabi-Yau 3-fold cone X described by the constraint $\sum_{k=1}^{4}=0=0$ on 4 complex variables.
, Its base is called $T^{1,1}$; it has symmetry $\operatorname{SO}(4) \sim S U(2)_{A} \times S U(2)_{B}$ that rotates the $z^{\prime} s_{\text {, }}$ and also $U(1)_{R}: z_{a} \rightarrow e^{\circ \prime} z_{d}$

- The Sasaki-Einstein metric on $\mathrm{T}^{1,1}$ is
where
- The topology of $\mathrm{T}^{1,1}$ is $\mathrm{S}^{2} \times \mathrm{S}^{3}$.
, To 'solve' the conifold constraint det $Z=0$ we introduce another set of convenient coordinates:

$$
Z=\left(\begin{array}{cc}
z^{3}+i z^{4} & z^{1}-i z^{2} \\
z^{1}+i z^{2} & -z^{3}+i z^{4}
\end{array}\right)=\left(\begin{array}{ll}
w_{1} & w_{3} \\
w_{4} & w_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} b_{1} & a_{1} b_{2} \\
a_{2} b_{1} & a_{2} b_{2}
\end{array}\right)
$$

- The action of global symmetries is

$$
\begin{array}{rll}
S U(2) \times S U(2) \text { symmetry : } & \binom{a_{1}}{a_{2}} \rightarrow L\binom{a_{1}}{a_{2}}, & \binom{b_{1}}{b_{2}} \rightarrow R\binom{b_{1}}{b_{2}} \\
\text { R-symmetry : } & \left(a_{i}, b_{j}\right) \rightarrow e^{i \frac{\alpha}{2}}\left(a_{i}, b_{j}\right), &
\end{array}
$$

There is a redundancy under

$$
a_{i} \rightarrow \lambda a_{i} \quad, \quad b_{j} \rightarrow \frac{1}{\lambda} b_{j} \quad(\lambda \in \mathrm{C})
$$

which is partly fixed by imposing

$$
\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}=0
$$

J It remains to quotient the space by the phase rotation $a \sim e^{10} a, b \sim e^{-a b b}$ (in the gauge theory, this will have the meaning of the U(1) baryon number symmetry).
, In the IR gauge theory on D3-branes at the apex of the conifold, the coordinates
$a_{1,}, a_{2}, b_{1}, b_{2}$ are replaced by chiral superfields. For a single D3-brane it is necessary to introduce gauge group $U(1) \times U(1)$.

- The $\mathfrak{v}=1$ SCFT on N D3-branes at the apex of the conifold has gauge group $\operatorname{SU}(\mathrm{N}) \times S U(\mathbb{N})$ coupled to bifundamental chiral superfields A_{1}, A_{2}, in $(\overline{\mathrm{N}}, \mathrm{N})$, and $\mathrm{B}_{1}, \mathrm{~B}_{2}$ in ($\left.\mathrm{N}, \overline{\mathrm{N}}\right)$. IK, witten
, The R-charge of each field is $1 / 2$. This insures $U(1)_{R}$ anomaly cancellation.
, The unique $\operatorname{SU}(2)_{A} x S U(2)_{B}$ invariant, exactly marginal quartic superpotential is added:

$$
W=\epsilon^{i j} \epsilon^{k l} \operatorname{tr} A_{i} B_{k} A_{j} B_{l}
$$

- This theory also has a baryonic U(1) symmetry under which $A_{k}->e^{i a} A_{k i} B_{1}->e^{-i a} B_{1}$, and a Z_{2} symmetry which interchanges the A^{\prime} 's with the B's and implements charge conjugation.

Resolution and Deformation

, There are two well-known Calabj-Yau blow-ups of the conififld singularity.

- The 'deformation' replaces the constraint on the zcoordinates by

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=\epsilon^{2}
$$

This replaces the singularity by a finite 3 -sphere.

- In the 'small resolution' the singularity is replaced by a finite 2 -sphere. This is implemented by modifying the constraint on the a and b variables

$$
\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}-\left|a_{1}\right|^{2}-\left|a_{2}\right|^{2}=u^{2}
$$

Warped Resolved Conifold

In the gauge theory the resolution is achileved by giving VEV's to the chiral superfields. ik, witen
, For example, we may give a VEV to only one of the four superfields: $B_{2}=u u_{\mathrm{N}, \mathrm{N}}$
The dual of such a gauge theory is a resolved conifold, which is warped by a stack of N D3-branes placed at the north pole of the blown up 2 -sphere.

$$
d s_{10}^{2}=\sqrt{H^{-1}(y)} d x^{\mu} d x_{\mu}+\sqrt{H(y)} d s_{6}^{2}
$$

- The explicit CY metric on the resolved COTJJOUC IS Pando Zayas, Tseytion $\quad \kappa(r)=\frac{r^{2}+9 u^{2}}{r^{2}+6 u^{2}}$

$$
\begin{aligned}
d s_{6}^{2}= & \kappa^{-1}(r) d r^{2}+\frac{1}{9} \kappa(r) r^{2}\left(d \psi+\cos \theta_{1} d \phi_{1}+\cos \theta_{2} d \phi_{2}\right)^{2} \\
& \quad+\frac{1}{6} r^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \phi_{1}^{2}\right)+\frac{1}{6}\left(r^{2}+6 u^{2}\right)\left(d \theta_{2}^{2}+\sin ^{2} \theta_{2} d \phi_{2}^{2}\right)
\end{aligned}
$$

, The warp factor is the Green's function on this space ik, muruen

$$
H\left(r, \theta_{2}\right)=L^{4} \sum_{l=0}^{\infty}(2 l+1) H_{l}^{A}(r) P_{l}\left(\cos \theta_{2}\right)
$$

- The radial functions are hyper-geometric:

$$
H_{l}^{A}(r)=\frac{2}{9 u^{2}} \frac{C_{\beta}}{r^{2+2 \beta}}{ }_{2} F_{1}\left(\beta, 1+\beta ; 1+2 \beta ;-\frac{9 u^{2}}{r^{2}}\right)
$$

$$
C_{\beta}=\frac{(3 u)^{2 \beta} \Gamma(1+\beta)^{2}}{\Gamma(1+2 \beta)}, \quad \beta=\sqrt{1+(3 / 2) l(l+1)}
$$

, We get an explicit 'localized' solution which describes SU(2) xU(1) xU(1) symmetric holographic RG flow to the $\mathfrak{N}=4$ SU(N) SYM.

A previously known ‘smeared' solution corresponds to taking just the $\mathrm{I}=0$ harmonic. This solution is singular Pando Zevess,
Tseyt|in

$$
\frac{2}{9 u^{2} r^{2}}+\frac{4 \beta^{2}}{81 u^{4}} \ln r+\mathcal{O}(1) \quad \stackrel{0 \leftarrow r}{\longleftarrow} \quad H_{l}^{A}(r) \quad \xrightarrow{r \rightarrow \infty} \quad \frac{2 C_{\beta}}{9 u^{2} r^{2+2 \beta}}
$$

String Theoretic Approaches to Confinement

, It is possjble to generalize the AclS/CFT correspondence so that the quark-antiquark potential is linear at large distance and nearly logarithmic at small.
, A "cartoon" of the necessary metric is

$$
d s^{2}=\frac{d z^{2}}{z^{2}}+a^{2}(z)\left(-\left(d x^{0}\right)^{2}+\left(d x^{i}\right)^{2}\right)
$$

The space ends at a maximum value of z where the warp factor is finite. Then the confining string tension is

Warped Deformed Conifold

J A useful tool is to add to the N D3-branes M D5-branes wrapped over the S^{2} at the tip of the conifild.

- The 10-d geometry dual to the gauge theory on these branes is the warped deformed conifold (IK, Strassler)

$$
d s_{10}^{2}=h^{-1 / 2}(t)\left(-\left(d x^{0}\right)^{2}+\left(d x^{i}\right)^{2}\right)+h^{1 / 2}(t) d s_{6}^{2}
$$

- $d s_{6}^{2}$ is the metric of the deformed conifold, a simple Calabi-Yau space defined by the following constraint on 4 complex variables:

$$
\sum_{i=1}^{4} z_{i}^{2}=\varepsilon^{2}
$$

- The warp factor is finite at the 'end of space' $t=0$, as required for the confinement: $h(t)=2^{-8 / 3} \gamma I(t)$

$$
I(t)=\int_{t}^{\infty} d x \frac{x \operatorname{coth} x-1}{\sinh ^{2} x}(\sinh 2 x-2 x)^{1 / 3}, \quad \gamma=2^{10 / 3}\left(g_{s} M \alpha^{\prime}\right)^{2} \varepsilon^{-8 / 3}
$$

, The standard warp factor a^{2}, which measures the string tension, is identified with $h(t)^{-1 / 2}$ and is minimized at $t=0$. It blows up at large t (near the boundary).

- The dilaton is exactly constant due to the self-duality of the 3-form background

$$
\star_{6} G_{3}=i G_{3}, \quad G_{3}=F_{3}-\frac{i}{g_{s}} H_{3}
$$

, The radius-squared of the S^{3} at $t=0$ is ~gss M in string units.
, When gs M is large, the curvatures are small everywhere, and the SUGRA solution is reliable in 'solving' this confining gauge theory.
J Even when $g_{s} M$ is small, the curvature gets small at large t (in the UV). The SUGRA description of the duality cascade is robust.

Log running of couplings in UV

, The large radius asymptotic solution is characterized by logarithmic deviations from $\mathrm{AdS}_{5} \times \mathrm{T}^{1,1} \mathrm{I}$ IK, Tseytin
, The near-AdS radial coordinate is $r \sim \varepsilon^{2 / 3 / e^{t / 3}}$
, The NS-NS and R-R 2-form potentials:

$$
F_{3}=\frac{M \alpha^{\prime}}{2} \omega_{3}, \quad B_{2}=\frac{3 g_{s} M \alpha^{\prime}}{2} \omega_{2} \ln \left(r / r_{0}\right)
$$

$$
\omega_{2}=\frac{1}{2}\left(g^{1} \wedge g^{2}+g^{3} \wedge g^{4}\right)=\frac{1}{2}\left(\sin \theta_{1} d \theta_{1} \wedge d \phi_{1}-\sin \theta_{2} d \theta_{2} \wedge d \phi_{2}\right)
$$

$$
\omega_{3}=\frac{1}{2} g^{5} \wedge\left(g^{1} \wedge g^{2}+g^{3} \wedge g^{4}\right)
$$

, This translates into \log runining of the gauge couplings through

$$
\begin{gathered}
\frac{4 \pi^{2}}{g_{1}^{2}}+\frac{4 \pi^{2}}{g_{2}^{2}}=\frac{\pi}{g_{s} e^{\Phi}} \\
{\left[\frac{4 \pi^{2}}{g_{1}^{2}}-\frac{4 \pi^{2}}{g_{2}^{2}}\right] g_{s} e^{\Phi}=\frac{1}{2 \pi \alpha^{\prime}}\left(\int_{\mathrm{S}^{2}} B_{2}\right)-\pi}
\end{gathered}
$$

$$
\frac{8 \pi^{2}}{g_{1}^{2}}-\frac{8 \pi^{2}}{g_{2}^{2}}=6 M \ln \left(r / r_{s}\right)
$$

- This agrees with the β-functions in the gauge

$$
\begin{aligned}
& \frac{d}{d \log (\Lambda / \mu} \frac{8 \pi^{2}}{g_{1}^{2}}=3(N+M)-2 N(1-\gamma) \\
& \frac{d}{\operatorname{dog}(\Lambda / \mu)} \frac{8 \pi^{2}}{g_{2}^{2}}=3 N-2(N+M)(1-\gamma)
\end{aligned}
$$ theory

$$
\frac{8 \pi^{2}}{g_{1}^{2}}-\frac{8 \pi^{2}}{g_{2}^{2}}=M \ln (\Lambda / \mu)[3+2(1-\gamma)]
$$

- In the UV the anomalous dimension of operators $\mathrm{Tr}_{\mathrm{r} A A_{B}, B_{J}}$

$$
\text { is } y \sim-1 / 2
$$

, The warp factor deviates from the $M=0$ solution logarithmically.

$$
h(r)=\frac{27 \pi\left(\alpha^{\prime}\right)^{2}\left[g_{s} N+a\left(g_{s} M\right)^{2} \ln \left(r / r_{0}\right)+a\left(g_{s} M\right)^{2} / 4\right]}{4 r^{4}}
$$

Remarkably, the 5-form flux, dual to the number of colors, also changes logarithmically with the RG scale.

$$
\tilde{F}_{5}=\mathcal{F}_{5}+\star \mathcal{F}_{5}, \quad \mathcal{F}_{5}=27 \pi \alpha^{\prime 2} N_{e f f}(r) \operatorname{vol}\left(\mathrm{T}^{1,1}\right)
$$

$$
N_{e f f}(r)=N+\frac{3}{2 \pi} g_{s} M^{2} \ln \left(r / r_{0}\right)
$$

, What is the explanation in the dual SU(kM) $\times S U((k-1) M) S Y M$ theory coupled to bifundamental chiral superfields $A_{1,} A_{2 \mu}$ $\mathrm{B}_{11}, \mathrm{~B}_{2}$? A novel phenomenon, called a duality cascade, takes place: k repeatedly changes by 1 as a result of the Seiberg duallity $\mathbb{I K}$, Strassler
(djagram of RG flows from a review by M. Strassler)

, There is a scale where the SU(kM) coupling becomes very strong. This gauge group has $N_{f}=2(k-1)$ M flavors.
, To understand further RG flow, perform Sejiberg duality to SU($\left.N_{f}-N_{c}\right)=S U((k-2) M)$.
, The resulting $\operatorname{SU}((k-1) M) \times S U((k-2) M)$ theory has the same structure as the original one, but k is reduced by 1.

- The flow proceeds in a quasi-periodic fashion until k becomes $\mathrm{O}(1)$ in the IR.

, Comparison of warp factors in the AdS, warped conifold, and warped deformed conifold cases. The warped conifold (KT) solution, which has a naked singularity, should be interpreted as asymptotic (UV) approximation to the correct solution.
- The graph of quark antiquark potential is qualitatively similar to that found in numerical simulations of QCD. The upper graph, from the recent Senior Thesis of V . Cvicek shows the string theory result for the warped deformed conifold.
- The lower graph shows lattice QCD results by G. Bali et al with $r_{0} \sim 0.5 \mathrm{fm}$.

- All of this provides us with an exact solution of a 4-d large N confining supersymmetric gauge theory.
- This should be a good playground for testing various ideas about strongly coupled gauge theory.
, Some results on glueball spectra are already available, and further calculations are ongoing. Kassitiz; Caceres, Hemanderz D Dmarsky, Meninov; Berg, Haack, Muck
- Could there be applications of these models to new physics?
, The Inflationary Universe (Guth; Linde; Albrecht, Steinhardt) is a very promising idea for generating the CMB anisotropy spectrum observed by the WMAP.
- Fincling slow-roll models has proven to be difificult. Recent string theory constiructions use moving D-branes. DVali, Tye, ...
, In the KKLT/KKLMMT model, the warped deformed conifold is embedded into a string compactification. An anti-D3-brane is added at the bottom to break SUSY and generate a potential. A D3-brane rolls in the throat. Its radial coordinate plays the role of an inflaton.
Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi

D-Brane Inflation

Cosmic Strings

, Brane anti-brane anniliilation produces various kincls of long strings at the bottom of the throat: fundamental, D-strings and their (p, q) bound S'[E]'[2S, Sarangi, Tye; Copeland, Myers, Polchinski
, Their tension μ is 'warped down' by the factor $h_{0} 0^{-1 / 2} \sim \exp \left(-4 \pi \mathrm{~K} / 3 \mathrm{~g}_{\mathrm{s}} \mathrm{M}\right)$ if K cascade steps take place in the throat. It is not hard to attain $\mathrm{G} \mu<10^{-7}$ dictated by present experimental bounds.

- The F-strings are dual to confining strings in the gauge theory; D-strings to certain solitonic strings. Gubser, IK, Herrog

Slow roll D-brane inflation?

- Effects of D7-branes and of compactification generically spoil the flatness of the potential. Non-perturbative effiects introduce the KKLT-
type superpotential $W=W_{0}+A(X) e^{-\theta_{0}}$
where X denotes the D3brane position. In any warped throat D-brane inflation model, it is important to calculate $\mathrm{A}(\mathrm{X})$.
, The gauge theory on D7-branes wrapping a 4 -

, The non-perturbative superpotential $\quad \propto \exp \left(-\frac{T_{3}, V_{0}}{N_{D i}}\right)$ depends on the D3-brane location through the warped volume
- In the throat approximation, the warp factor can be calculated and integrated over a 4cycle explicitly. Baumann, Dymarsky, IK, Maldacena, Mallister, Murigen.
- If the D7-brane emedding is specified by $f\left(z_{\alpha}\right)=0$

$$
A\left(z_{\alpha}\right)=A_{0}\left(\frac{f\left(z_{\alpha}\right)}{f(0)}\right)^{1 / n}
$$

- The F-term potential in $\mathfrak{N}=1$ SUGRA is

$$
V_{F}=e^{\kappa^{2} \mathcal{K}}\left[D_{\Sigma} W \mathcal{K}^{\Sigma \bar{\Omega}} \overline{D_{\Omega} W}-3 \kappa^{2} W \bar{W}\right] \quad \kappa^{2}=M_{P}^{-2} \equiv 8 \pi G
$$

, Using the DeWolfe-Giddings Kaehler potential for the volume modulus ρ and the three D3-brane coordinates z_{α} on the conifiold

$k^{2} \mathcal{K}\left(\rho, \overline{\rho_{2}}, z_{a}, \bar{z}_{\alpha}\right)=-3 \log \left[\rho+\bar{\rho}-\gamma k\left(z_{a}, \bar{z}_{\alpha}\right)\right] \equiv-3 \log U$
 the F-term potential is found to be

Burgess, Cline, Dasgupta, Firouzjahi; Baumann, Dymarsky, IK, McAllister, Steinhardt

$$
\begin{aligned}
& \frac{\kappa^{2}}{3 U^{2}}\left[\left(\rho+\bar{\rho}+\gamma\left(k_{\gamma} k^{\gamma \bar{\delta}} k_{\bar{\delta}}-k\right)\right)\left|W_{, \rho}\right|^{2}-3\left(\bar{W} W_{, \rho}+c . c .\right)\right. \\
& \\
& +\underbrace{\left(k^{\alpha \bar{\delta}} k_{\bar{\delta}} \overline{W_{, \rho}} W_{, \alpha}+c . c .\right)+\frac{1}{\gamma} k^{\alpha \bar{\beta}} W_{, \alpha} \overline{W_{, \beta}}}_{\Delta V_{F}}]
\end{aligned}
$$

- This generally gives Hubble-scale corrections to the inflaton potential, so filne-tuning is needed.
, The 'uplifting' is accomplished by the D3 ansti-D3 potential

$$
V_{D}=D(r) U^{-2}, \quad D(r) \equiv D\left(1-\frac{3 D}{16 \pi^{2}} \frac{1}{\left(T_{3} r^{2}\right)^{2}}\right)
$$

, For the KKLMMT model with anti-D3 brane, $D=2 T_{3} / h_{0}$ where h_{0} is the warp factor at the bottom of the throat.

- We have studied a simple and symmetric Kuperstein embedding $z_{1}=\mu$
- The stable trajectory for positive μ is

$$
z_{1}=-\frac{1}{\sqrt{2}^{2}}{ }^{3 / 2}
$$

- The effiective potential for $\phi \equiv r \sqrt{\frac{3}{2} T_{3}}$ the infilation generically has a local maximum and minium. It can be fine-tuned to have an infilection point.
- Motion near the inflection point can produce enough e-folds of inflation.
, But cosmological predictions
 are very sensitive, e.g. $n_{s}-1=\left.(2 \eta-6 \epsilon)\right|_{\text {CCMB }^{\prime}} \approx 2 \eta\left(\phi_{\mathrm{CMB}}\right)$
- The sign of $\eta\left(\phi_{\mathrm{CMB}}\right)$ depends on its position relative to inflection point. This is a 'Delicate Universe.' Baumann,

$$
\eta \equiv M_{P}^{2} \frac{\mathbb{V}_{, \phi \phi}}{\mathbb{V}}
$$

Dymarsky, IK, McAllister, Steinhardt

Conclusions

JPlacing D3-branes at the tip of a CY cone, such as the conififold, leads to AdS/CFT dualities with $\mathrm{N}=1$ SUSY. Symmetry breaking in the gauge theory produces warped resolved conifolds.
, Addling wrapped D5-branes at the apex produces a cascading confining gauge theory whose dual is the warped deformed conifold.

- This example of gauge/string duality gives a new geometrical view of such important phenomena as dimensional transmutation, chiral symmetry breaking, and quantum deformation of moduli space.
, Embedding gauge/string dualities into string compactifications offers new possibilities for modeling inflation and cosmic strings.
, Calculation of non-perturbative corrections to the inflaton potential is important for determining if these models can be finetuned to produce slow-roll inflation.

