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SM (Collider) HW II

1. As discussed in the Lecture the parton distributions do not scale as in the naïve
parton model but rather are expected to exhibit the scaling violation predicted by
QCD. The structure of the expected renormalization of the parton distribution
functions is summarized in terms of the DGLAP (also often called the “Altarelli-
Parisi”, i.e., the AP in DGLAP) splitting functions. As noted in Lecture 2 the lowest
order expressions for these functions are given by
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where the “+” notation means

 
 

   
 

1 1

0 0

1
.

1 1

f x f x f
dx dx

x x





  

a) Verify that the corresponding anomalous dimensions (the moments of these

functions,    
1

1

0

jj dxx P x   ) have the forms
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Now consider the evolution of the singlet quark distribution given by the sum

     ,i i
i

x q x q x  

which mixes with the gluon distribution via the evolution equation. In terms of the

moments with evolution variable  2 2ln QCDt Q  we have
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b) Verify that for j = 2 there are two eigenvalues to the above evolution equation
and that the corresponding anomalous dimensions are 0  (momentum

conservation) and  16 9 3fn    corresponding to the eigenvectors

   2 2g  and    2 3 2 16fn g  , respectively.

c) Use the result of b) to find the momentum fraction in quarks and that in gluons
at truly asymptotic values Q2.

2. The evolution of the distribution functions tends to build up the gluon distribution
at small x, which will be important at the LHC. Here we consider this point in more
detail. In the limit of small x and very large Q2 the DGLAP equation is dominated by
the small argument behavior of the splitting function Pgg.

a) Verify that in this limit the gluon distribution G(x,t) = xg(x,t) satisfies the

equation (again  2 2ln QCDt Q  )
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b) Now use the 1-loop form for s and change variables to ln t  and

   024 ln 1b x  to show that the approximate equation we want to solve is
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c) Verify that at truly large values of both  and  this equation is solved by

  2, ~G e  

or

    0

0 0

1 48 1
, ~ exp ln ln , .

t
g x t xg x t

x b t x

   
   

  

d) To get a feeling for the size of this enhancement assume that the gluon
distribution at Q0 = 5 GeV is given by the following (fictitious) expression,
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Note that it already has the 1/x behavior at small x. Now evaluate the above
enhancement factor for Q = 100 GeV at x = 0.01 with QCD = 0.1 GeV. How much
larger is the evolved distribution at this x value, assuming that the above expression is
relevant in the specified kinematic regime? (Take nf = 5 for this estimate.)

3. Let us focus briefly on the Drell-Yan process, the production of a virtual photon
in hadron-hadron collisions via the annihilation of a quark and antiquark (here ignore
the possibility of Z production). The short distance (“hard”) process is the time
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reversed version of the electron-positron annihilation process. Thus e e qq  

becomes qq    (or qq e e  ), but where the specific choice of the muon

pair typically rises from the desire to employ a lepton pair that is “easily” detected.
This cross section must then be convoluted with the appropriate parton distribution
functions. In terms of the scaled virtual photon mass 2Q s  and the photon rapidity

   1
0 02 ln z zy q q q q     , the “scaling” or parton model version of the cross

section looks like
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where the (LO) parton “luminosity” function has the form

          21
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The label a,b correspond to the 2 incident hadrons. The explicit factor of 1/3 is
required because the conventional normalization of the pdfs ( ,q q ) includes an

implicit sum over colors. Here the quark-antiquark pair that annihilates must be of
the same color. Thus the annihilation occurs for only 1/3 of the possible pairs.

Contrary to the collider physics we have focused on in the Lectures, consider now
the case of pion beams incident on a nuclear target, i.e., composed of the canonical

nucleon N = (p+n)/2. If we focus on large 2Q s  so that we can safely assume that

the interaction is dominated by the valence quarks (and antiquarks), determine the
expected (and observed) value of the ratio
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4. In this exercise we want to become familiar with various features of collider
kinematics. As noted in the Lecture the “real” rapidity and the pseudo-rapidity are
defined by
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where the z direction is the direction of the beam.

a) Verify, as stated in the Lectures, that for any particle of mass M we can write
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b) Prove that tanh cos  and thus that  is easy to measure.

c) If particles are produced uniformly in longitudinal phase space with a
differential distribution that looks like

,zdp
dN C

E


with C a constant, find the corresponding distribution in y, dN dy .

d) Prove that the rapidity equals the pseudo rapidity,  = y, for a massless

particle (and thus approximately for a relativistic particle, E  M).

e) Prove that for a Lorentz transformation (boost) in the beam (z) direction, the
rapidity, y, of every particle is shifted by a constant y0, which is related to the
boost velocity. Recall the form of such a boost to a reference frame moving in
the z direction with velocity u (with respect to the original frame and with c = 1)
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f) Consider a Z boson that is produced on-shell at the LHC in a qq annihilation

process. The velocity of the Z boson is along the beam direction. What are the
conditions relating x1 and x2, the momentum fractions of the quark and anti-quark?
(Compare to the expressions in the previous exercise.)

5. Demonstrate that both the cone algorithm (without seeds) and the kT algorithm are
IRS at NLO in pQCD, i.e., show that the “found” jet will have the same properties
whether it contains a single parton or a pair of collinear partons with the same total
momentum. Also show that the jet is unchanged by the emission of a (vanishingly)
soft gluon. This does not require a slick argument. The idea is just to give you the
opportunity to think through what it takes to be IRS.

6. Use the Snowmass definition of the iterative cone algorithm (i.e., ET weighting
instead of 4-vector addition) to show that the 2-parton phase space splits up as
indicated in the figure in the Lecture. While this is really a 2-D problem in (y,), the
fact that there are only 2 partons, which effectively lie in a plane, means we can think
of it as a 1-D problem, i.e., just the separation d in that plane.
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