SM (Collider) HW I

1. Asdiscussed in the Lecture the parton distributions do not scale asin the naive
parton model but rather are expected to exhibit the scaling violation predicted by
QCD. The structure of the expected renormalization of the parton distribution
functions is summarized in terms of the DGLAP (also often called the “Altarelli-
Parisi”, i.e., the APin DGLAP) splitting functions. As noted in Lecture 2 the lowest
order expressions for these functions are given by
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Now consider the evolution of the singlet quark distribution given by the sum
Zq. )+3 (X

which mixes with the gluon distribution via the evolution equation. In terms of the
moments with evolution variable t = In( / AQCD) we have

QEE(J)j:as(t)(yqq(i) 2nfng(i)]£2(i)j

dt g(J) 2 ygq(j) ygg(j) g(J)

b) Verify that for j = 2 there are two eigenvalues to the above evolution equation
and that the corresponding anomalous dimensions are A, =0 (momentum

consarvation) and A =—(16/9+n; /3) corresponding to the eigenvectors
2(2)+9(2) and =(2)-3n,9(2)/16, respectively.

¢) Usetheresult of b) to find the momentum fraction in quarks and that in gluons
at truly asymptotic values Q2.

2. Theevolution of the distribution functions tends to build up the gluon distribution
at small x, which will be important at the LHC. Here we consider this point in more
detail. In the limit of small x and very large Q® the DGLAP equation is dominated by
the small argument behavior of the splitting function Pgyg.

a) Verify that in this limit the gluon distribution G(x,t) = xg(x,t) satisfies the

equation (again t:ln( /AQCD)
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b) Now use the 1-loop form for a5 and change variablesto 7 =Int and
¢ =(24/1,)In(1/x) to show that the approximate equation we want to solve is

dZG(g,T) 1
22T 26 (e 0).
dedr 2 (6:7)

c) Verify that at truly large values of both £ and 7 this equation is solved by
G(s,7)~ el

or

g(xt) ~£exp\/%?ln[tljln(1j x(xg(xt,)).

X 0 X

d) To get afeeling for the size of this enhancement assume that the gluon
distribution at Qg = 5 GeV is given by the following (fictitious) expression,

_420(1-x)
9(x)= 9 x

Note that it already has the 1/x behavior at small x. Now evaluate the above
enhancement factor for Q = 100 GeV at x = 0.01 with Agep = 0.1 GeV. How much
larger is the evolved distribution at this x value, assuming that the above expression is
relevant in the specified kinematic regime? (Take n; =5 for this estimate.)

3. Let usfocus briefly on the Drell-Y an process, the production of avirtual photon
in hadron-hadron collisions via the annihilation of a quark and antiquark (here ignore
the possibility of Z production). The short distance (“hard”) processisthetime
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reversed version of the electron-positron annihilation process. Thus €'€ — qQ

becomes g0 — u" 1~ (or dq — €'€ ), but where the specific choice of the muon

pair typically rises from the desire to employ alepton pair that is “easily” detected.
This cross section must then be convoluted with the appropriate parton distribution
functions. In terms of the scaled virtual photon mass r = Q*/s and the photon rapidity

y=3In[(d,—q,)/(d+0,)], the“scaling” or parton model version of the cross
section looks like

do 8o’
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where the (LO) parton “luminosity” function has the form
1 a(y \m —a
9(%:%) =52 € {a (%)a7 (%) + 7 (%) of (%)}
f

The label a,b correspond to the 2 incident hadrons. The explicit factor of 1/3is
required because the conventional normalization of the pdfs (g, ) includes an

implicit sum over colors. Here the quark-antiquark pair that annihilates must be of
the same color. Thusthe annihilation occurs for only 1/3 of the possible pairs.

Contrary to the collider physics we have focused on in the Lectures, consider now
the case of pion beams incident on a nuclear target, i.e., composed of the canonical

nucleon N = (p+n)/2. If wefocuson large 7 = Q*/s so that we can safely assume that

the interaction is dominated by the valence quarks (and antiquarks), determine the
expected (and observed) value of theratio

G(7Z'+N —)/f,u_X)

Ror G(ﬂ_N —)u*u‘X)'

4. Inthis exercise we want to become familiar with various features of collider
kinematics. As noted in the Lecture the “real” rapidity and the pseudo-rapidity are
defined by
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rapidity =y, = O.5In£ﬂj
E-p,

pseudo-rapidity =n = —In(tan(%n

where the z direction is the direction of the beam.

a) Verify, as stated in the Lectures, that for any particle of mass M we can write
E={M?+p?coshy, p,=yM?+ p’sinhy,
Pf = P+ B}

b) Provethat tanhn = cosé and thusthat n is easy to measure.

¢) If particlesare produced uniformly in longitudinal phase space with a
differential distribution that looks like

aN =3P
E

with C a constant, find the corresponding distribution in'y, dN/dy .

d) Provethat the rapidity equals the pseudo rapidity, n =y, for amassless
particle (and thus approximately for arelativistic particle, E > M).

e) Provethat for aLorentz transformation (boost) in the beam (z) direction, the
rapidity, y, of every particleis shifted by a constant y,, which isrelated to the
boost velocity. Recall the form of such aboost to areference frame movingin
the z direction with velocity u (with respect to the origina frame and with ¢ = 1)
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f) Consider aZ boson that is produced on-shell at the LHC ina qq annihilation
process. The velocity of the Z boson is along the beam direction. What are the
conditions relating x; and x,, the momentum fractions of the quark and anti-quark?
(Compare to the expressions in the previous exercise.)

5. Demonstrate that both the cone algorithm (without seeds) and the k+ algorithm are
IRSat NLO in pQCD, i.e., show that the “found” jet will have the same properties
whether it contains a single parton or a pair of collinear partons with the same total
momentum. Also show that the jet is unchanged by the emission of a (vanishingly)
soft gluon. Thisdoes not require aslick argument. Theideaisjust to give you the
opportunity to think through what it takesto be IRS.

6. Use the Snowmass definition of the iterative cone algorithm (i.e., Er weighting
instead of 4-vector addition) to show that the 2-parton phase space splits up as
indicated in the figure in the Lecture. Whilethisisreally a2-D problemin (y,), the
fact that there are only 2 partons, which effectively liein a plane, means we can think
of itasa1l-D problem, i.e., just the separation d in that plane.
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