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Supersymmetry (SUSY) is a symmetry which relates
fermions and bosons, i.e. fields with different spin.
That such a thing exists is itself a surprise (Coleman-
Mandula). One suspects an intimate connection with
the structure of space-time.

For physics, susy is interesting because of

1. The hierarchy problem: why is the Higgs mass much
smaller than other scales of physics? This points
to supersymmetry at TeV energy scales.

2. TeV supersymmetry yields unification of gauge cou-
plings.

3. TeV supersymmetry can account for the observed
dark matter density.

4. More theoretically, supersymmetry emerges frequently
from string theory, perhaps somehow important in
a fundamental theory of gravity (but this argument
doesn’t suggest a scale).
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The Hierarchy Problem

Dimensional analysis: mh ∼Mp.

Much smaller: symmetries?

But in ordinary field theory, no symmetry can prevent
m2
h|h|2. Radiative corrections in the Standard Model

would seem to generate corrections of just this order,
even if somehow absent classically.

Other failures of dimensional analysis are familiar in par-
ticle physics: mp, me. For me, explanation is chiral
symmetry: if exact, forbids a mass; breaking propor-
tional to me. mp finds its explanation in QCD dynamics:

mp ∝Mpe−8π2/b0g2(Mp).

Supersymmetry: because bosons are related to fermions,
it is possible to account for failure of dimensional anal-
ysis due to symmetries and approximate symmetries.

2



Goal and Plan for these two lectures:

1. Basics of supersymmetry in four dimensions: con-
struction of lagrangians with global supersymmetry.

2. Some features of the quantum theory: non-renormalization
theorems

3. Breaking of supersymmetry: spontaneous breaking,
Goldstino’s theorem

4. Soft breaking of supersymmetry

5. Description of lagrangians with local supersymme-
try.

3



Notation: Two-component spinors

(More detailed notes on web)

We will adopt some notation, following the text by Wess
and Bagger:

ψ =
(

χ αφ
∗α̇) .

Correspondingly, we label the indices on the matrices σµ

and σ̄µ as

σµ = σµαα̇ σ̄µ = σ̄µββ̇.

This allows us to match upstairs and downstairs indices,
and will prove quite useful. The Dirac equation now
becomes:

iσµαα̇∂µφ
∗α̇ = 0 iσ̄µα̇α∂µχα = 0.

χ and φ∗ are equivalent representations of the Lorentz
group. χ and φ obey identical equations. Complex
conjugating the second equation in eqn. , and noting
σ2σµ∗σ2 = σ̄µ.
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Define complex conjugation to change dotted to undot-
ted indices. So, for example,

φ∗α̇ = (φα)∗.

Define the anti-symmetric matrices εαβ and εαβ by:

ε12 = 1 = −ε21 εαβ = −εαβ.
The matrices with dotted indices are defined identically.
Note that, with upstairs indices, ε = iσ2, εαβε

βγ = δγα.
We can use these matrices to raise and lower indices
on spinors. Define φα = εαβφ

β, and similar for dotted
indices. So

φα = εαβ(φ
∗β̇) ∗ .

Finally, we will define complex conjugation of a product
of spinors to invert the order of factors, so, for example,
(χαφβ)

∗ = φ∗
β̇
χ∗
α̇.

5



It is helpful to introduce one last piece of notation. Call

ψχ = ψαχα = −ψαχα = χαψα = χψ.

Similarly,

ψ∗χ∗ = ψ∗
α̇χ

∗α̇ = −ψ∗α̇χ∗
α̇χ

∗
α̇ψ

∗α̇ = χ∗ψ∗.

Finally, note that with these definitions,

(χψ)∗ = χ∗ψ∗.
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The Supersymmetry Algebra and its Represen-

tations

Because the supersymmetry generators are spinors, they
do not commute with the Lorentz generators. The
supersymmetry algebra involves the translation gener-
ators. For N = 1 supersymmetry:

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0.

One can have more supersymmetries than this – as
many as eight. But while these theories with extended

supersymmetry are important theoretically, there are
several reasons to think that only N = 1 can be relevant
to the world around us (chiral fermions, supersymmetry
breaking.
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Representations of the N = 1 algebra:

There are three irreducible representations of N = 1
supersymmetry which can describe massless fields:

• Chiral superfields fields: (φ, ψα), a complex fermion
and a chiral scalar

• Vector superfields: (λ,Aµ), a chiral fermion and a
vector meson, both, in general, in the adjoint rep-
resentation of the gauge group

• The gravity supermultiplet: (ψµ,α, gµν), a spin-3/2
particle, the gravitino, and the graviton.

One can work in terms of these component fields, writ-
ing supersymmetry transformation laws and construct-
ing invariants. This turns out to be rather complicated.
One must use the equations of motion to realize the full
algebra. Great simplification is achieved by enlarging
space-time to include commuting and anti-commuting
variables. The resulting space is called superspace.
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Superspace

Superspace coordinates:

xµ, θα, θ
∗
α̇ = θ̄α̇

The Grassman coordinates obey:

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0.

Note θ21 = θ22 = . . . = 0. Grassman coordinates are
familiar from the problem of formulating the fermion
functional integral; they provide a representation of the
classical configuration space for fermions.

Because the square of any θ vanishes, functions of Grass-
man variables are polynomials. Derivatives anticom-
mute:

{ ∂

∂θα
,
∂

∂θ̄β̇
} = 0.
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Integration of Grassman variables

For Poincare invariance of ordinary field theory lagrangians,
important that:

∫ ∞

−∞
dxf(x+ a) =

∫ ∞

−∞
dxf(x)

For Grassman integration (one variable):
∫

dθf(θ+ ε) =

∫

dθf(θ)

Satisfied by the integral table:
∫

dθ(1, θ) = (0,1)

For the case of θα,θ̄α̇, one can write a simple integral
table:

∫

d2θθ2 = 1;

∫

d2θ̄θ̄2 = 1,

all others vanishing.
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In superspace, can provide a classical description of the
action of the symmetry on fields. On functions f(xµ, θ, θ̄)
the supersymmetry generators act as differential opera-
tors: xµ, θ, θ∗:

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ; Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ.

The θ’s have mass dimension −1/2.

These differential operators obey the susy algebra. E.g.

{Qα, Qβ} = {( ∂

∂θα
− iσµαα̇θ̄

α̇∂µ), (
∂

∂θβ
− iσν

ββ̇
θ̄β̇∂ν)} = 0

since the θ’s and their derivatives anticommute.

{Qα, Q̄α̇} = 2iσµαα̇∂µ.
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The Q’s generate infinitesimal transformations in su-
perspace with parameter ε. One can construct finite
transformations as well by exponentiating the Q’s; be-
cause there are only a finite number of non-vanishing
polynomials in the θ’s, these exponentials contain only
a finite number of terms. The result can be expressed
compactly:

eεQ+ε∗Q∗
Φ(xµ, θ, θ̄) = Φ(xµ − iεσµθ∗ + iθσµε∗, θ+ ε, θ̄+ ε∗).
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Irreducible Representations

A superfield Φ can be decomposed into two irreducible
representations of the algebra, corresponding to the chi-
ral and vector superfields described above. We need one
more set of objects, the covariant derivatives, Dα and
D̄α̇.

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ; D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ.

They satisfy the anticommutation relations:

{Dα, D̄α̇} = −2iσµαα̇∂µ {Dα, Dα} = {D̄α̇, D̄β̇} = 0.

The D’s anticommute with the Q’s:

{Dα, Q̄α̇} = 0

etc.
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Chiral Superfields

Satisfy:

D̄α̇Φ = 0

Because the D’s anticommute with the Q’s, this condi-
tion is invariant under supersymmetry transformations.

Construction:

y = xµ + iθσµθ̄.

so D̄y = 0, and

Φ = Φ(y) = φ(y) +
√

2θψ(y) + θ2F (y).

is a chiral (scalar) superfield. Expanding in θ:

Φ = φ(x) + iθσµθ̄∂µφ+
1

4
θ2θ̄2∂2φ

+
√

2θψ − i√
2
θθ∂µψσ

µθ̄+ θ2F.
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Transformation Laws for the Components of a

Chiral Superfield:

δΦ = εαQ
αΦ

so matching the coefficients of powers of θ on each side,
the components transform as

δφ =
√

2iεψ δψ =
√

2εF +
√

2iσµε∗∂µφ δF = 0
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Vector superfields

Satisfy the condition

V = V †

Preserved by SUSY transformations:

δV = (εQ+ ε̄Q̄)V δV = δV †

V can be expanded in a power series in θ’s:

V = iχ− iχ† − θσµθ∗Aµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D.

χ is a chiral field.
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If V is to describe a massless field, the presence of Aµ
indicates that there should be some underlying gauge
symmetry, which generalizes the conventional transfor-
mation of bosonic theories. In the case of a U(1) theory,
gauge transformations act by

V → V + iΛ − iΛ†

where Λ is a chiral field. The θθ̄ term in Λ (Λ ∼ θσµθ̄∂µχ)
is precisely a conventional gauge transformation of Aµ.
One can define a gauge-invariant field strength,

Wα = −1

4
D̄2DαV.

∆Wα = − i

4
D̄2Dα(Λ − Λ†)

= − i

4
D̄2DαΛ

= − i

4
D̄α̇{D̄α̇, Dα}Λ = 0.
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The field content of the vector field: Wess-

Zumino gauge

By a gauge transformation, we can set χ = 0. The
resulting gauge is known as the Wess-Zumino gauge.
This gauge is analogous to Coulomb gauge in electro-
dynamics: the degrees of freedom are clear, but the
gauge condition breaks supersymmetry.

Wα = −iλα + θαD − σµνβαFµνθβ + θ2σµ
αβ̇
∂µλ

∗β̇.

The gauge transformation of a chiral field of charge q
is:

Φ → e−iqΛΦ

One can form gauge invariant combinations using the
vector field (connection) V :

Φ†eqVΦ.

We can also define a gauge-covariant derivative by

DαΦ = DαΦ +DαVΦ.

18



Non-Abelian Gauge Theories

Generalize first the transformation of Φ:

Φ → e−iΛΦ

where Λ is a matrix-valued chiral field.

Introduce a matrix-valued field, V , and require that

φ†eV φ

be gauge invariant. So we require:

eV → e−iΛ
∗
eV eiΛ

∗
.

From this, we can define a gauge-covariant field strength,

Wα = −1

4
D̄2e−VDαe

V .

This transforms like a chiral field in the adjoint repre-
sentation:

Wα → eiΛWαe
−iΛ.
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N=1 Lagrangians

In ordinary field theories, we construct lagrangians in-
variant under translations by integrating densities over
all of space. The lagrangian changes by a derivative
under translations, so the action is invariant. Similarly,
if we start with a lagrangian density in superspace, a su-
persymmetry transformation acts by differentiation with
respect to x or θ. So integrating the variation over the
full superspace gives zero. This is the basic feature of
the integration rules we introduced earlier. In equations:

δ

∫

d4x

∫

d4θ h(Φ,Φ†, V )

=

∫

d4xd4θ (εαQ
α + εα̇Q

α̇)h(Φ,Φ†, V ) = 0.

For chiral fields, integrals over half of superspace are
invariant. If f(Φ) is a function of chiral fields only, f
itself is chiral. As a result,

δ

∫

d4x d2θf(Φ) =

∫

d4x d2θ(εαQ
α + εα̇Q

α̇)f(Φ).

The Qα terms vanish when integrated over x and d2θ.
The Q∗ terms also give zero:

Q∗
α̇f ∝ θασµαα̇∂µf.
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With these ingredients, we can write down the most
general renormalizable lagrangian. The chiral fields, Φi,
have dimension one; the θ’s have dimension −1/2. The

vector fields, V (i)f , are dimensionless, while Wα has di-
mension 3/2. First, there are terms involving integration
over the full superspace:

Lkin =

∫

d4θ
∑

i

Φ†
ie
VΦi,

where the eV is in the representation of the gauge group
appropriate to the field Φi. We can also write an integral
over half of superspace:

LW =

∫

d2θW (Φi) + c.c.

W (Φ) is a holomorphic function of the Φi’s (it is a func-

tion of Φi, not Φ†
i), called the superpotential. For a

renormalizable theory,

W =
1

2
mijΦiΦj +

1

3
ΓijkΦiΦjΦk

Finally, for the gauge fields, we can write:

Lgauge =
1

g(i)2

∫

d2θW (i)2
α

The full lagrangian density is

L = Lkin + LW + Lgauge.
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Component Form of the Lagrangian

To obtain the lagrangian for the component fields, we
just use the expressions for the fields and the integration
rules for the θ’s. First consider a single chiral field, Φ,
neutral under any gauge symmetries. Then

Lkin = |∂µΦ|2 + iψΦ∂µσ
µψ∗

Φ + F ∗
ΦFΦ.

The field F is referred to as an “auxiliary field,” as it
appears without derivatives in the action; it has no dy-
namics. For several fields,

Lkin = |∂µφi|2 + iψi∂µσ
µψ∗

i + F ∗
i Fi.

From W (several fields)

LW =
∂W

∂Φi
Fi +

∂2W

∂ΦiΦj
ψiψj.

For our special choice of superpotential this is:

LW = Fi(mijΦj + ΓijkΦjΦk) + (mij + ΓijkΦk)ψiψj + c.c..

It is a simple matter to solve for the auxiliary fields:

F ∗
i = −∂W

∂Φi

Substituting back in the lagrangian,

V = |Fi|2 = |∂W
∂Φi

|2
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Lagrangian with the Gauge Fields

To work out the couplings of the gauge fields, it is con-
venient to choose the Wess-Zumino gauge. Leaving the
details for the exercises:

L = −1

4
g−2
a F a2

µν−iλaσµDµλ
a∗++|Dµφi|2−iψiσµDµψ

∗
i+

1

2g2
(Da)2+Da

∑

+F ∗
i Fi−Fi

∂W

∂φi
+cc+

∑

ij

1

2

∂2W

∂φi∂φj
ψiψj+i

√
2
∑

λaψiT
aφ∗

i .

The scalar potential is found by solving for the auxiliary
D and F fields:

V = |Fi|2 +
1

2g2a
(Da)2

with

Fi =
∂W

∂φ∗
i

Da =
∑

i

(gaφ∗
iT

aφi).
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The Fayet-Iliopoulos Term

In the case there is a U(1) factor in the gauge group,
there is one more term one can include in the lagrangian,
known as the Fayet-Iliopoulos D term. In superspace,

∫

d4θV

is supersymmetric and gauge invariant:

δ

∫

d4θV = i

∫

d4θ(Λ − Λ†) = 0.

(e.g.
∫

dθ̄f =
d

dθ̄
f ;

d

dθ̄
= D̄ − (total derivative).

In components, this is simply a term linear in D, ξD, so,
solving for D from its equations of motion,

D = ξ+
∑

i

qiφ
∗
iφi.
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The Supersymmetry Currents

Noether procedure: need to be careful because the la-
grangian is not invariant under supersymmetry trans-
formations, but instead transforms by a total derivative
(compare translations). Variation of the lagrangian is
proportional to

∫

d4θεQL. The piece involving ∂
∂θ

in-
tegrates to zero, but the other piece; only in the ac-
tion, obtained by integrating the lagrangian density over
space-time, does the derivative term drop out.

So in performing the Noether procedure, the variation
of the lagrangian will have the form:

δL = ε∂µK
µ + (∂µε)T

µ

Integrating by parts, we have that Kµ−T µ is conserved.
Taking this into account, for a theory with a single chiral
field:

jµα = iψ∗σµαα̇∂µφ+ Fσµαα̇ψ̄
α̇,

and similarly for jµα̇.
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For several chiral fields, replace ψ → ψi, φ→ φi, etc., and
sum over i. One can check that the (anti)commutator
of the Q’s (integrals over jo) with the various fields gives
the correct transformations laws. E.g.:

δψ(x) = εα{Qα, ψ(x)}

= iεασµα,·α∂µφ+ εαF.

One can do the same for gauge fields. For gauge fields,
working with the action written in terms of W , there are
no derivatives, so the variation of the lagrangian comes
entirely from the ∂µKµ term. Working out the current
is left for the exercises.
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The Ground State Energy as an Order Param-

eter for Supersymmetry Breaking

In globally supersymmetric lagrangians, V ≥ 0. This
fact can be traced back to the supersymmetry algebra.

{Qα, Qβ̇} = 2Pµσ
µ

αβ̇
,

multiply by σo and take the trace:

QαQα̇ +Qα̇Qα = E.

The left hand side is positive definite, so the energy is
always greater than or equal to zero.

E = 0 is special: the expectation value of the energy
is an order parameter for supersymmetry breaking. If
supersymmetry is unbroken, Qα|0〉 = 0, so the ground
state energy vanishes if and only if supersymmetry is
unbroken.
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The Auxiliary Fields F and D as Order Param-

eters for Supersymmetry Breaking

Alternatively, consider the supersymmetry transforma-
tion laws for λ and ψ. One has, under a supersymmetry
transformation with parameter ε,

δψ =
√

2εF + . . . δλ = iεD+ . . .

In the quantum theory, the supersymmetry transforma-
tion laws become operator equations:

δψ = {Q,ψ}
so taking the vacuum expectation value of both sides,
we see that a non-vanishing F means broken supersym-
metry; again vanishing of the energy, or not, is an indi-
cator of supersymmetry breaking. So if either F or D
has an expectation value, supersymmetry is broken.

The signal of ordinary (bosonic) symmetry breakdown
is a Goldstone boson. In the case of supersymmetry,
the signal is the presence of a Goldstone fermion, or
goldstino. One can prove a goldstino theorem in almost
the same way one proves Goldstone’s theorem. We will
do this shortly, when we consider simple models of su-
persymmetry and its breaking.
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The Wess-Zumino Model

One of the earliest, and simplest, models is the Wess-
Zumino model, a theory of a single chiral field (no gauge
interactions). For the superpotential, we take:

W =
1

2
mφ2 +

λ

3
φ3

The scalar potential is:

V = |mφ+ λφ2|2

and the φ field has mass-squared |m|2. The fermion
mass term is

1

2
mψψ

so the fermion also has mass m.
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Symmetries of the Wess-Zumino Model

First, set m = 0. The theory then has a continuous
global symmetry. This is perhaps not obvious from
the form of the superpotential, W = λ

3
φ3. But the la-

grangian is an integral over superspace of W , so it is
possible for φ to transform and for the θ’s to transform in
a compensating fashion. Such a symmetry, which does
not commute with supersymmetry, is called an R sym-
metry. If, by convention, we take the θ’s to carry charge
1, than the dθ’s carry charge −1 (think of the integration
rules). So the superpotential must carry charge 2. In
the present case, this means that φ carries charge 2/3.
Note that each component of the superfield transforms
differently:

φ→ ei
2

3
αφ ψ → ei(

2

3
−1)αψ F → ei(

2

3
−2)αF
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A U(1) Gauge Theory

Consider a U(1) gauge theory, with two charged chiral
fields, φ+ and φ−, with charges ±1, respectively. Sup-
pose W = 0. In Wess-Zumino gauge:

V (φ±) =
1

2
D2 =

g2

2
(|φ+|2 − |φ−|2)2.

Zero energy, supersymmetric minima have D = 0. By a
gauge choice, we can set

φ = v φ− = v′eiα

Then D = 0 if v = v′. Each vacuum is physically distinct
– in this example the spectra are different – and there
are no transitions between vacua.

Spectrum:

• Gauge bosons, with masses:

m2
v = 4g2v2.

This accounts for three degrees of freedom.

• Gauginos: From the Yukawa couplings of the gaug-
ino, λ, to the φ’s:

Lλ =
√

2gλ(ψφ+ − ψφ−)

so we have a Dirac fermion with mass 2gv. So
we now have accounted for three bosonic and four
fermionic degrees of freedom, all degenerate.
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• The fourth bosonic degree of freedom is a scalar,the
“partner” of the Higgs which is eaten in the Higgs
phenomenon. To compute its mass, note that, ex-
panding the scalars as

φ± = v+ δφ±

D = 2v(δφ+ + δφ+∗ − δφ− − δφ−∗)

So 1
2
D2 gives a mass to the real part of 1/

√
2(δφ+−

δφ−), equal to the mass of the gauge bosons and
gauginos. Since the masses differ in states with
different v, these states are physically inequivalent.

• There is also a massless state: a single chiral field.
For the scalars, this follows on physical grounds.
First, there should be a Goldstone boson due to
the breaking of the symmetry φ± → eiαφ±. Another
scalar arises because the expectation value, v, is
undetermined. For the fermions, the linear com-
bination ψφ+ + ψφ− is not fixed. So we have the
correct number of fields to construct a massless
chiral multiplet. We can describe this elegantly by
introducing the composite chiral superfield:

Φ = φ+φ− ≈ v2 + v(δφ+ + δφ−).

Its components are precisely the massless complex
scalar and chiral fermion which we identified above.
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Moduli

This is our first encounter with a phenomena which is
nearly ubiquitous in supersymmetric field theories: there
are often continuous sets of vacuum states, at least in
some approximation. The set of such physically distinct
vacua is known as the “moduli space.” In this example,
the set of such states is parameterized by the values of
the field, Φ; Φ is called a “modulus.”

In quantum mechanics, in such a situation, we would
solve for the wave function of the modulus, and the
ground state would typically involve a superposition of
the different classical ground states. We have seen,
though, that, in field theory, one must choose a value of
the modulus field. In the presence of such a degeneracy,
for each such value one has, in effect, a different theory
– no physical process leads to transitions between one
such state and another. Once the degeneracy is lifted,
however, this is no longer the case, and transitions, as
we will frequently see, are possible.
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General Supersymmetric Lagrangian and Non-

Renormalization Theorems

So far, renormalizable field theories. The most gen-
eral, globally supersymmetric theory with at most two
derivatives:

L =

∫

d4θK(φi, φ
†
i) +

∫

d2θW (φi) + c.c.

+

∫

d2θfa(φ)(W
(a)
α )2 + c.c..

K: Kahler potential. W and fa are holomorphic.

Re f F 2
µν + Imf F F̃ .

Non-supersymmetric theories have the property that they
tend to be generic; any term permitted by symmetries
in the theory will appear in the effective action, with an
order of magnitude determined by dimensional analysis.
Not so for susy theories.The superpotential is not cor-
rected in perturbation theory beyond its tree level value;
f is at most renormalized at one loop.
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Seiberg argued that the coupling constants of a the-
ory may be thought of as expectation values of chiral
fields and so the superpotential must be a holomorphic
function of these as well.

E.g. consider a theory of a single chiral field, Φ, with
superpotential

W =

∫

d2θ(mΦ2 + λΦ3).

We can think of λ and m as expectation values of chiral
fields, λ(x, θ) and m(x, θ).

In the Wess-Zumino lagrangian there is an R symmetry
under which Φ has R charge one and λ has R charge
−1 (m has R charge 0). Now consider corrections to
the effective action in perturbation theory. Renormal-
izations of λ in the superpotential necessarily involve
positive powers of λ. But such terms (apart from (λ)1)
have the wrong R charge to preserve the symmetry. So
there can be no renormalization of this coupling. There
can be wave function renormalization, since K is not
holomorphic, so K = K(λ†λ) is allowed, in general.

This non-renormalization of the superpotential is gen-
eral (first proven by detailed studies of Feynman dia-
grams).
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Other Non-Renormalization Theorems

Can treat g−2 as part of a chiral field.

S =
8π2

g2
+ ia+ . . .

∫

d2θSW 2
α

The real part of the scalar field in this multiplet couples
to F 2

µν, but the imaginary part, a, couples to FF̃ . FF̃
is a total derivative, so in perturbation theory there is
a symmetry under constant shifts of a. The effective
action should respect this symmetry. Because the gauge
coupling function, f , is holomorphic, this implies that

f(g2) = S + const =
8π2

g2
+ const .

The first term is just the tree level term. One loop
corrections yield a constant, but there are no higher
order corrections in perturbation theory! This is quite a
striking result. It is also paradoxical, since the two loop
β-functions for supersymmetric Yang-Mills theories have
been computed long ago, and are in general non-zero.
The resolution of this paradox is subtle and interesting.
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Fayet-Iliopoulos term

If there is no Fayet-Iliopoulos D-term at tree level, this
term can be generated at most at one loop. To prove
this, write the D term as

∫

d4θd(g, λ)V.

d(g, λ) is some unknown function of the gauge and other
couplings in the theory. But if we think of g and λ as
chiral fields, this expression is only gauge invariant if
d is a constant, corresponding to a possible one loop
contribution.
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Spontaneous Supersymmetry Breaking: O’Raifeartaigh

Models

Supersymmetry breaking is signalled by a non-zero ex-
pectation value of an F component of a chiral or D
component of a vector superfield. Models involving only
chiral fields with no supersymmetric ground state are
called O’Raifeartaigh models. E.g. fields, A,B, and X,
with superpotential:

W = λA(X2 − µ2) +mBX.

The equations

FA = λ(x2 − µ2) = 0 FB = mX = 0

are incompatible. There is no problem satisfying the
equation FX = 0. So we need to minimize

Veff = |FA|2 + |FB|2 = |λ2||X2 − µ2|2 +m2|X|2.
Assuming µ2, λ are real, the solutions are:

X = 0 X2 =
2λ2µ2 −m2

2λ2

The corresponding vacuum energies are:

Vo = λ2µ4 m2µ2

λ2
− m4

4λ2
.

The vacuum at X 6= 0 disappears at a critical value of
µ.
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Spectrum in the X = 0 vacuum: several massless states
First, a massless scalar; arises because, at this level not
all of the fields are fully determined. The equation

∂W

∂X
= 0

can be satisfied provided

2λ1AX +mB = 0.

This vacuum degeneracy is accidental and will be lifted
by quantum corrections (Seiberg’s lectures).

There is also a massless fermion, ψA. This fermion
is the Goldstino. Replacing the auxiliary fields in the
supersymmetry current for this model, gives

j = FAσ
µψ∗

A.
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Sum Rule

The massive states do not form Bose-Fermi degenerate
multiplets. They satisfy a sum rule,

∑

(−1)Fm2 = 0.

Here (−1)F = 1 for bosons and −1 for fermions.

FA = −λµ2 Take X = 0.

Dirac fermion: mψXψB.

Scalar masses from m2|B|2 +m2|X|2 − λ2µ2(X2 +X∗2).

Re X: m2 − 2λ2µ2 = m2 + 2λFA Im X: m2 + 2λ2µ2 =
m2 − 2λFA
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The sum rule is general. Here, proof without gauge
interactions. The potential is given by

V =
∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

.

The boson mass matrix has terms of the form φ∗
iφj

and φiφj + c.c. ( indices ī and j̄ for complex conjugate
fields). The latter terms are connected with supersym-
metry breaking. The various terms in the mass matrix
can be obtained by differentiating the potential:

m2
īj =

∂2V

∂φi∂φ∗
j̄

=
∂2W

∂φi∂φk

∂2W ∗

∂φ∗
k̄
∂φ∗

j̄

,

m2
ij =

∂2V

∂φi∂φj
=
∂W

∂φ∗
k

∂3W

∂φk∂φi∂φj
.

The first of theses terms has just the structure of the
square of the fermion mass matrix,

MF ij =
∂2W

∂φi∂φj
.

So writing the boson mass, M2
B matrix on the basis

(φi φ∗
j̄
), we see that the sum rule holds.
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The theorem is true whenever a theory can be described
by a renormalizable effective action. We have seen that
various non-renormalizable terms in the effective action
can give additional contributions to the mass and these
will violate the tree level sum rule. Such terms arise in
renormalizable theories when one integrates out heavy
fields to obtain an effective action at some scale. In the
context of supergravity, such terms are present already
at tree level.

SUSY can also be broken by expectation value for a D
term. E.g. if L includes

∫

d4θξ2V +

∫

d2θmφ+φ−

D(|φ+|2 − |φ−|2 − ξ2)

V = m2(|φ+|2 + |φ−|2) +
1

2
(|φ+|2 − |φ−|2 − ξ2)2

and D 6= 0 at the minimum. The sum rule holds for
these as well.
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The Goldstino Theorem

Similar to proof of ordinary Goldstone theorem.. Sup-
pose that the symmetry is broken by the F component
of a chiral field (this can be a composite field). Then
we can study

∫

d4x∂µe
iq·xT < jµα(x)ψΦ(0) >= 0.

jµα is the supersymmetry current; its integral over space
is the supersymmetry charge. This expression vanishes
because it is an integral of a total derivative. Now taking
the derivatives, there are two non-vanishing contribu-
tions: one from the derivative acting on the exponential;
one from the action on the time-ordering symbol. Tak-
ing these derivatives, and then taking the limit q → 0,
gives

< {Q,ΨΦ(0)} >= iqµT < jµα(x)ψΦ(0) >F.T. .
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Now the left hand side is constant, so the Green’s func-
tion on the right hand side must be singular as q → 0.
By the usual spectral representation analysis, this shows
that there is a massless fermion coupled to the super-
symmetry current. Recalling the form of the supersym-
metry current, if one of the F ’s has an expectation value,

jµα = σµψ
∗
αF.

F , here, is the “Goldstino decay constant.” We can
understand the massless fermion which appeared in the
O’Raifeartaigh model in terms of this theorem. It is
easy to check that:

ψG ∝ FAψA + FBψB.

.
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Explicit, Soft Supersymmetry Breaking

Ultimately, if nature is supersymmetric, it is likely that
we will want to understand supersymmetry breaking through
some dynamical mechanism. But we can be more prag-
matic, accept that supersymmetry is broken, and param-
eterize the breaking through mass-differences between
ordinary fields and their superpartners. It turns out that
this procedure does not spoil the good ultraviolet prop-
erties of the theory. Such mass terms are said to be
“soft” for precisely this reason.

Wess-Zumino model, with m = 0. Add term m2
soft|φ|2.

Ask what is the form of corrections to the scalar mass.
Without the soft breaking term, there is an exact can-
cellation of the two Feynman graphs:

δm2 =
1

(2π)4

∫

d4k(
1

k2
− 1

k2
)

with the soft breaking term, there is not an exact can-
cellation;

1

(2π)4

∫

d4k(
1

k2 +m2
soft

− 1

k2
)

= − |λ|2
16π2

m2
soft ln(Λ2/m2

soft).
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We can understand this simply on dimensional grounds.
We know that for m2

soft = 0, there is no correction.

Treating the soft term as a perturbation, the result is
necessarily proportional to m2

soft; at most, then, any di-

vergence must be logarithmic.

Can also add soft masses for gauginos and trilinear scalar
couplings

mλλλ Aijkφiφjφk

Can understand how these might arise at a more funda-
mental level (makes clear the sense in which these terms
are soft).

Z : 〈FZ〉 = 0.

No renormalizable couplings between Z and φ (“matter
fields”). Such couplings might be forbidden by sym-
metries. Non-renormalizable couplings, e.g. in Kahler
potential:

LZ =
1

M2

∫

d4θZ†Zφ†φ

can be expected to arise in the effective lagrangian; not
forbidden by any symmetry. Replacing Z by its expec-
tation value, < Z >= . . .+ θ2 < FZ > gives a mass term
for the scalar component of φ:

LZ =
| < F > |2

M2

the soft mass term. Simple power counting shows that
loop corrections to these couplings due to renormaliz-
able interactions are at most logarithmically divergent.
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The operator:
∫

d2θ
Z

M
W 2
α =

FZ

M
λλ+ . . .

gives rise to a mass for gauginos. The term
∫

d2θ
Z

M
φφφ

leads to a trilinear coupling of the scalars.

To summarize, there are three types of soft breaking
terms which can appear in a low energy effective action:

• Soft scalar masses, m2
φ|φ|2.

• Gaugino masses, mλλλ

• Trilinear scalar couplings, Γφφφ.
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Local Supersymmetry

If supersymmetry has anything to do with nature, and
if it is not merely an accident, then it must be a local
symmetry. In addition to chiral and vector fields, now
has a graviton and a gravitino.

As in global supersymmetry (without the restriction of
renormalizability), the terms in the effective action with
at most two derivatives or four fermions are completely
specified by three functions:

1. The Kahler potential, K(φ, φ†), a function of the
chiral fields

2. The superpotential, W (φ), a holomorphic function
of the chiral fields.

3. The gauge coupling functions, fa(φ), which are also
holomorphic functions of the chiral fields.
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The lagrangian which follows from these is quite com-
plicated, including many two and four fermions inter-
actions. The scalar potential is rather simple and very
useful:

V = eK

[

(

∂W

∂φi
+
∂K

∂φi
W

)

gīj

(

∂W ∗

∂φ∗
j

+
∂K

∂φ∗
j

W

)

− 3|W |2
]

,

where

gīj =
∂2K

∂φi∂φj̄

is the (Kahler) metric associated with the Kahler poten-
tial. In this equation, we have adopted units in which
Mp = 1, where

GN =
1

8πM2
p

.

Mp ≈ 2 × 1018 GeV is known as the reduced Planck

mass.
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Supersymmetry Breaking in Supergravity Mod-

els

Supergravity potential:

V = eK

[

(

∂W

∂φi
+
∂K

∂φi
W

)

gīj

(

∂W ∗

∂φ∗
j

+
∂K

∂φ∗
j

W

)

− 3|W |2
]

,

In supergravity, the condition for unbroken supersym-
metry is that the Kahler derivative of the superpotential
should vanish:

DiW =
∂W

∂φi
+
∂K

∂φi
W = 0.

When this is not the case, supersymmetry is broken. If
we require vanishing of the cosmological constant, then
we have:

3|W |2 =
∑

i,̄j

DiWDj̄W
∗gīj.

In this case, the gravitino mass turns out to be:

m3/2 = 〈eK/2W 〉.
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There is a standard strategy for building supergravity
models. One introduces two sets of fields, the “hidden
sector fields,” which will be denoted by Zi, and the “vis-
ible sector fields,” denoted ya. The Zi’s are assumed to
be connected with supersymmetry breaking, and to have
only very small couplings to the ordinary fields, ya. In
other words, one assumes that the superpotential, W ,
has the form

W = Wz(Z) +Wy(y),

at least up to terms suppressed by 1/M . The y fields
should be thought of as the ordinary matter fields and
their superpartners.

One also usually assumes that the Kahler potential has
a “minimal” form,

K =
∑

z†i zi +
∑

y†aya.

One chooses (tunes) the parameters of WZ so that

〈FZ〉 ≈MwM

and

〈V 〉 = 0.

Note that this means that

〈W 〉 ≈MWM
2
p .

The simplest model of the hidden sector is known as
the “Polony model.” In this model,

W = m2(z + β)
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β = (2 +
√

3M) .

The minimum of the potential for Z lies at

Z = (
√

3 − 1)M

and

m3/2 = (m2/m)e(
√

3−1)2/2.



Soft-breaking mass terms for the fields y: There are
terms of the form

m2
o |yi|2.

These arise from the |∂iK W |2 = |yi|2|W |2 terms in the
potential. For the simple Kahler potential:

m2
o = 2

√
3m2

3/2 A = (3 −
√

3)m3/2.

Also find supersymmetry-violating quadratic and cubic
terms in the potential in presence of a superpotential
W (y); these have the form:

Bijm3/2φiφj +Aijkm3/2φiφjφk.

E.g. if W is homogeneous, and of degree three:

eK
∂W

∂ya

∂K

∂y∗a
W + c.c. = 3m3/2.

Additional contributions arise from
〈

∂W

∂zi

〉

y∗jW
∗ + c.c..

In the exercises, some specific models.
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Exercises

1. Review the handout on two component spinors, if
the notation of Wess and Bagger (with dotted and
undotted indices is familiar).

2. Verify the commutators of the Q’s and the D’s writ-
ten as differential operators in superspace. Verify
the action of the exponentiated supercharges on
superfields.

3. Check that with the definition of y, Φ is chiral.
Show that any function of chiral fields is a chiral
field. Work out the expansion of a chiral field in
powers of θ, θ̄.

4. Verify that Wα transforms as in the adjoint repre-
sentation, and that TrW 2

α is gauge invariant.

5. Derive the expression for the component lagrangian
including gauge interactions and the superpotential
by doing the superspace integrals.

6. Derive the supersymmetry current for a theory with
several chiral fields. For a single field, Φ, and
W = 1/2 mΦ2, verify, using the canonical com-
mutation relations, that the Q’s obey the super-
symmetry algebra. Work out the supercurrent for
a pure supersymmetric gauge theory.
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7. Work out out the spectrum of the O’Raifeartaigh
model. Show that the spectrum is not supersym-
metric, but verify the sum rule,

∑

(−1)F m2 = 0.

8. Work out the spectrum of a model with a Fayet-
Iliopoulos D-term and supersymmetry breaking. Again
verify the sum rule.

9. Check equations for the minimum of the potential
of the Polonyi model


