
Addendum To Tutorial Of E. Witten

I want to explain a few points that I didn’t have time for at the end of the tutorial.

(But see also the paper hep-th/9505186 for more.) I am writing this note because it would

take too much time to explain all these details in the next lecture. I am probably going

to go into more detail here than most students would find relevant, but having gotten this

far I would like to tidy up a few loose ends.

In computing the partition function of free electrodynamics, the lattice sum comes

out to be ∑

x∈Λ

q
1
4 (−(x,x)+(x,?x)q̄

1
4 (x,x)+(x,?x)

The lattice Λ is H2(M,Z) modulo torsion, that is, it is the second cohomology group of

the four-manifold M , modulo torsion. This type of lattice sum, as I mentioned, also arises

as the partition function in genus 1 of a toroidally compactified string theory. (As such it

is called the Narain theta function; in mathematics, it is attributed to C. L. Siegel.) In the

sum, q = exp(2πiτ) where τ = θ/2π + 4πi/g2. Also (x, x) is the intersection pairing, i.e.

(x, x) =
∫

M
x∪ x, where ∪ is the cup product (if you think of x as a differential form then

you can use the wedge product). Finally, to compute (x, ?x), we represent x by a harmonic

two-form of the right periods (which I called F0(x)/2π in the lecture), and apply to it the

Hodge ? operator (the duality operator, for physicists), and then (x, ?x) =
∫

M
x ∧ ?x. I

wrote this formula using the wedge product, since here it is most natural to think in terms

of differential forms.

In general, a Narain-Siegel lattice sum is modular under τ → −1/τ if the lattice Λ

is unimodular (or self-dual). That is true for any M by virtue of Poincaré duality. It is

modular under τ → τ +2 if Λ is any integral lattice – again true here since the intersection

form on M is integral. (Easy exercise: check using the fact that (x, x) takes integer values

that the lattice sum above is invariant under τ → τ +2.) We get modular properties under

τ → τ + 1 if Λ is even (i.e. if (x, x) only takes even values) – which is true in the present

context precisely if M is a spin manifold.

For a function Z to have modular properties under a modular transformation τ →
τ ′ = (aτ +b)/(cτ +d) means that Z(τ ′) = Z(τ)(cτ +d)α(cτ̄ +d)β , for some α and β, which

are the holomorphic and antiholomorphic modular weights. For example, Im τ is invariant

under τ → τ + 1, and Im(−1/τ) = Im(τ)/τ τ̄ , so Im(τ) is modular of weights (−1,−1).

The Narain-Seigel theta function of a lattice whose signature is (b+, b−) is modular of

weights ( 1
2b+, 1

2b−). As explained in the paper I’ve referred to, upon combining these
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facts, one sees that the partition function of free abelian gauge theory on a four-manifold,

with the minimal regularization in which we just set B1−B0 to zero, is modular of weights
1
4 (χ− σ, χ + σ), with χ and σ the Euler characteristic and the signature.

I didn’t give a satisfactory answer to questions that were asked at the end of the

lecture about whether the free abelian gauge theory is really a conformal theory, and

precisely how to formulate and use that. First of all, it is easy to see that it is true if we

are on flat R4. We need to show that the stress tensor Tµν is traceless. It suffices to show

that its matrix elements among initial and final states are traceless. The initial and final

states are Fock states of free photons. In computing matrix elements of Tµν , there are no

loop diagrams (and there are only very simple tree diagrams, in which the stress tensor

scatters one photon, or emits or absorbs a pair). In tree diagrams there is no way to get

an anomaly, so Tµν is traceless, since this is so in the classical theory.

There is one small imprecision in the last paragraph. In the free theory on flat space,

though there are no interaction vertices, one can draw a disconnected loop diagram on R4

with a single insertion of T (and no other vertices or insertions) representing a contribution

to the vacuum expectation value of T . It is quartically divergent, so one can worry about it.

However, by Poincaré invariance, its value, with any regularization, is a constant multiple

of gµν (the metric tensor of Minkowski space). We simply subtract this multiple from T ,

and thereby obtain a new stress tensor, also conserved but now traceless.

We also, of course, could consider matrix elements of products of local operators, for

example 〈Tµν(x)Tαβ(y)〉 if we want to. Then we will run into more complicated diagrams.

However, we don’t need to consider these questions to decide if T is traceless. For this it

suffices to verify that all matrix elements of T among Fock space states, which give a basis

of the Hilbert space, are traceless.

Now I get to a point where my answer to one of the questions was misleading. What

happens if we formulate the theory on a curved four-manifold M? We still only get tree

diagrams if we consider matrix elements of T among states with initial and final photons

(a question that would make sense if M has Lorentz signature and suitable asymptotic

behavior). However, now, when we compute the one-loop diagram for the expectation

value of T , it need not just be a constant multiple of gµν but can be more complicated.

Hence, there is no simple argument against a possible trace anomaly, and as shown by Duff

et. al. in the 1970’s, there actually is a trace anomaly. The trace of the stress tensor is a

multiple of the polynomial in the Riemann tensor whose integral is the Euler characteristic.
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It is still true that because the theory is free, there are no higher loop diagrams that might

contribute to the trace of the stress tensor.

Since this trace of the stress tensor comes from a one-loop diagram, it is independent

of the coupling constant, that is independent of Im τ . (Of course, it is even more trivially

independent of Re τ , the theta angle.) So when we are discussing the τ dependence, we

can assume conformal invariance. So in particular, when we were trying to determine the

power of Im τ , this power is conformally invariant. Any ambiguity (i.e. difference in the

results obtained with different regularizations) is the integral of a local density constructed

from the metric, as I explained in the lecture, and also must be conformally invariant. So

the ambiguity in the power of Im τ is of the general form (Im τ)aχ+bσ, where χ and σ are

the Euler characteristic and the signature, and a and b are constants. Moreover, if our

regularization preserves parity, then b must vanish, so the ambiguity is just (Im τ)aχ for

some constant χ.

Just for fun, what happens if we consider N = 4 super Yang-Mills theory with non-

abelian gauge group G, instead of the free U(1) theory of the lecture? It is still true, but

a lot less trivial, that the theory on flat R4 is conformally invariant. When we formulate

it on a general four-manifold, we still get a one-loop trace anomaly, proportional again

to the density whose integral is χ. Since the N = 4 theory is non-free, there appear to

be opportunities for all kinds of higher contributions to the trace anomaly, but I believe

that in fact (because of supersymmetry and holomorphy) there are no higher corrections.

Hence, just as in the abelian theory, the trace anomaly is independent of τ .

Hence, when we discuss the τ -dependence of the theory on a curved manifold, we can

assume conformal invariance (up to a factor independent of τ). However, as the theory

is non-free, its τ -dependence is more complicated; there are contributions in all orders in

1/Im τ (unless we specialize, for example, by a topological twist, to a situation in which

they are absent), and there are even instanton contributions that depend on Re τ . Two

different regularizations of N = 4 super-Yang-Mills theory will in general, give partition

functions that differ by a factor exp(a(τ, τ̄)χ + b(τ, τ̄)σ), where a and b are functions (a

is even under parity and b is odd). S-duality says that the partition function of N = 4

super Yang-Mills on a four-manifold has modular properties, but the details depend on

the regularization, because of the appearance of the a and b functions.
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