Homework problems for Herman Verlinde's lectures

Problem 1.

One of the simplest non-orbifold singularities is the cone over $\mathbf{P}^{1} \times \mathbf{P}^{1}$. In this problem you work out the quiver for D-branes at this singularity, and check some of its properties.

Let us denote coordinates on the first \mathbf{P}^{1} as $z^{\alpha}, \alpha=1,2$, and coordinates on the second \mathbf{P}^{1} as $w^{\dot{\beta}}, \dot{\beta}=1,2$. The line bundles are of the form $\mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(n, m)$. That is, $H^{0}(\mathcal{O}(n, m))$ is generated by polynomials $P(z, w)$ of total degree n in z and total degree m in w (assuming $n, m \geq 0$).

An exceptional collection of fractional branes is given by

$$
\begin{equation*}
\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}=\{\mathcal{O}(0,0), \mathcal{O}(1,0), \mathcal{O}(0,1), \mathcal{O}(1,1)\} \tag{0.1}
\end{equation*}
$$

Their Chern characters are

$$
\begin{align*}
\operatorname{ch}\left(E_{1}\right) & =(1,0,0) \\
\operatorname{ch}\left(E_{2}\right) & =\left(1, H_{1}, 0\right) \\
\operatorname{ch}\left(E_{3}\right) & =\left(1, H_{2}, 0\right) \\
\operatorname{ch}\left(E_{4}\right) & =\left(1, H_{1}+H_{2}, 1\right) \tag{0.2}
\end{align*}
$$

Here H_{1} is the 2-cycle class corresponding to the first \mathbf{P}^{1}, and H_{2} is the 2-cycle class corresponding to the second \mathbf{P}^{1}. They satisfy the relations

$$
\begin{equation*}
H_{1}^{2}=H_{2}^{2}=0, \quad H_{1} \cdot H_{2}=1 . \tag{0.3}
\end{equation*}
$$

The canonical class is $K=-2 \mathrm{H}_{1}-2 \mathrm{H}_{2}$.
(a) Use the Chern characters and the relative Euler character $\chi\left(E_{i}, E_{j}\right)$ to work out the quiver diagram for a single D3 brane. Check that (\# arrows in $=\#$ arrows out) for each node. What type of additional fractional branes are allowed?
(b) Let us denote the generators of the cohomologies as follows:

$$
\begin{align*}
H^{0}\left(E_{1}, E_{2}\right) & =A_{\alpha} z^{\alpha} \\
H^{0}\left(E_{2}, E_{4}\right) & =B_{\dot{\beta}} w^{\dot{\beta}} \\
H^{0}\left(E_{1}, E_{3}\right) & =C_{\dot{\beta}} w^{\dot{\beta}} \\
H^{0}\left(E_{3}, E_{4}\right) & =D_{\alpha} z^{\alpha} \\
H^{0}\left(E_{1}, E_{4}\right) & =E_{\alpha \dot{\beta}} z^{\alpha} w^{\dot{\beta}} . \tag{0.4}
\end{align*}
$$

Use this to find the superpotential of the quiver in (a).
(c) Perform a Seiberg duality on node (2).

Aside: note that the new quiver has a Z_{2} quantum symmetry, namely rotation by 90°. Identifying the quiver by this symmetry yields the quiver for a D3 brane at the conifold singularity, discussed in Klebanov's lectures. This is no coincidence: in fact the cone over $\mathbf{P}^{1} \times \mathbf{P}^{1}$ is a Z_{2} orbifold of the conifold. To see this, define $N^{\alpha \beta}=z^{\alpha} w^{\beta}$, then we have $N^{1 \dot{1}} N^{2 \dot{2}}-N^{1 \dot{2}} N^{2 \dot{1}}=0$ (with a little care, you also get the Z_{2}).
(d) Let us try to find the moduli space of the quiver. We can save ourselves a little time because the quiver happens to be toric.

Show that the solutions to the F-term equations of the quiver in part (b) can be parametrized by variables Z, W, P and H :

$$
\begin{align*}
A_{\gamma} & =\epsilon_{\alpha \gamma} Z^{\alpha} \\
B_{\dot{\delta}} & =\epsilon_{\dot{\beta} \dot{\delta}} W^{\dot{\beta}} H \\
D_{\gamma} & =-\epsilon_{\alpha \gamma} Z^{\alpha} H \\
C_{\dot{\delta}} & =\epsilon_{\dot{\beta} \dot{\delta}} W^{\dot{\beta}} \\
E^{\alpha \dot{\beta}} & =P Z^{\alpha} W^{\dot{\beta}} \tag{0.5}
\end{align*}
$$

We still need to quotient out by the four (complexified) $U(1)$'s. The sum of all the $U(1)$'s acts trivially on all the fields, so we can ignore it. We can use $U(1)_{4}$ to set $H=1$. If we denote by q_{i} the charge operator for $U(1)_{i}$, then we can parameterize the remaining charges as $l_{1} \equiv q_{2}+q_{4}$ and $l_{2} \equiv q_{3}+q_{4}$. Check that the remaining fields carry the following charges:

$$
\begin{array}{cccccc}
& Z^{1} & Z^{2} & W^{1} & W^{2} & P \\
l_{1} & 1 & 1 & 0 & 0 & -2 \tag{0.6}\\
l_{2} & 0 & 0 & 1 & 1 & -2
\end{array}
$$

This is the well-known toric (or linear sigma model) description of the cone over $\mathbf{P}^{1} \times \mathbf{P}^{1}$.

Problem 2.

Consider the unoriented quiver diagram in Figure 1. It consists of the MSSM and two extra $U(1)$'s. The notation is as follows. In unoriented quivers, the chiral fields need not be in the (fundamental, anti-fundamental) representation of two gauge groups. To indicate this, for each chiral field we draw two arrows on the corresponding edge on opposite ends. The arrow closest to a gauge group indicates whether the chiral field is in the fundamental (outgoing arrow) or anti-fundamental (incoming arrow). If the representations for some gauge group are real, we do not draw an arrow near that gauge group.

This quiver has three $U(1)$'s. Which ones are anomalous and which are not? Which linear combination is hypercharge? Do you recognize the other two $U(1)$'s?

Figure 1: An unoriented version of the quiver discussed in the lectures.

