Problem 3

Igor Klebanov

Consider warped metrics of the form

$$
d s^{2}=h^{-1 / 2}(r) d x_{4}^{2}+h^{1 / 2}(r)\left(d r^{2}+r^{2} d \Omega_{Y}^{2}\right)
$$

where Y is a compact space, such as the $T^{1,1}$.
We would like to calculate the quark-antiquark potential in the dual gauge theory. For this purpose, consider the quark and antiquark at a very large value of r (call it $r_{\max }$), at the same point in Y, and separated by distance l along direction x within $R^{3,1}$.
a) Derive the equation for the shape of the string connecting the quark and the antiquark, $r(x)$.
b) For the AdS warp factor, $h=R^{4} / r^{4}$, calculate the energy of the string as a function of l. Show that, after a subtraction of a term linear in $r_{\max }$, there is an attractive Coulombic potential.
c) Try to repeat this calculation for the cascade warp factor, $h=R^{4} \ln \left(r / r_{s}\right) / r^{4}$. How does the quark antiquark potential $V(l)$ behave for small l.

